With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Background: Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC.
Methods: HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches.
Results: HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment.
Conclusions: These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.
Background: Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain.
Methods: Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development.
Results: On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts).
Conclusions: Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.
In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.
Background: Adolescent social isolation (ASI) has profound long-term effects on behavioral and neural development. Despite this, the specific long-term impact of ASI during different adolescent stages and across sexes remain underexplored.
Methods: Our study addresses this gap by examining the effects of early- and late- adolescent social isolation on both male and female rats. Rats were either isolated (or group-housed) starting from PD 21 (early) or PD 42 (late) for three weeks and then rehoused into groups. In adulthood (PD 90), rats underwent a battery of tests: elevated plus-maze, open field, novel object recognition, social interaction and social recognition memory and hotplate tests. Finally, we analyzed oxytocin receptor binding in several regions in the brains of a second cohort of rats.
Results: Both, male and female rats from the late adolescent social isolation (LASI) groups spent significantly less time interacting in the social interaction test. Additionally, we observed a general decrease in social recognition memory regardless of sex. Both male ASI groups demonstrated heightened thermal pain sensitivity, while the opposite was observed in early adolescent social isolation (EASI) female rats. In the brain, we observed changes in oxytocin receptor (OTR) binding in the paraventricular nucleus of the hypothalamus (PVN) and paraventricular nucleus of the thalamus (PVT) and central amygdala (CeA) with the largest changes in EASI and LASI female rats.
Conclusion: Our model demonstrates long-lasting alterations on behavior and oxytocin receptor binding levels following ASI providing insights into the long-term effects of ASI in a time- and sex-specific manner.
Background: 46,XX testicular disorder/difference of sex development (46,XX DSD) is a rare congenital condition, characterized by a combination of the typical female sex chromosome constitution, 46,XX, and a variable male phenotype. In the majority of individuals with 46,XX DSD, a Y chromosome segment containing the sex-determining region gene (SRY) has been translocated to the paternal X chromosome. However, the precise genomic content of the translocated segment and the genome-wide effects remain elusive.
Methods: We performed long-read DNA sequencing, RNA sequencing and DNA methylation analyses on blood samples from 46,XX DSD (n = 11), male controls (46,XY; variable cohort sizes) and female controls (46,XX; variable cohort sizes), in addition to RNA sequencing and DNA methylation analysis on blood samples from males with Klinefelter syndrome (47,XXY, n = 22). We also performed clinical measurements on all 46,XX DSD and a subset of 46,XY (n = 10).
Results: We identified variation in the translocated Y chromosome segments, enabling subcategorization into 46,XX DSD (1) lacking Y chromosome material (n = 1), (2) with short Yp arms (breakpoint at 2.7-2.8 Mb, n = 2), (3) with medium Yp arms (breakpoint at 7.3 Mb, n = 1), and (4) with long Yp arms (n = 7), including deletions of AMELY, TBLY1 and in some cases PRKY. We also identified variable expression of the X-Y homologues PRKY and PRKX. The Y-chromosomal transcriptome and methylome reflected the Y chromosome segment lengths, while changes to autosomal and X-chromosomal regions indicated global effects. Furthermore, transcriptional changes tentatively correlated with phenotypic traits of 46,XX DSD, including reduced height, lean mass and testicular size.
Conclusion: This study refines our understanding of the genetic composition in 46,XX DSD, describing the translocated Y chromosome segment in more detail than previously and linking variability herein to genome-wide changes in the transcriptome and methylome.
Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.
Background: Sex differences exist not only in the efficacy but also in adverse event rates of many vaccines. Here we compared the safety of BNT162b2 vaccine administered off-label in female and male children younger than 5 years in Germany.
