Pub Date : 2023-12-14DOI: 10.1007/s10533-023-01112-0
Amy M. Marcarelli, Robinson W. Fulweiler, J. Thad Scott
Di-nitrogen (N2) fixation rates, and the diversity of the organisms that fix N2, remain largely unconstrained in the aquatic landscapes or aquascapes (e.g., lakes, wetlands, streams, rivers, estuaries) between land and sea. As a result, we lack a mechanistic understanding of the controls and contributions of N2 fixation across disparate aquatic environments, and cannot accurately incorporate this process into local and global nitrogen (N) budgets. This special issue brings together papers highlighting current advances in understanding of N2 fixation within and across all aquatic habitats, integrating novel methodology for studying N2 fixation, quantification of N2 fixation fluxes in understudied habitats, the role of N2 fixation in biotic assemblages, and the rate and fate of fixed N in heterogeneous landscapes. Together, these papers address important gaps in understanding and highlight the frontiers of research on N2 fixation in aquatic habitats.
{"title":"Nitrogen fixation across the aquascape: current perspectives, future priorities","authors":"Amy M. Marcarelli, Robinson W. Fulweiler, J. Thad Scott","doi":"10.1007/s10533-023-01112-0","DOIUrl":"10.1007/s10533-023-01112-0","url":null,"abstract":"<div><p>Di-nitrogen (N<sub>2</sub>) fixation rates, and the diversity of the organisms that fix N<sub>2</sub>, remain largely unconstrained in the aquatic landscapes or aquascapes (e.g., lakes, wetlands, streams, rivers, estuaries) between land and sea. As a result, we lack a mechanistic understanding of the controls and contributions of N<sub>2</sub> fixation across disparate aquatic environments, and cannot accurately incorporate this process into local and global nitrogen (N) budgets. This special issue brings together papers highlighting current advances in understanding of N<sub>2</sub> fixation within and across all aquatic habitats, integrating novel methodology for studying N<sub>2</sub> fixation, quantification of N<sub>2</sub> fixation fluxes in understudied habitats, the role of N<sub>2</sub> fixation in biotic assemblages, and the rate and fate of fixed N in heterogeneous landscapes. Together, these papers address important gaps in understanding and highlight the frontiers of research on N<sub>2</sub> fixation in aquatic habitats.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 3","pages":"159 - 165"},"PeriodicalIF":3.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138635101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1007/s10533-023-01104-0
Sophie A. Comer-Warner, Sami Ullah, Arunabha Dey, Camille L. Stagg, Tracy Elsey-Quirk, Christopher M. Swarzenski, Fotis Sgouridis, Stefan Krause, Gail L. Chmura
Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N2O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types, Sporobolus alterniflorus (= Spartina alterniflora) and Sporobolus pumilus (= Spartina patens), using 24-h laboratory incubation experiments. Potential N2O fluxes increased from minor sinks to major sources following elevated treatments across all four marsh sites. One day of potential N2O emissions under elevated treatments (representing either long-term sea surface warming or short-term ocean heatwaves effects on coastal marsh soil temperatures alongside pulses of N loading) offset 15–60% of the potential annual ambient N2O sink, depending on marsh site and vegetation type. Rates of potential denitrification were generally higher in high latitude than in low latitude marsh soils under ambient treatments, with low ratios of N2O:N2 indicating complete denitrification in high latitude marsh soils. Under elevated temperature and Nr treatments, potential denitrification was lower in high latitude soil but higher in low latitude soil as compared to ambient conditions, with incomplete denitrification observed except in Louisiana S. pumilus. Overall, our findings suggest that a combined increase in temperature and Nr has the potential to reduce salt marsh greenhouse gas (GHG) sinks under future global change scenarios.
