Background: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes.
Methods: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions.
Results: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females.
Conclusions: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.
Background: Puberty depicts a period of profound and multifactorial changes ranging from social to biological factors. While brain development in youths has been studied mostly from an age perspective, recent evidence suggests that pubertal measures may be more sensitive to study adolescent neurodevelopment, however, studies on pubertal timing in relation to brain development are still scarce.
Methods: We investigated if pre- vs. post-menarche status can be classified using machine learning on cortical and subcortical structural magnetic resonance imaging (MRI) data from strictly age-matched adolescent females from the Adolescent Brain Cognitive Development (ABCD) cohort. For comparison of the identified menarche-related patterns to age-related patterns of neurodevelopment, we trained a brain age prediction model on data from the Philadelphia Neurodevelopmental Cohort and applied it to the same ABCD data, yielding differences between predicted and chronological age referred to as brain age gaps. We tested the sensitivity of both these frameworks to measures of pubertal maturation, specifically age at menarche and puberty status.
Results: The machine learning model achieved moderate but statistically significant accuracy in the menarche classification task, yielding for each subject a class probability ranging from 0 (pre-) to 1 (post- menarche). Comparison to brain age predictions revealed shared and distinct patterns of neurodevelopment captured by both approaches. Continuous menarche class probabilities were positively associated with brain age gaps, but only the menarche class probabilities-not the brain age gaps-were associated with age at menarche.
Conclusions: This study demonstrates the use of a machine learning model to classify menarche status from structural MRI data while accounting for age-related neurodevelopment. Given its sensitivity towards measures of puberty timing, our work suggests that menarche class probabilities may be developed toward an objective brain-based marker of pubertal development.
Background: Offspring of hypertensive disorders of pregnancy are at an increased risk of developing neurodevelopmental and neurobehavioral disorders compared to offspring from non-affected pregnancies. Using rodent models of Preeclampsia (PreE; new onset of hypertension after 20 weeks gestation) and HELLP (hemolysis, elevated liver enzymes, and low platelets), we studied the behavioral outcome of their offspring in adolescence.
Methods: A subset of dams received Orencia, a T-cell activation inhibitor, as T cells have been associated with the induction of hypertension and inflammation during pregnancy. We hypothesized that offspring from hypertensive dams would experience adverse behavioral outcomes in social, cognitive, locomotor, and anxiety tests, and offspring from dams treated with Orencia would demonstrate less adverse behaviors.
Results: Male offspring of PreE + Orencia dams (p < 0.05) and female offspring from HELLP + Orencia dams (p < 0.05) spent more time playing compared to normal pregnant offspring. All offspring from hypertensive and Orencia-treated dams performed worse on the Barnes Maze test compared to normal pregnant. We also measured adult (postnatal day > 60) myelin basic protein (MBP) and NeuN expression in both the prefrontal cortex and hippocampus. In the hippocampus and prefrontal cortex, there was no difference in expression of either MBP or NeuN in all groups regardless of sex.
Conclusion: The results from this study suggest that offspring of hypertensive disorders of pregnancy have behavioral changes, specifically cognitive differences. This study has shown that there is a sex dependent difference in offspring neurobehavioral development, influenced in part by the type of hypertensive disorder of pregnancy, and alterations in the maternal immune system.
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics.
Methods: We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups.
Results: We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals.
Conclusions: We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.
Background: Disorders/differences of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. With overlapping phenotypes and multiple genes involved, poor diagnostic yields are achieved for many of these conditions. The current DSD diagnostic regimen can be augmented by investigating transcriptome/proteome in vivo, but it is hampered by the unavailability of affected gonadal tissue at the relevant developmental stage. We try to mitigate this limitation by reprogramming readily available skin tissue-derived dermal fibroblasts into Sertoli cells (SC), which could then be deployed for different diagnostic strategies. SCs form the target cell type of choice because they act like an organizing center of embryonic gonadal development and many DSD arise when these developmental processes go awry.
Methods: We employed a computational predictive algorithm for cell conversions called Mogrify to predict the transcription factors (TFs) required for direct reprogramming of human dermal fibroblasts into SCs. We established trans-differentiation culture conditions where stable transgenic expression of these TFs was achieved in 46, XY adult dermal fibroblasts using lentiviral vectors. The resulting Sertoli like cells (SLCs) were validated for SC phenotype using several approaches.
