Xiaoguang Sun, Belinda Sun, Saad Sammani, Steven M Dudek, Patrick Belvitch, Sara M Camp, Donna Zhang, Christian Bime, Joe G N Garcia
Rationale: Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored.
Methods: We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS.
Results: LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h.
Conclusion: CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.
{"title":"Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells.","authors":"Xiaoguang Sun, Belinda Sun, Saad Sammani, Steven M Dudek, Patrick Belvitch, Sara M Camp, Donna Zhang, Christian Bime, Joe G N Garcia","doi":"10.1042/BSR20231934","DOIUrl":"10.1042/BSR20231934","url":null,"abstract":"<p><strong>Rationale: </strong>Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored.</p><p><strong>Methods: </strong>We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS.</p><p><strong>Results: </strong>LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h.</p><p><strong>Conclusion: </strong>CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant microRNAs (miRNA) are regularly consumed orally along with diet, gaining attention for their RNA-based drug potential because of their ability to regulate mammalian gene expression specifically at the post-transcriptional level. Medicinally valued plants are well known for their anti-inflammatory property; however, the contribution of their miRNA in managing inflammation has been less studied. We investigated miRNA from four medicinally valued regularly consumed spices, and validated one of the most potential miRNA 'Clo-miR-14' for its thermal stability, and absorption in the plasma samples of RA patient's by RT-PCR. In vitro and in vivo studies were performed to investigate the effect of Clo-miR-14 in ameliorating rheumatoid arthritis (RA) like symptoms. Our results suggest that 'Clo-miR-14,' an exogenous miRNA present in Curcuma longa, absorbed through regular diet, has robust thermal stability at 100°C in humans. It significantly reduced pro-inflammatory cytokines (TNF, IL-1β, IL-6) and RA-like symptoms, suggesting that plant-based miRNA could be a promising candidate as an RNA-based drug for RA pathogenesis.
植物微核糖核酸(miRNA)经常与饮食一起口服,由于它们能够在转录后水平调节哺乳动物基因的表达,因此其基于核糖核酸的药物潜力备受关注。有药用价值的植物以其抗炎特性而闻名,但对其 miRNA 在控制炎症方面的贡献研究较少。我们研究了四种经常食用的药用香料中的 miRNA,并通过 RT-PCR 验证了最有潜力的 miRNA 之一 "Clo-miR-14 "的热稳定性以及在 RA 患者血浆样本中的吸收情况。为了研究 Clo-miR-14 在改善类风湿关节炎(RA)症状方面的作用,我们进行了体外和体内研究。我们的研究结果表明,"Clo-miR-14 "是一种存在于莪术中的外源性 miRNA,可通过正常饮食吸收,在 100℃的温度下对人体具有很强的热稳定性。它能明显降低促炎细胞因子(TNF、IL-1β、IL-6)和类 RA 症状,这表明以植物为基础的 miRNA 有可能成为一种治疗类 RA 发病机制的 RNA 药物。
{"title":"Clo-miR-14: a medicinally valued spice-derived miRNA with therapeutic implications in rheumatoid arthritis.","authors":"Ashish Sarkar, Mohd Saquib, Debolina Chakraborty, Sonia Mann, Swati Malik, Prachi Agnihotri, Lovely Joshi, Rajesh Malhotra, Sagarika Biswas","doi":"10.1042/BSR20240311","DOIUrl":"10.1042/BSR20240311","url":null,"abstract":"<p><p>Plant microRNAs (miRNA) are regularly consumed orally along with diet, gaining attention for their RNA-based drug potential because of their ability to regulate mammalian gene expression specifically at the post-transcriptional level. Medicinally valued plants are well known for their anti-inflammatory property; however, the contribution of their miRNA in managing inflammation has been less studied. We investigated miRNA from four medicinally valued regularly consumed spices, and validated one of the most potential miRNA 'Clo-miR-14' for its thermal stability, and absorption in the plasma samples of RA patient's by RT-PCR. In vitro and in vivo studies were performed to investigate