盐沼可以减轻营养物污染,并在其土壤中储存大量的“蓝碳”,然而,封存碳的价值可能部分被一氧化二氮(N2O)的排放抵消。全球气候和土地利用变化导致气温升高和活性氮(Nr)进入沿海地区。以加拿大魁北克和美国路易斯安那两个气候区为研究对象,采用24小时室内培养实验,研究了高温(环境+ 5℃)和双环境浓度(Nr)对互花米草(Sporobolus alternniflora)和矮粒米草(Sporobolus pumilus patens)两种植被类型湿地土壤氮素加工的综合影响。在所有四个沼泽地点提高处理后,潜在的一氧化二氮通量从次要汇增加到主要源。根据沼泽地点和植被类型的不同,在提高处理条件下一天潜在的N2O排放(代表长期海面变暖或短期海洋热浪对沿海沼泽土壤温度的影响以及N负荷脉冲)抵消了潜在的年环境N2O汇的15-60%。在环境处理下,高纬度沼泽土壤的潜在反硝化速率普遍高于低纬度沼泽土壤,N2O:N2比低表明高纬度沼泽土壤完全反硝化。与环境条件相比,在高温和Nr处理下,高纬度土壤的潜在反硝化作用较低,而低纬度土壤的潜在反硝化作用较高,除Louisiana S. pumilus外,其余土壤的反硝化作用不完全。总体而言,我们的研究结果表明,在未来全球变化情景下,温度和Nr的联合升高有可能减少盐沼温室气体(GHG)汇。
{"title":"Elevated temperature and nutrients lead to increased N2O emissions from salt marsh soils from cold and warm climates","authors":"Sophie A. Comer-Warner, Sami Ullah, Arunabha Dey, Camille L. Stagg, Tracy Elsey-Quirk, Christopher M. Swarzenski, Fotis Sgouridis, Stefan Krause, Gail L. Chmura","doi":"10.1007/s10533-023-01104-0","DOIUrl":"10.1007/s10533-023-01104-0","url":null,"abstract":"<div><p>Salt marshes can attenuate nutrient pollution and store large amounts of ‘blue carbon’ in their soils, however, the value of sequestered carbon may be partially offset by nitrous oxide (N<sub>2</sub>O) emissions. Global climate and land use changes result in higher temperatures and inputs of reactive nitrogen (Nr) into coastal zones. Here, we investigated the combined effects of elevated temperature (ambient + 5℃) and Nr (double ambient concentrations) on nitrogen processing in marsh soils from two climatic regions (Quebec, Canada and Louisiana, U.S.) with two vegetation types, <i>Sporobolus alterniflorus</i> (= <i>Spartina alterniflora</i>) and <i>Sporobolus pumilus</i> (= <i>Spartina patens</i>), using 24-h laboratory incubation experiments. Potential N<sub>2</sub>O fluxes increased from minor sinks to major sources following elevated treatments across all four marsh sites. One day of potential N<sub>2</sub>O emissions under elevated treatments (representing either long-term sea surface warming or short-term ocean heatwaves effects on coastal marsh soil temperatures alongside pulses of N loading) offset 15–60% of the potential annual ambient N<sub>2</sub>O sink, depending on marsh site and vegetation type. Rates of potential denitrification were generally higher in high latitude than in low latitude marsh soils under ambient treatments, with low ratios of N<sub>2</sub>O:N<sub>2</sub> indicating complete denitrification in high latitude marsh soils. Under elevated temperature and Nr treatments, potential denitrification was lower in high latitude soil but higher in low latitude soil as compared to ambient conditions, with incomplete denitrification observed except in Louisiana <i>S. pumilus</i>. Overall, our findings suggest that a combined increase in temperature and Nr has the potential to reduce salt marsh greenhouse gas (GHG) sinks under future global change scenarios.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 1","pages":"21 - 37"},"PeriodicalIF":3.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01104-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138635020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s10533-023-01103-1
Ülo Mander, Mikk Espenberg, Lulie Melling, Ain Kull
Peatlands play a crucial role in the global carbon (C) cycle, making their restoration a key strategy for mitigating greenhouse gas (GHG) emissions and retaining C. This study analyses the most common restoration pathways employed in boreal and temperate peatlands, potentially applicable in tropical peat swamp forests. Our analysis focuses on the GHG emissions and C retention potential of the restoration measures. To assess the C stock change in restored (rewetted) peatlands and afforested peatlands with continuous drainage, we adopt a conceptual approach that considers short-term C capture (GHG exchange between the atmosphere and the peatland ecosystem) and long-term C sequestration in peat. The primary criterion of our conceptual model is the capacity of restoration measures to capture C and reduce GHG emissions. Our findings indicate that carbon dioxide (CO2) is the most influential part of long-term climate impact of restored peatlands, whereas moderate methane (CH4) emissions and low N2O fluxes are relatively unimportant. However, lateral losses of dissolved and particulate C in water can account up to a half of the total C stock change. Among the restored peatland types, Sphagnum paludiculture showed the highest CO2 capture, followed by shallow lakes and reed/grass paludiculture. Shallow lakeshore vegetation in restored peatlands can reduce CO2 emissions and sequester C but still emit CH4, particularly during the first 20 years after restoration. Our conceptual modelling approach reveals that over a 300-year period, under stable climate conditions, drained bog forests can lose up to 50% of initial C content. In managed (regularly harvested) and continuously drained peatland forests, C accumulation in biomass and litter input does not compensate C losses from peat. In contrast, rewetted unmanaged peatland forests are turning into a persistent C sink. The modelling results emphasized the importance of long-term C balance analysis which considers soil C accumulation, moving beyond the short-term C cycling between vegetation and the atmosphere.
