Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (Cymbopogon citratus L.) EO showed the most effective antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased P. aeruginosa swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.
{"title":"<i>Cymbopogon citratus</i> L. essential oil as a potential anti-biofilm agent active against antibiotic-resistant bacteria isolated from chronic rhinosinusitis patients.","authors":"Mintra Khosakueng, Suwimol Taweechaisupapong, Wongwarut Boonyanugomol, Pornpan Prapatpong, Saharut Wongkaewkhiaw, Sakawrat Kanthawong","doi":"10.1080/08927014.2024.2305387","DOIUrl":"10.1080/08927014.2024.2305387","url":null,"abstract":"<p><p>Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (<i>Cymbopogon citratus</i> L.) EO showed the most effective antibiofilm activity against <i>Klebsiella pneumoniae</i>, <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus epidermidis</i> grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased <i>P. aeruginosa</i> swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"26-39"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-26DOI: 10.1080/08927014.2024.2320721
Camilla Malcher Pesset, Carolina O da Fonseca, Milena Antunes, Ana Luiza L Dos Santos, Izabel Melo Teixeira, Eliane de Oliveira Ferreira, Bruno Penna
Osteomyelitis often involves Staphylococcus spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by Staphylococcus pseudintermedius on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (agr) type III in six samples, agr IV and agr II in two each. Genes encoding hlb, luk-S, luk-F, siet, se_int, and the icaADCB operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by S. pseudintermedius was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.
在家畜病例中,骨髓炎的分离菌属通常是葡萄球菌。与植入物相关的感染经常与葡萄球菌等形成生物膜的微生物有关,因此必须谨慎选择材料。本研究评估了假中间葡萄球菌在兽医骨科手术中使用的钛螺母上形成的生物膜。生物膜定量采用黄绿素染色法和分光光度法,而细菌计数则以菌落形成单位(CFU)来确定。扫描电子显微镜(SEM)评估了钛螺母表面的生物膜形态。所有样品都有 CFU 计数。在测试的 8 个样品中,有 7 个样品的吸光值证明了生物膜的形成。扫描电子显微镜(SEM)图像显示了强大的细菌定植和大量胞外聚合物物质的产生,阴性对照显示了螺母表面的不规则性。全基因组测序显示,6 个样本中存在附属基因调节器(agr)III 型,agr IV 和 agr II 各占 2 个。在所有测序样本中都发现了编码 hlb、luk-S、luk-F、siet、se_int 和 icaADCB 操作子的基因。没有发现其他脱落毒素。在所有样本中都检测到了伪中间肠杆菌形成的生物膜,这表明骨科钛合金很容易被兽医物种粘附并形成生物膜。生物膜的形成能力引发了人们对潜在手术后并发症和相关费用的担忧。
{"title":"Biofilm formation by <i>Staphylococcus pseudintermedius</i> on titanium implants.","authors":"Camilla Malcher Pesset, Carolina O da Fonseca, Milena Antunes, Ana Luiza L Dos Santos, Izabel Melo Teixeira, Eliane de Oliveira Ferreira, Bruno Penna","doi":"10.1080/08927014.2024.2320721","DOIUrl":"10.1080/08927014.2024.2320721","url":null,"abstract":"<p><p>Osteomyelitis often involves <i>Staphylococcus</i> spp. as the isolated genus in domestic animal cases. Implant-related infections, frequently associated with biofilm-forming microorganisms like staphylococci species, necessitate careful material selection. This study assessed biofilm formation by <i>Staphylococcus pseudintermedius</i> on titanium nuts used in veterinary orthopaedic surgery. Biofilm quantification employed safranin staining and spectrophotometric measurement, while bacterial counts were determined in colony-forming units (CFU). Scanning Electron Microscopy (SEM) evaluated the biofilm morphology on the surface of titanium nuts. All samples had CFU counts. Absorbance values that evidence biofilm formation were observed in seven of the eight samples tested. SEM images revealed robust bacterial colonization, and significant extracellular polymeric substance production, and the negative control displayed surface irregularities on the nut. Whole genome sequencing revealed accessory Gene Regulator (<i>agr</i>) type III in six samples, <i>agr</i> IV and <i>agr</i> II in two each. Genes encoding <i>hlb</i>, <i>luk-S</i>, <i>luk-F</i>, <i>siet</i>, <i>se_int</i>, and the <i>icaADCB</i> operon were identified in all sequenced samples. Other exfoliative toxins were absent. Biofilm formation by <i>S. pseudintermedius</i> was detected in all samples, indicating the susceptibility of orthopaedic titanium alloys to adhesion and biofilm formation by veterinary species. The biofilm formation capacity raises concerns about potential post-surgical complications and associated costs.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"88-97"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-22DOI: 10.1080/08927014.2024.2305385