Methods: This is a retrospective cohort study, in which we performed a post-hoc analysis of a dataset collected through an authentication-based survey of individuals having registered children aged 0-<5 years for vaccination against SARS-CoV-2 in six private practices and/or two lay person-initiated vaccination campaigns. We analyzed the safety profiles of the first 3 doses of 3-10 µg BNT162b2. Primary outcome was comparison in frequencies of 4 common post-vaccination symptom categories such as local, general, musculoskeletal symptoms and fever. Data were analyzed according to sex in bivariate analyses and regression models adjusting for age, weight, and dosage. Interaction between sex and BNT162b2 dosage was assessed. An active-comparator analysis was applied to compare post-vaccination symptoms after BNT162b2 versus non-SARS-CoV-2 vaccines.
Results: The dataset for the present analysis consisted of 7801 participants including 3842 females (49%) and 3977 males (51%) with an age of 3 years (median, interquartile: 2 years). Among individuals receiving 3 µg BNT162b2, no sex differences were noted, but after a first dose of 5-10 µg BNT162b2, local injection-site symptoms were more prevalent in girls compared to boys. In logistic regression, female sex was associated with higher odds of local symptoms, odds ratio (OR) of 1.33 (95% confidence interval [CI]: 1.15-1.55, p < 0.05) and general symptoms with OR 1.21 (95% CI: 1.01-1.44, p < 0.05). Following non-BNT162b2 childhood vaccinations, female sex was associated with a lower odds of post-vaccination musculoskeletal symptoms (OR: 0.29, 95% CI: 0.11-0.82, p < 0.05). An active comparator analysis between BNT162b2 and non-SARS-CoV-2 vaccinations revealed that female sex positively influenced the association between BNT162b2 vaccine type and musculoskeletal symptoms.
Conclusions: Sex differences exist in post-vaccination symptoms after BNT162b2 administration even in young children. These are of importance for the conception of approval studies, for post-vaccination monitoring and for future vaccination strategies (German Clinical Trials Register ID: DRKS00028759).
Background: Adolescent stress and alcohol exposure increase the risk of maladaptive behaviors and mental disorders in adulthood, with distinct sex-specific differences. Understanding the mechanisms underlying these early events is crucial for developing targeted prevention and treatment strategies.
Methods: Male and female Wistar rats were exposed to acute restraint stress and intermittent alcohol during adolescence. We assessed lasting effects on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, and mRNA expression of genes related to corticotropin releasing hormone (CRH), neuropeptide Y (NPY), corticoid, opioid, and arginine vasopressin systems in the amygdala and hypothalamus.
Results: The main findings are as follows: (1) blood alcohol concentrations (BAC) increased after the final alcohol administration, but stressed males had lower BAC than non-stressed males; (2) Males gained significantly more weight than females; (3) Stressed females showed higher ACTH levels than non-stressed females, with no changes in males; (4) Stress increased CORT levels in males, while stressed, alcohol-treated females had lower CORT levels than non-stressed females; (5) CRH: Females had lower Crhr1 levels in the amygdala, while alcohol reduced Crhr2 levels in males but not females. Significant interactions among sex, stress, and alcohol were found in the hypothalamus, with distinct patterns between sexes; (6) NPY: In the amygdala, stress reduced Npy and Npy1r levels in males but increased them in females. Alcohol decreased Npy2r levels in males, with varied effects in females. Similar sex-specific patterns were observed in the hypothalamus; (7) Corticoid system: Stress and alcohol had complex, sex-dependent effects on Pomc, Nr3c1, and Nr3c2 in both brain regions; (8) Opioid receptors: Stress and alcohol blunted the elevated expression of Oprm1, Oprd1, and Oprk1 in the amygdala of males and the hypothalamus of females; (8) Vasopressin: Stress and alcohol interacted significantly to affect Avp and Avpr1a expression in the amygdala, with stronger effects in females. In the hypothalamus, alcohol increased Avp levels in females.
Conclusions: This study demonstrates that adolescent acute stress and alcohol exposure induce lasting, sex-specific alterations in systems involved in reward and stress responses. These findings emphasize the importance of considering sex differences in the prevention and management of HPA dysfunction and psychiatric disorders.