{"title":"Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon","authors":"Ülo Mander, Mikk Espenberg, Lulie Melling, Ain Kull","doi":"10.1007/s10533-023-01103-1","DOIUrl":"10.1007/s10533-023-01103-1","url":null,"abstract":"<div><p>Peatlands play a crucial role in the global carbon (C) cycle, making their restoration a key strategy for mitigating greenhouse gas (GHG) emissions and retaining C. This study analyses the most common restoration pathways employed in boreal and temperate peatlands, potentially applicable in tropical peat swamp forests. Our analysis focuses on the GHG emissions and C retention potential of the restoration measures. To assess the C stock change in restored (rewetted) peatlands and afforested peatlands with continuous drainage, we adopt a conceptual approach that considers short-term C capture (GHG exchange between the atmosphere and the peatland ecosystem) and long-term C sequestration in peat. The primary criterion of our conceptual model is the capacity of restoration measures to capture C and reduce GHG emissions. Our findings indicate that carbon dioxide (CO<sub>2</sub>) is the most influential part of long-term climate impact of restored peatlands, whereas moderate methane (CH<sub>4</sub>) emissions and low N<sub>2</sub>O fluxes are relatively unimportant. However, lateral losses of dissolved and particulate C in water can account up to a half of the total C stock change. Among the restored peatland types, Sphagnum paludiculture showed the highest CO<sub>2</sub> capture, followed by shallow lakes and reed/grass paludiculture. Shallow lakeshore vegetation in restored peatlands can reduce CO<sub>2</sub> emissions and sequester C but still emit CH<sub>4</sub>, particularly during the first 20 years after restoration. Our conceptual modelling approach reveals that over a 300-year period, under stable climate conditions, drained bog forests can lose up to 50% of initial C content. In managed (regularly harvested) and continuously drained peatland forests, C accumulation in biomass and litter input does not compensate C losses from peat. In contrast, rewetted unmanaged peatland forests are turning into a persistent C sink. The modelling results emphasized the importance of long-term C balance analysis which considers soil C accumulation, moving beyond the short-term C cycling between vegetation and the atmosphere.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"523 - 543"},"PeriodicalIF":3.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01103-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1007/s10533-023-01102-2
Julia Reuter, Hendrik Reuter, Dominik Zak
The rewetting of long-term drained peatlands leads to the development of eutrophic shallow lakes, gradually inhabited by reed communities. These shallow lakes are characterized by significant nutrient and methane emissions. To comprehend the fate of organic compounds from decaying Phragmites australis litter in water and anaerobic soil layers, we conducted a 1.6-year decomposition experiment. The experiment employed bulk and lignin-derived phenol analysis, as well as Fourier-transform infrared spectroscopy. As anticipated, the highest level of decomposition was observed in the surface water body of the shallow lake, while the non-rooted degraded peat exhibited the lowest decay. The bulk mass loss of plant litter decreased with depth from 55 to 27% across the four decomposition environments. Analysis using infrared spectroscopy indicated that the decrease in mass loss was primarily driven by the breakdown of carbohydrates, which constitute a significant portion of plant litter. Interestingly, litter in the rooted degraded peat layer exhibited the highest degree of lignin decay. Furthermore, the study revealed a preferential loss of vanillin phenols and an accumulation of p-hydroxyl phenols. These findings suggest that the increased methane emissions in rewetted fens may be partially attributed to the demethoxylation of vanillin phenols and the subsequent formation of p-hydroxyl phenols. In conclusion, this study provides valuable insights into anaerobic lignin decomposition of plant litter and sheds light on potential mechanisms underlying elevated methane emissions in rewetted peatlands. Furthermore, the study’s findings hold significant implications for both carbon cycling and sequestration within these ecosystems, thereby stimulating further research into the microbial community and its extended effects.
{"title":"Decomposition of lignin and carbohydrates in a rewetted peatland: a comparative analysis of surface water and anaerobic soil layers","authors":"Julia Reuter, Hendrik Reuter, Dominik Zak","doi":"10.1007/s10533-023-01102-2","DOIUrl":"10.1007/s10533-023-01102-2","url":null,"abstract":"<div><p>The rewetting of long-term drained peatlands leads to the development of eutrophic shallow lakes, gradually inhabited by reed communities. These shallow lakes are characterized by significant nutrient and methane emissions. To comprehend the fate of organic compounds from decaying <i>Phragmites australis</i> litter in water and anaerobic soil layers, we conducted a 1.6-year decomposition experiment. The experiment employed bulk and lignin-derived phenol analysis, as well as Fourier-transform infrared spectroscopy. As anticipated, the highest level of decomposition was observed in the surface water body of the shallow lake, while the non-rooted degraded peat exhibited the lowest decay. The bulk mass loss of plant litter decreased with depth from 55 to 27% across the four decomposition environments. Analysis using infrared spectroscopy indicated that the decrease in mass loss was primarily driven by the breakdown of carbohydrates, which constitute a significant portion of plant litter. Interestingly, litter in the rooted degraded peat layer exhibited the highest degree of lignin decay. Furthermore, the study revealed a preferential loss of vanillin phenols and an accumulation of p-hydroxyl phenols. These findings suggest that the increased methane emissions in rewetted fens may be partially attributed to the demethoxylation of vanillin phenols and the subsequent formation of p-hydroxyl phenols. In conclusion, this study provides valuable insights into anaerobic lignin decomposition of plant litter and sheds light on potential mechanisms underlying elevated methane emissions in rewetted peatlands. Furthermore, the study’s findings hold significant implications for both carbon cycling and sequestration within these ecosystems, thereby stimulating further research into the microbial community and its extended effects.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"545 - 561"},"PeriodicalIF":3.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01102-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1007/s10533-023-01101-3