Deisy Guimarães Carneiro, Ananda Pereira Aguilar, Hilário Cuquetto Mantovani, Tiago Antônio de Oliveira Mendes, Maria Cristina Dantas Vanetti
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
{"title":"The quorum sensing molecule C12-HSL promotes biofilm formation and increases <i>adrA</i> expression in <i>Salmonella</i> Enteritidis under anaerobic conditions.","authors":"Deisy Guimarães Carneiro, Ananda Pereira Aguilar, Hilário Cuquetto Mantovani, Tiago Antônio de Oliveira Mendes, Maria Cristina Dantas Vanetti","doi":"10.1080/08927014.2024.2305385","DOIUrl":"10.1080/08927014.2024.2305385","url":null,"abstract":"<p><p>Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in <i>Salmonella</i> under specific conditions. In this study, biofilm formation in <i>Salmonella enterica</i> was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the <i>N</i>-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the <i>adrA</i> and <i>luxS</i> genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in <i>Salmonella</i> under anaerobic conditions.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"14-25"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differ...
{"title":"Food grade disinfectants based on hydrogen peroxide/peracetic acid and sodium hypochlorite interfere with the adhesion of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to stainless steel of differing surface roughness","authors":"Ružica Tomičić, Zorica Tomičić, Milica Nićetin, Violeta Knežević, Sunčica Kocić-Tanackov, Peter Raspor","doi":"10.1080/08927014.2023.2288886","DOIUrl":"https://doi.org/10.1080/08927014.2023.2288886","url":null,"abstract":"This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differ...","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"79 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138568911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1080/08927014.2023.2284316
Anusha Y. G., Lavanya Mulky
Sulphate-reducing bacteria (SRB) are known to cause severe corrosion of steel structures in various industries, resulting in significant economic and environmental consequences. This review paper c...
{"title":"Biofilms and beyond: a comprehensive review of the impact of Sulphate Reducing Bacteria on steel corrosion","authors":"Anusha Y. G., Lavanya Mulky","doi":"10.1080/08927014.2023.2284316","DOIUrl":"https://doi.org/10.1080/08927014.2023.2284316","url":null,"abstract":"Sulphate-reducing bacteria (SRB) are known to cause severe corrosion of steel structures in various industries, resulting in significant economic and environmental consequences. This review paper c...","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-12-04DOI: 10.1080/08927014.2023.2290120
Carolina Alves Freiria de Oliveira, Leonardo Guedes da Silva Moraes, Ana Beatriz Vilela Teixeira, Valéria Oliveira Pagnano
This study aimed to review systematically the literature about the antimicrobial action of evaluated cleansers on the Co-Cr alloy of RPD. The search was conducted in MEDLINE/PubMed, Scopus, Lilacs, Embase and Science Direct May, 2022. The review was performed based on PRISMA guidelines and recorded in Open Science Framework. Independent reviewers performed the search, selection, extraction, and analysis of the data. The risk of bias of the in vitro and clinical trials studies was analyzed by the Joanna Briggs Institute tool. A total of 187 articles were found and 9 were included. The cleansers that showed antimicrobial action were 2% and 5.25% sodium hypochlorite, 0.12% chlorhexidine and NitrAdine effervescent tablet. Polident, Corega Tabs effervescent tablets and 5 mg/mL chitosan solution showed intermediate effects. Propolis and green tea toothpaste were not effective. Three articles presented a high risk of bias and 6, low risk. The cleansers that showed the highest antimicrobial efficacy on Co-Cr alloy were 0.12% chlorhexidine digluconate and NitrAdine and can be safely used on RPD framework.