the effect of Clo-miR-14 in ameliorating rheumatoid arthritis (RA) like symptoms. Our results suggest that 'Clo-miR-14,' an exogenous miRNA present in Curcuma longa, absorbed through regular diet, has robust thermal stability at 100°C in humans. It significantly reduced pro-inflammatory cytokines (TNF, IL-1β, IL-6) and RA-like symptoms, suggesting that plant-based miRNA could be a promising candidate as an RNA-based drug for RA pathogenesis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norovirus (NoV) is the main pathogen that causes acute gastroenteritis and brings a heavy socio-economic burden worldwide. In this study, five polysaccharide fractions, labeled pSFP-1-5, were isolated and purified from Sargassum fusiforme (S. fusiforme). In vitro experiments demonstrated that pSFP-5 significantly prevented the binding of type A, B and H histo-blood group antigens (HBGAs) to NoV GII.4 virus-like particles (NoV GII.4 VLPs). In addition, in vivo experiments revealed that pSFP-5 was effective in reducing the accumulation of NoV in oysters, indicating that pSFP-5 could reduce the risk of NoV infection from oyster consumption. The results of transmission electron microscopy showed that the appearance of NoV GII.4 VLPs changed after pSFP-5 treatment, indicating that pSFP-5 may achieve antiviral ability by altering the morphological structure of the viral particles so that they could not bind to HBGAs. The results of the present study indicate that pSFP-5 may be an effective anti-NoV substance and can be used as a potential anti-NoV drug component.
诺如病毒(NoV)是引起急性肠胃炎的主要病原体,给全世界带来了沉重的社会经济负担。本研究从马尾藻(Sargassum fusiforme,S. fusiforme)中分离纯化出五种多糖组分,标记为 pSFP-1-5。体外实验表明,pSFP-5 能显著阻止 A、B 和 H 型组织血型抗原(HBGAs)与 NoV GII.4 病毒样颗粒(NoV GII.4 VLPs)的结合。此外,体内实验显示,pSFP-5 能有效减少 NoV 在牡蛎中的积累,这表明 pSFP-5 能降低食用牡蛎感染 NoV 的风险。透射电子显微镜结果显示,经过 pSFP-5 处理后,NoV GII.4 VLPs 的外观发生了变化,这表明 pSFP-5 可能通过改变病毒颗粒的形态结构,使其无法与 HBGAs 结合,从而达到抗病毒的目的。本研究结果表明,pSFP-5 可能是一种有效的抗野病毒物质,可用作潜在的抗野病毒药物成分。
{"title":"Inhibition of Norovirus GII.4 binding to HBGAs by Sargassum fusiforme polysaccharide.","authors":"Yiqiang Sun, Meina Liang, Mingjiang Wu, Laijin Su","doi":"10.1042/BSR20240092","DOIUrl":"10.1042/BSR20240092","url":null,"abstract":"<p><p>Norovirus (NoV) is the main pathogen that causes acute gastroenteritis and brings a heavy socio-economic burden worldwide. In this study, five polysaccharide fractions, labeled pSFP-1-5, were isolated and purified from Sargassum fusiforme (S. fusiforme). In vitro experiments demonstrated that pSFP-5 significantly prevented the binding of type A, B and H histo-blood group antigens (HBGAs) to NoV GII.4 virus-like particles (NoV GII.4 VLPs). In addition, in vivo experiments revealed that pSFP-5 was effective in reducing the accumulation of NoV in oysters, indicating that pSFP-5 could reduce the risk of NoV infection from oyster consumption. The results of transmission electron microscopy showed that the appearance of NoV GII.4 VLPs changed after pSFP-5 treatment, indicating that pSFP-5 may achieve antiviral ability by altering the morphological structure of the viral particles so that they could not bind to HBGAs. The results of the present study indicate that pSFP-5 may be an effective anti-NoV substance and can be used as a potential anti-NoV drug component.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irina Patalakh, Olga Revka, Agata Gołaszewska, Natalia Bielicka, Tomasz Misztal
Purpose: The aim of the present study was to establish the role of platelets and activated factor XIIIa (FXIIIa) in the structuring of the fibrin network as well as to clarify the effect of network compaction on clot lysis.