M. R. N. Moore, S. E. Tank, M. R. Kurek, M. Taskovic, A. M. McKenna, J. L. J. Smith, S. V. Kokelj, R. G. M. Spencer
The Arctic is warming at a rate twice that of other global ecosystems and changing climate conditions in the Arctic are mobilizing long frozen permafrost stores of organic carbon. In ice-rich regions, permafrost thaw on sloping terrain can cause land subsidence, and the development of thaw-driven mass wasting. The Peel Plateau, Northwest Territories, Canada has extensive thaw-driven landslides called retrogressive thaw slumps that are exposing early Holocene age paleo-thaw layers and Pleistocene age glaciogenic material deposited by the Laurentide Ice Sheet. This study aimed to see if unique retrogressive thaw slump derived permafrost inputs could be readily observed in streams across six diverse thermokarst features via optical and ultrahigh-resolution mass spectrometry. Aquatic samples from water draining thermokarst slump features, and downstream of thermokarst inputs exhibited higher dissolved organic carbon concentrations and lower aromaticity as evidenced by optical parameters (e.g. declining SUVA254, increasing S275-295) and FT-ICR MS metrics (e.g. lower AImod and nominal oxidation state of carbon) versus upstream of thermokarst impacts. Increases in the relative abundances of assigned heteroatomic molecular formulae (e.g. CHON, CHOS, CHONS) were also greater within and downstream of thermokarst features. The unique molecular formulae present in permafrost thermokarst inputs were determined (n = 1844) and subsequently tracked downstream. These permafrost marker formulae were enriched in aliphatics and H/C, as well as heteroatoms and exhibited low aromaticity. A portion of the unique molecular fingerprint persisted downstream, highlighting the potential to not only assess thermokarst inputs but also to follow these inputs and their fate downstream throughout the aquatic network.
{"title":"Ultrahigh resolution dissolved organic matter characterization reveals distinct permafrost characteristics on the Peel Plateau, Canada","authors":"M. R. N. Moore, S. E. Tank, M. R. Kurek, M. Taskovic, A. M. McKenna, J. L. J. Smith, S. V. Kokelj, R. G. M. Spencer","doi":"10.1007/s10533-023-01101-3","DOIUrl":"10.1007/s10533-023-01101-3","url":null,"abstract":"<div><p>The Arctic is warming at a rate twice that of other global ecosystems and changing climate conditions in the Arctic are mobilizing long frozen permafrost stores of organic carbon. In ice-rich regions, permafrost thaw on sloping terrain can cause land subsidence, and the development of thaw-driven mass wasting. The Peel Plateau, Northwest Territories, Canada has extensive thaw-driven landslides called retrogressive thaw slumps that are exposing early Holocene age paleo-thaw layers and Pleistocene age glaciogenic material deposited by the Laurentide Ice Sheet. This study aimed to see if unique retrogressive thaw slump derived permafrost inputs could be readily observed in streams across six diverse thermokarst features via optical and ultrahigh-resolution mass spectrometry. Aquatic samples from water draining thermokarst slump features, and downstream of thermokarst inputs exhibited higher dissolved organic carbon concentrations and lower aromaticity as evidenced by optical parameters (e.g. declining SUVA<sub>254</sub>, increasing <i>S</i><sub>275-295</sub>) and FT-ICR MS metrics (e.g. lower AI<sub>mod</sub> and nominal oxidation state of carbon) versus upstream of thermokarst impacts. Increases in the relative abundances of assigned heteroatomic molecular formulae (e.g. CHON, CHOS, CHONS) were also greater within and downstream of thermokarst features. The unique molecular formulae present in permafrost thermokarst inputs were determined (<i>n</i> = 1844) and subsequently tracked downstream. These permafrost marker formulae were enriched in aliphatics and H/C, as well as heteroatoms and exhibited low aromaticity. A portion of the unique molecular fingerprint persisted downstream, highlighting the potential to not only assess thermokarst inputs but also to follow these inputs and their fate downstream throughout the aquatic network.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 2","pages":"99 - 117"},"PeriodicalIF":3.9,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-03DOI: 10.1007/s10533-023-01105-z
Mark B. Green, Linda H. Pardo, John L. Campbell, Emma Rosi, Emily S. Bernhardt, Charles T. Driscoll, Timothy J. Fahey, Nicholas LoRusso, Jackie Matthes, Pamela H. Templer
Nitrogen (N) is a critical element in many ecological and biogeochemical processes in forest ecosystems. Cycling of N is sensitive to changes in climate, atmospheric carbon dioxide (CO2) concentrations, and air pollution. Streamwater nitrate draining a forested ecosystem can indicate how an ecosystem is responding to these changes. We observed a pulse in streamwater nitrate concentration and export at a long-term forest research site in eastern North America that resulted in a 10-fold increase in nitrate export compared to observations over the prior decade. The pulse in streamwater nitrate occurred in a reference catchment in the 2013 water year, but was not associated with a distinct disturbance event. We analyzed a suite of environmental variables to explore possible causes. The correlation between each environmental variable and streamwater nitrate concentration was consistently higher when we accounted for the antecedent conditions of the variable prior to a given streamwater observation. In most cases, the optimal antecedent period exceeded two years. We assessed the most important variables for predicting streamwater nitrate concentration by training a machine learning model to predict streamwater nitrate concentration in the years preceding and during the streamwater nitrate pulse. The results of the correlation and machine learning analyses suggest that the pulsed increase in streamwater nitrate resulted from both (1) decreased plant uptake due to lower terrestrial gross primary production, possibly due to increased soil frost or reduced solar radiation or both; and (2) increased net N mineralization and nitrification due to warm temperatures from 2010 to 2013. Additionally, variables associated with hydrological transport of nitrate, such as maximum stream discharge, emerged as important, suggesting that hydrology played a role in the pulse. Overall, our analyses indicate that the streamwater nitrate pulse was caused by a combination of factors that occurred in the years prior to the pulse, not a single disturbance event.