{"title":"Antimicrobial activity of cleansers on the cobalt-chromium surface of removable partial denture: a systematic review.","authors":"Carolina Alves Freiria de Oliveira, Leonardo Guedes da Silva Moraes, Ana Beatriz Vilela Teixeira, Valéria Oliveira Pagnano","doi":"10.1080/08927014.2023.2290120","DOIUrl":"10.1080/08927014.2023.2290120","url":null,"abstract":"<p><p>This study aimed to review systematically the literature about the antimicrobial action of evaluated cleansers on the Co-Cr alloy of RPD. The search was conducted in MEDLINE/PubMed, Scopus, Lilacs, Embase and Science Direct May, 2022. The review was performed based on PRISMA guidelines and recorded in Open Science Framework. Independent reviewers performed the search, selection, extraction, and analysis of the data. The risk of bias of the <i>in vitro</i> and clinical trials studies was analyzed by the Joanna Briggs Institute tool. A total of 187 articles were found and 9 were included. The cleansers that showed antimicrobial action were 2% and 5.25% sodium hypochlorite, 0.12% chlorhexidine and NitrAdine effervescent tablet. Polident, Corega Tabs effervescent tablets and 5 mg/mL chitosan solution showed intermediate effects. Propolis and green tea toothpaste were not effective. Three articles presented a high risk of bias and 6, low risk. The cleansers that showed the highest antimicrobial efficacy on Co-Cr alloy were 0.12% chlorhexidine digluconate and NitrAdine and can be safely used on RPD framework.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"916-927"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138476683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-12-18DOI: 10.1080/08927014.2023.2294763
Reetika Debroy, Sudha Ramaiah
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
{"title":"Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review.","authors":"Reetika Debroy, Sudha Ramaiah","doi":"10.1080/08927014.2023.2294763","DOIUrl":"10.1080/08927014.2023.2294763","url":null,"abstract":"<p><p>Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary <i>in silico</i> methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"928-947"},"PeriodicalIF":2.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study compared the cytotoxicity and antimicrobial activity of hypochlorous acid (HOCl) at 50 ppm and 200 ppm and 0.2% chlorhexidine (CHX) at various time intervals, in vitro. Cell viability and cytotoxicity of human gingival fibroblasts (HGF) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and the lactate dehydrogenase assay. Antimicrobial effects on Aggregatibacter actinomycetemcomitans and Candida albicans were determined using the time-kill method. All solutions exhibited a significant impact on HGFs in a dose- and time-dependent manner. 50 ppm HOCl demonstrated the highest cell viability, followed by 200 ppm HOCl. Both HOCl solutions were less cytotoxic to HGFs than 0.2% CHX. 50 ppm and 200 ppm HOCl demonstrated stronger efficiencies than CHX against A. actinomycetemcomitans and C. albicans. The data suggest that HOCl solutions have potential as an alternative antiseptic to CHX due to their lower cytotoxicity and superior antimicrobial activity, but optimal dosage of HOCl requires further investigations.
{"title":"Efficacy of hypochlorous acid as an alternative oral antimicrobial agent on human gingival fibroblasts, <i>Aggregatibacter actinomycetemcomitans</i>, and <i>Candida albicans</i> biofilms <i>in vitro</i>.","authors":"Gözdem Bayraktar, Ayşe Mine Yılmaz Göler, Burak Aksu, Hafize Öztürk Özener","doi":"10.1080/08927014.2023.2288071","DOIUrl":"10.1080/08927014.2023.2288071","url":null,"abstract":"<p><p>This study compared the cytotoxicity and antimicrobial activity of hypochlorous acid (HOCl) at 50 ppm and 200 ppm and 0.2% chlorhexidine (CHX) at various time intervals, <i>in vitro</i>. Cell viability and cytotoxicity of human gingival fibroblasts (HGF) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and the lactate dehydrogenase assay. Antimicrobial effects on <i>Aggregatibacter actinomycetemcomitans</i> and <i>Candida albicans</i> were determined using the time-kill method. All solutions exhibited a significant impact on HGFs in a dose- and time-dependent manner. 50 ppm HOCl demonstrated the highest cell viability, followed by 200 ppm HOCl. Both HOCl solutions were less cytotoxic to HGFs than 0.2% CHX. 50 ppm and 200 ppm HOCl demonstrated stronger efficiencies than CHX against <i>A. actinomycetemcomitans</i> and <i>C. albicans</i>. The data suggest that HOCl solutions have potential as an alternative antiseptic to CHX due to their lower cytotoxicity and superior antimicrobial activity, but optimal dosage of HOCl requires further investigations.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"980-989"},"PeriodicalIF":2.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138450788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2024-01-19DOI: 10.1080/08927014.2023.2300141
Parissa Golinia, Ali Nasrolahi, Amir Ghazilou
Coral reefs are highly biodiverse ecosystems, enriched by a range of biofouling species. Temporal variations in biofouling can affect ecosystem stability, but these diverse coral-associated communities remain underexplored in some regions. In the present study, biofouling assemblages of coral reefs in the Chabahar Bay were investigated during a summer monsoon at three deployment periods. In total, 26 taxa were identified with barnacles and polychaetes being the dominant taxa during the whole study. The coverage percentage was driven mostly by the encrusting taxa such as bryozoans and algae while biomass was determined by the dominance of shell-forming taxa. The results of PERMANOVA showed that the effects of the submersion period were significant on the assemblage structure. Biofouling assessment plays a pivotal role in safeguarding the intricate balance and long-term health of coral reef ecosystems. For a comprehensive understanding of biofouling dynamics and interactions with coral-associated species, conducting long-term studies is vital.