Results: SLCs exhibited Sertoli-like morphological and cellular properties as revealed by morphometry and xCelligence cell behavior assays. They also showed Sertoli-specific expression of molecular markers such as SOX9, PTGDS, BMP4, or DMRT1 as revealed by IF imaging, RNAseq and qPCR. The SLC transcriptome shared about two thirds of its differentially expressed genes with a human adult SC transcriptome and expressed markers typical of embryonic SCs. Notably, SLCs lacked expression of most markers of other gonadal cell types such as Leydig, germ, peritubular myoid or granulosa cells.
Conclusions: The trans-differentiation method was applied to a variety of commercially available 46, XY fibroblasts derived from patients with DSD and to a 46, XX cell line. The DSD SLCs displayed altered levels of trans-differentiation in comparison to normal 46, XY-derived SLCs, thus showcasing the robustness of this new trans-differentiation model. Future applications could include using the SLCs to improve definitive diagnosis of DSD in patients with variants of unknown significance.
Background: Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with limited treatment modalities and poor prognosis. Recent studies have highlighted the importance of considering sex differences in cancer incidence, prognosis, molecular disparities, and treatment outcomes across various tumor types, including colorectal adenocarcinoma, lung adenocarcinoma, and GBM.
Methods: We performed comprehensive analyses of large-scale multi-omics data (genomic, transcriptomic, and proteomic data) from TCGA, GLASS, and CPTAC to investigate the genetic and molecular determinants that contribute to the unique clinical properties of male and female GBM patients.
Results: Our results revealed several key differences, including enrichments of MGMT promoter methylation, which correlated with increased overall and post-recurrence survival and improved response to chemotherapy in female patients. Moreover, female GBM exhibited a higher degree of genomic instability, including aneuploidy and tumor mutational burden. Integrative proteomic and phosphor-proteomic characterization uncovered sex-specific protein abundance and phosphorylation activities, including EGFR activation in males and SPP1 hyperphosphorylation in female patients. Lastly, the identified sex-specific biomarkers demonstrated prognostic significance, suggesting their potential as therapeutic targets.
Conclusions: Collectively, our study provides unprecedented insights into the fundamental modulators of tumor progression and clinical outcomes between male and female GBM patients and facilitates sex-specific treatment interventions. Highlights Female GBM patients were characterized by increased MGMT promoter methylation and favorable clinical outcomes compared to male patients. Female GBMs exhibited higher levels of genomic instability, including aneuploidy and TMB. Each sex-specific GBM is characterized by unique pathway dysregulations and molecular subtypes. EGFR activation is prevalent in male patients, while female patients are marked by SPP1 hyperphosphorylation.
Background: There is an ongoing debate on whether sex affects immune-suppressive tumor microenvironment and immunotherapy. Here, we explored the underlying molecular bases for sex dimorphisms and their impact on the efficacy of immunotherapy in esophageal cancer (EC).
Methods: 2360 EC patients from phase 3 trials were pooled to compare overall survivals by calculating hazard ratios (HRs) and their 95% confidence intervals (CIs). Genomic data of 1425 samples were integrated to depict the genomic landscapes and antigenic features. We also examined the sex disparities based on single-cell RNA sequencing and T cell receptor-sequencing data from 105,145 immune cells in 60 patients.
Results: Immunotherapy was associated with favorable outcomes in men (HR, 0.71; 95% CI, 0.65-0.79; P < 0.001), but not in women (HR, 0.98; 95% CI, 0.78-1.23; P = 0.84) (Pinteraction =0.02). The frequencies of 8 gene mutations, 12 single base substitutions signatures, and 131 reactome pathways were significantly different between male and female. Additionally, six subtypes of HLA-II antigens were enriched in women. Hence, we constructed and then validated a sex-related signature to better predict the outcomes of immunotherapy. Exhausted CD8+ T cells were highly infiltrated in men, while naïve CD8+ T cells were more common in women. Further examinations on multiple malignancies suggested exhausted CD8+ T cells were enriched in patients who responded to immunotherapy.
Conclusions: Our study delineated the robust genomic and cellular sex disparities in EC. Furthermore, male, rather than female, derived significantly benefits from immunotherapy. These results have implications for treatment decision-making and developing immunotherapy for personalized care. In the past several years, immunotherapy has gradually replaced the traditional chemotherapy as the standard treatment in esophageal cancer. It is well-established that immunological responses in male and female differ significantly. However, there is an ongoing debate on whether sex can impact the treatment outcomes in immunotherapy. In the present study, we systematically characterized the genomic and cellular landscapes of esophageal cancer, and revealed the significant differences between male and female patients. Furthermore, with over 2000 patients with esophageal cancer, we showed that only men can benefit from immunotherapy. In women, immunotherapy failed to show superior over chemotherapy. These results have implications for treatment decision-making and developing next-generation immunotherapy for personalized care.