{"title":"Combination of factors rather than single disturbance drives perturbation of the nitrogen cycle in a temperate forest","authors":"Mark B. Green, Linda H. Pardo, John L. Campbell, Emma Rosi, Emily S. Bernhardt, Charles T. Driscoll, Timothy J. Fahey, Nicholas LoRusso, Jackie Matthes, Pamela H. Templer","doi":"10.1007/s10533-023-01105-z","DOIUrl":"10.1007/s10533-023-01105-z","url":null,"abstract":"<div><p>Nitrogen (N) is a critical element in many ecological and biogeochemical processes in forest ecosystems. Cycling of N is sensitive to changes in climate, atmospheric carbon dioxide (CO<sub>2</sub>) concentrations, and air pollution. Streamwater nitrate draining a forested ecosystem can indicate how an ecosystem is responding to these changes. We observed a pulse in streamwater nitrate concentration and export at a long-term forest research site in eastern North America that resulted in a 10-fold increase in nitrate export compared to observations over the prior decade. The pulse in streamwater nitrate occurred in a reference catchment in the 2013 water year, but was not associated with a distinct disturbance event. We analyzed a suite of environmental variables to explore possible causes. The correlation between each environmental variable and streamwater nitrate concentration was consistently higher when we accounted for the antecedent conditions of the variable prior to a given streamwater observation. In most cases, the optimal antecedent period exceeded two years. We assessed the most important variables for predicting streamwater nitrate concentration by training a machine learning model to predict streamwater nitrate concentration in the years preceding and during the streamwater nitrate pulse. The results of the correlation and machine learning analyses suggest that the pulsed increase in streamwater nitrate resulted from both (1) decreased plant uptake due to lower terrestrial gross primary production, possibly due to increased soil frost or reduced solar radiation or both; and (2) increased net N mineralization and nitrification due to warm temperatures from 2010 to 2013. Additionally, variables associated with hydrological transport of nitrate, such as maximum stream discharge, emerged as important, suggesting that hydrology played a role in the pulse. Overall, our analyses indicate that the streamwater nitrate pulse was caused by a combination of factors that occurred in the years prior to the pulse, not a single disturbance event.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"139 - 157"},"PeriodicalIF":4.0,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138480986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-26DOI: 10.1007/s10533-023-01096-x
Sannimari A. Käärmelahti, Christian Fritz, Gabrielle R. Quadra, Maider Erize Gardoki, Greta Gaudig, Matthias Krebs, Ralph J. M. Temmink
Rewetting drained agricultural peatlands aids in restoring their original ecosystem functions, including carbon storage and sustaining unique biodiversity. 30–60 cm of topsoil removal (TSR) before rewetting for Sphagnum establishment is a common practice to reduce nutrient concentrations and greenhouse gas emissions, and increase water conductivity. However, the topsoil is carbon-dense and preservation in situ would be favorable from a climate-mitigation perspective. The effect of reduced TSR on Sphagnum establishment and nutrient dynamics on degraded and rewetted raised bogs remains to be elucidated. We conducted a two-year field experiment under Sphagnum paludiculture management with three TSR depths: no-removal (TSR0), 5–10 cm (TSR5), and 30 cm (TSR30) removal. We tested the effects of TSR on Sphagnum establishment and performance, nutrient dynamics, and hotspot methane emissions. After two years, TSR5 produced similar Sphagnum biomass as TSR30, while vascular plant biomass was highest in TSR0. All capitula nitrogen (N > 12 mg/g) indicated N-saturation. Phosphorus (P) was not limiting (N/P < 30), but a potential potassium (K) limitation was observed in year one (N/K > 3). In TSR0, ammonium concentrations were > 150 µmol/l in year one, but decreased by 80% in year two. P-concentrations remained high (c. 100 µmol/l) at TSR0 and TSR5, and remained low at TSR30. TSR30 and TSR5 reduced hotspot methane emissions relative to TSR0. We conclude that all TSR practices have their own advantages and disadvantages with respect to Sphagnum growth, nutrient availability and vegetation development. While TSR5 may be the most suitable for paludiculture, its applicability for restoration purposes remains to be elucidated. Setting prioritized targets when selecting the optimal TSR with peatland rewetting is pivotal.