{"title":"Temporal variations of biofouling assemblages of a coral reef ecosystem during a monsoon period.","authors":"Parissa Golinia, Ali Nasrolahi, Amir Ghazilou","doi":"10.1080/08927014.2023.2300141","DOIUrl":"10.1080/08927014.2023.2300141","url":null,"abstract":"<p><p>Coral reefs are highly biodiverse ecosystems, enriched by a range of biofouling species. Temporal variations in biofouling can affect ecosystem stability, but these diverse coral-associated communities remain underexplored in some regions. In the present study, biofouling assemblages of coral reefs in the Chabahar Bay were investigated during a summer monsoon at three deployment periods. In total, 26 taxa were identified with barnacles and polychaetes being the dominant taxa during the whole study. The coverage percentage was driven mostly by the encrusting taxa such as bryozoans and algae while biomass was determined by the dominance of shell-forming taxa. The results of PERMANOVA showed that the effects of the submersion period were significant on the assemblage structure. Biofouling assessment plays a pivotal role in safeguarding the intricate balance and long-term health of coral reef ecosystems. For a comprehensive understanding of biofouling dynamics and interactions with coral-associated species, conducting long-term studies is vital.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1004-1014"},"PeriodicalIF":2.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-11-17DOI: 10.1080/08927014.2023.2279996
Pooja P Rajan, Praveen Kumar, Minsa Mini, Devi Jayakumar, Parvathi Vaikkathillam, Sneha Asha, Aparna Mohan, Manjusree S
Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. Enterobacter hormaechei and Klebsiella pneumoniae are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling E. hormaechei and K. pneumoniae biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against E. hormaechei and K. pneumoniae. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against E. hormaechei and K. pneumoniae at concentrations of 4 mg mL-1, 2 mg mL-1, 1 mg mL-1, and 0.5 mg mL-1. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in Chromobacterium violaceum. Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in K. pneumoniae. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by E. hormaechei and K. pneumoniae.
{"title":"Antibiofilm potential of gallic acid against <i>Klebsiella pneumoniae</i> and <i>Enterobacter hormaechei</i>: <i>in-vitro</i> and <i>in-silico</i> analysis.","authors":"Pooja P Rajan, Praveen Kumar, Minsa Mini, Devi Jayakumar, Parvathi Vaikkathillam, Sneha Asha, Aparna Mohan, Manjusree S","doi":"10.1080/08927014.2023.2279996","DOIUrl":"10.1080/08927014.2023.2279996","url":null,"abstract":"<p><p>Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. <i>Enterobacter hormaechei</i> and <i>Klebsiella pneumoniae</i> are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling <i>E. hormaechei</i> and <i>K. pneumoniae</i> biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against <i>E. hormaechei</i> and <i>K. pneumoniae</i>. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against <i>E. hormaechei</i> and <i>K. pneumoniae</i> at concentrations of 4 mg mL<sup>-1</sup>, 2 mg mL<sup>-1</sup>, 1 mg mL<sup>-1</sup>, and 0.5 mg mL<sup>-1</sup>. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in <i>Chromobacterium violaceum.</i> Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in <i>K. pneumoniae</i>. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by <i>E. hormaechei</i> and <i>K. pneumoniae.</i></p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"948-961"},"PeriodicalIF":2.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136396033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}