重新湿润排水的农业泥炭地有助于恢复其原有的生态系统功能,包括碳储存和维持独特的生物多样性。在重新润湿水藻之前进行30-60 cm的表土去除(TSR)是减少养分浓度和温室气体排放并增加水电导率的常见做法。然而,表土是碳密集的,从减缓气候变化的角度来看,就地保存将是有利的。还原性TSR对退化和复湿沼地沼地泥炭生长和养分动态的影响还有待进一步研究。采用3种TSR深度:不去除(TSR0)、去除5-10 cm (TSR5)和去除30 cm (TSR30),进行了为期2年的Sphagnum paludum管理的田间试验。研究了TSR对泥藻生长、生长性能、养分动态和热点甲烷排放的影响。2年后,TSR5的Sphagnum生物量与TSR30相近,而TSR0的维管植物生物量最高。所有头状花序氮(N > 12 mg/g)均显示氮饱和。磷(P)没有限制(N/P < 30),但在第1年出现了潜在的钾(K)限制(N/K > 3)。在TSR0中,铵浓度在第一年为150µmol/l,但在第二年下降了80%。在TSR0和TSR5中p浓度仍然很高(c. 100µmol/l),而在TSR30中p浓度仍然很低。TSR30和TSR5相对于TSR0减少了热点甲烷排放。综上所述,所有TSR措施在泥藻生长、养分有效性和植被发育方面各有优缺点。虽然TSR5可能是最适合古代养殖的,但它对恢复目的的适用性仍有待阐明。在泥炭地再湿润条件下选择最佳TSR时,确定优先目标是关键。
{"title":"Topsoil removal for Sphagnum establishment on rewetted agricultural bogs","authors":"Sannimari A. Käärmelahti, Christian Fritz, Gabrielle R. Quadra, Maider Erize Gardoki, Greta Gaudig, Matthias Krebs, Ralph J. M. Temmink","doi":"10.1007/s10533-023-01096-x","DOIUrl":"10.1007/s10533-023-01096-x","url":null,"abstract":"<div><p>Rewetting drained agricultural peatlands aids in restoring their original ecosystem functions, including carbon storage and sustaining unique biodiversity. 30–60 cm of topsoil removal (TSR) before rewetting for <i>Sphagnum</i> establishment is a common practice to reduce nutrient concentrations and greenhouse gas emissions, and increase water conductivity. However, the topsoil is carbon-dense and preservation in situ would be favorable from a climate-mitigation perspective. The effect of reduced TSR on <i>Sphagnum</i> establishment and nutrient dynamics on degraded and rewetted raised bogs remains to be elucidated. We conducted a two-year field experiment under <i>Sphagnum</i> paludiculture management with three TSR depths: no-removal (TSR0), 5–10 cm (TSR5), and 30 cm (TSR30) removal. We tested the effects of TSR on <i>Sphagnum</i> establishment and performance, nutrient dynamics, and hotspot methane emissions. After two years, TSR5 produced similar <i>Sphagnum</i> biomass as TSR30, while vascular plant biomass was highest in TSR0. All capitula nitrogen (N > 12 mg/g) indicated N-saturation. Phosphorus (P) was not limiting (N/P < 30), but a potential potassium (K) limitation was observed in year one (N/K > 3). In TSR0, ammonium concentrations were > 150 µmol/l in year one, but decreased by 80% in year two. P-concentrations remained high (<i>c.</i> 100 µmol/l) at TSR0 and TSR5, and remained low at TSR30. TSR30 and TSR5 reduced hotspot methane emissions relative to TSR0. We conclude that all TSR practices have their own advantages and disadvantages with respect to <i>Sphagnum</i> growth, nutrient availability and vegetation development. While TSR5 may be the most suitable for paludiculture, its applicability for restoration purposes remains to be elucidated. Setting prioritized targets when selecting the optimal TSR with peatland rewetting is pivotal.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"479 - 496"},"PeriodicalIF":3.9,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01096-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138442234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-25DOI: 10.1007/s10533-023-01100-4
Jackie R. Webb, Wendy C. Quayle, Carlos Ballester, Naomi S. Wells
Small artificial waterbodies are larger emitters of carbon dioxide (CO2) and methane (CH4) than natural waterbodies. The Intergovernmental Panel on Climate Change (IPCC) recommends these waterbodies are accounted for in national emission inventories, yet data is extremely limited for irrigated landscapes. To derive a baseline of their greenhouse gas footprint, we investigated 38 irrigation farm dams in horticulture and broadacre cropping in semi-arid NSW, Australia. Dissolved CO2, CH4, and nitrous oxide (N2O) were measured in spring and summer, 2021–2022. While all dams were sources of CH4 to the atmosphere, 52% of irrigation farm dams were sinks for CO2 and 70% were sinks for N2O. Relationships in the linear mixed effect models indicate that CO2 concentrations were primarily driven by dissolved oxygen (DO), ammonium, and sediment carbon content, while N2O concentration was best explained by an interaction between DO and ammonium. Methane concentrations did not display any relationship with typical biological variables and instead were related to soil salinity, trophic status, and size. Carbon dioxide-equivalent emissions were highest in small (< 0.001 km2) dams (305 g CO2-eq m−2 season−1) and in those used for recycling irrigation water (249 g CO2-eq m−2 season−1), with CH4 contributing 70% of average CO2-eq emissions. However, irrigation dams had considerably lower CH4 emissions (mean 40 kg ha−1 yr−1) than the IPCC emission factor (EF) of 183 kg CH4 ha−1 yr−1 for constructed ponds and lower N2O EF of 0.06% than the indirect EF for agricultural surface waters (0.26%). This synoptic survey reveals existing models may be severely overestimating (4–5 times) farm dam CH4 and N2O emissions in semi-arid irrigation areas. Further research is needed to define these artificial waterbodies in emissions accounting.
小型人工水体比天然水体排放更多的二氧化碳(CO2)和甲烷(CH4)。政府间气候变化专门委员会(IPCC)建议将这些水体纳入国家排放清单,但关于灌溉景观的数据极其有限。为了获得温室气体足迹的基线,我们调查了澳大利亚半干旱的新南威尔士州园艺和大面积种植的38个灌溉农场水坝。测定了2021-2022年春季和夏季的溶解CO2、CH4和氧化亚氮(N2O)。虽然所有水坝都是大气CH4的来源,但52%的灌溉农场水坝是CO2的汇,70%是N2O的汇。线性混合效应模型的关系表明,CO2浓度主要由溶解氧(DO)、铵和沉积物碳含量驱动,而N2O浓度最好由DO和铵的相互作用来解释。甲烷浓度与土壤盐度、营养状况和大小有关,而与典型的生物变量无关。二氧化碳当量排放量最高的是小型水坝(< 0.001 km2) (305 g CO2-eq m−2 season - 1)和用于循环水的水坝(249 g CO2-eq m−2 season - 1),其中CH4贡献了平均co2当量排放量的70%。然而,灌溉水坝的CH4排放量(平均40 kg ha−1年−1年−1)明显低于人工池塘的IPCC排放因子(EF) 183 kg CH4 ha−1年−1,N2O的EF比农业地表水的间接排放因子(EF)低0.06%(0.26%)。这项综合调查显示,在半干旱灌区,现有模型可能严重高估(4-5倍)农田大坝CH4和N2O排放量。在排放核算中,需要进一步的研究来定义这些人工水体。
{"title":"Semi-arid irrigation farm dams are a small source of greenhouse gas emissions","authors":"Jackie R. Webb, Wendy C. Quayle, Carlos Ballester, Naomi S. Wells","doi":"10.1007/s10533-023-01100-4","DOIUrl":"10.1007/s10533-023-01100-4","url":null,"abstract":"<div><p>Small artificial waterbodies are larger emitters of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) than natural waterbodies. The Intergovernmental Panel on Climate Change (IPCC) recommends these waterbodies are accounted for in national emission inventories, yet data is extremely limited for irrigated landscapes. To derive a baseline of their greenhouse gas footprint, we investigated 38 irrigation farm dams in horticulture and broadacre cropping in semi-arid NSW, Australia. Dissolved CO<sub>2</sub>, CH<sub>4</sub>, and nitrous oxide (N<sub>2</sub>O) were measured in spring and summer, 2021–2022. While all dams were sources of CH<sub>4</sub> to the atmosphere, 52% of irrigation farm dams were sinks for CO<sub>2</sub> and 70% were sinks for N<sub>2</sub>O. Relationships in the linear mixed effect models indicate that CO<sub>2</sub> concentrations were primarily driven by dissolved oxygen (DO), ammonium, and sediment carbon content, while N<sub>2</sub>O concentration was best explained by an interaction between DO and ammonium. Methane concentrations did not display any relationship with typical biological variables and instead were related to soil salinity, trophic status, and size. Carbon dioxide-equivalent emissions were highest in small (< 0.001 km<sup>2</sup>) dams (305 g CO<sub>2</sub>-eq m<sup>−2</sup> season<sup>−1</sup>) and in those used for recycling irrigation water (249 g CO<sub>2</sub>-eq m<sup>−2</sup> season<sup>−1</sup>), with CH<sub>4</sub> contributing 70% of average CO<sub>2</sub>-eq emissions. However, irrigation dams had considerably lower CH<sub>4</sub> emissions (mean 40 kg ha<sup>−1</sup> yr<sup>−1</sup>) than the IPCC emission factor (EF) of 183 kg CH<sub>4</sub> ha<sup>−1</sup> yr<sup>−1</sup> for constructed ponds and lower N<sub>2</sub>O EF of 0.06% than the indirect EF for agricultural surface waters (0.26%). This synoptic survey reveals existing models may be severely overestimating (4–5 times) farm dam CH<sub>4</sub> and N<sub>2</sub>O emissions in semi-arid irrigation areas. Further research is needed to define these artificial waterbodies in emissions accounting.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"166 2","pages":"123 - 138"},"PeriodicalIF":4.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138438705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1007/s10533-023-01097-w
Henri Honkanen, Hanna Kekkonen, Jaakko Heikkinen, Janne Kaseva, Kristiina Lång
The greenhouse gas (GHG) emissions of spring cereal monoculture under long-term conventional tillage (CT) and no-till (NT) treatment established in 2018 were measured in a peatland in Southwestern Finland during the period 2018–2021. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes were measured with chambers approximately every two weeks throughout the period under study. Net ecosystem exchange was measured during the growing seasons, and hourly ecosystem respiration (ER) and gross photosynthesis (GP) were modelled with empirical models. Across the whole period, annual emissions were 6.8 ± 1.2 and 5.7 ± 1.2 Mg CO2–C ha −1 yr−1 (net ecosystem carbon balance), 8.8 ± 2.0 and 7.1 ± 2.0 kg N2O–N ha−1 yr−1, and − 0.43 ± 0.31 and − 0.40 ± 0.31 kg CH4-C ha−1 yr−1 for CT and NT, respectively. The global warming potential was lower in NT (p = 0.045), and it ranged from 26 to 34 Mg CO2 eq. ha−1 yr−1 in CT and from 19 to 31 Mg CO2 eq. ha−1 yr−1 in NT. The management effect on the rates of single GHGs was not consistent over the years. Higher GP was found in CT in 2019 and in NT in 2020. Differences in ER between treatments occurred mostly outside the growing season, especially after ploughing, but the annual rates did not differ statistically. NT reduced the N2O emissions by 31% compared to CT in 2020 (p = 0.044) while there were no differences between the treatments in other years. The results indicate that NT may have potential to reduce slightly CO2 and N2O emissions from cultivated peat soil, but the results originate from the first three years after a management change from CT to NT, and there is still a lack of long-term results on NT on cultivated peat soils.
{"title":"Minor effects of no-till treatment on GHG emissions of boreal cultivated peat soil","authors":"Henri Honkanen, Hanna Kekkonen, Jaakko Heikkinen, Janne Kaseva, Kristiina Lång","doi":"10.1007/s10533-023-01097-w","DOIUrl":"10.1007/s10533-023-01097-w","url":null,"abstract":"<div><p>The greenhouse gas (GHG) emissions of spring cereal monoculture under long-term conventional tillage (CT) and no-till (NT) treatment established in 2018 were measured in a peatland in Southwestern Finland during the period 2018–2021. Nitrous oxide (N<sub>2</sub>O), carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) fluxes were measured with chambers approximately every two weeks throughout the period under study. Net ecosystem exchange was measured during the growing seasons, and hourly ecosystem respiration (ER) and gross photosynthesis (GP) were modelled with empirical models. Across the whole period, annual emissions were 6.8 ± 1.2 and 5.7 ± 1.2 Mg CO<sub>2</sub>–C ha <sup>−1</sup> yr<sup>−1</sup> (net ecosystem carbon balance), 8.8 ± 2.0 and 7.1 ± 2.0 kg N<sub>2</sub>O–N ha<sup>−1</sup> yr<sup>−1</sup>, and − 0.43 ± 0.31 and − 0.40 ± 0.31 kg CH<sub>4</sub>-C ha<sup>−1</sup> yr<sup>−1</sup> for CT and NT, respectively. The global warming potential was lower in NT (p = 0.045), and it ranged from 26 to 34 Mg CO<sub>2</sub> eq. ha<sup>−1</sup> yr<sup>−1</sup> in CT and from 19 to 31 Mg CO<sub>2</sub> eq. ha<sup>−1</sup> yr<sup>−1</sup> in NT. The management effect on the rates of single GHGs was not consistent over the years. Higher GP was found in CT in 2019 and in NT in 2020. Differences in ER between treatments occurred mostly outside the growing season, especially after ploughing, but the annual rates did not differ statistically. NT reduced the N<sub>2</sub>O emissions by 31% compared to CT in 2020 (p = 0.044) while there were no differences between the treatments in other years. The results indicate that NT may have potential to reduce slightly CO<sub>2</sub> and N<sub>2</sub>O emissions from cultivated peat soil, but the results originate from the first three years after a management change from CT to NT, and there is still a lack of long-term results on NT on cultivated peat soils.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 4","pages":"499 - 522"},"PeriodicalIF":3.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-023-01097-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138297161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}