Methods: Turbidimetry was used for the one-stage clotting test where platelet-free plasma (PFP) is regarded as single factor-deficient plasma (platelets as lacking factor) and autologous platelet-rich plasma (PRP) as deficiency corrected plasma. Structural features of the developed and subsequently lysed fibrin network, formed under static and flow conditions, were visualized by confocal microscopy.
Results: Thrombin-initiated plasma clotting revealed changes in the shape of the absorption curve, more pronounced in the presence of platelets. These changes correlate with the transformation of the fibrin scaffold during clot maturing. With the combined action of platelets, thrombin and Ca2+, plasma clotting passes through two phases: initial formation of a platelet-fibrin network (first peak in the polymerization curve), and then the compaction of fibrin, driven by FXIIIa (the second peak) which can be further modulate by the contractile action of platelets. These structural changes, mediated by platelets and FXIIIa, have been shown to determine subsequent clot lysis.
Conclusions: Platelet aggregates serve as organizing centers that determine the distribution of fibrin in clot volume. The openwork structure of the platelet-transformed fibrin provides the necessary prerequisites for its timely lysis. The revealed aspects of the interaction of platelets and FXIIIa, which accompanies the maturation of a fibrin clot, may lead to new approaches in the pharmacological correction of disorders associated with both thrombotic episodes and bleeding tendency.
{"title":"Integration of clotting and fibrinolysis: central role of platelets and factor XIIIa.","authors":"Irina Patalakh, Olga Revka, Agata Gołaszewska, Natalia Bielicka, Tomasz Misztal","doi":"10.1042/BSR20240332","DOIUrl":"10.1042/BSR20240332","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of the present study was to establish the role of platelets and activated factor XIIIa (FXIIIa) in the structuring of the fibrin network as well as to clarify the effect of network compaction on clot lysis.</p><p><strong>Methods: </strong>Turbidimetry was used for the one-stage clotting test where platelet-free plasma (PFP) is regarded as single factor-deficient plasma (platelets as lacking factor) and autologous platelet-rich plasma (PRP) as deficiency corrected plasma. Structural features of the developed and subsequently lysed fibrin network, formed under static and flow conditions, were visualized by confocal microscopy.</p><p><strong>Results: </strong>Thrombin-initiated plasma clotting revealed changes in the shape of the absorption curve, more pronounced in the presence of platelets. These changes correlate with the transformation of the fibrin scaffold during clot maturing. With the combined action of platelets, thrombin and Ca2+, plasma clotting passes through two phases: initial formation of a platelet-fibrin network (first peak in the polymerization curve), and then the compaction of fibrin, driven by FXIIIa (the second peak) which can be further modulate by the contractile action of platelets. These structural changes, mediated by platelets and FXIIIa, have been shown to determine subsequent clot lysis.</p><p><strong>Conclusions: </strong>Platelet aggregates serve as organizing centers that determine the distribution of fibrin in clot volume. The openwork structure of the platelet-transformed fibrin provides the necessary prerequisites for its timely lysis. The revealed aspects of the interaction of platelets and FXIIIa, which accompanies the maturation of a fibrin clot, may lead to new approaches in the pharmacological correction of disorders associated with both thrombotic episodes and bleeding tendency.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purine and pyrimidine nucleotides are crucial building blocks for the survival of cells, and there are layers of pathways to make sure a stable supply of them including de novo nucleotide biosynthesis. Fast-growing cells including cancer cells have high demand for nucleotide, and they highly utilize the nucleotide biosynthesis pathways. Due to the nature of the fast-growing cells, they tend to make more errors in replication compared with the normal cells. Naturally, DNA repair and DNA lesion bypass are heavily employed in cancer cells to ensure fidelity and completion of the replication without stalling. There have been a lot of drugs targeting cancer that mimic the chemical structures of the nucleobase, nucleoside, and nucleotides, and the resistance toward those drugs is a serious problem. Herein, we have reviewed some of the representative nucleotide analog anticancer agents such as 5-fluorouracil, specifically their mechanism of action and resistance is discussed. Also, we have chosen several enzymes in nucleotide biosynthesis, DNA repair, and DNA lesion bypass, and we have discussed the known and potential roles of these enzymes in maintaining genomic fidelity and cancer chemotherapy.
嘌呤和嘧啶核苷酸是细胞赖以生存的重要基石,有多种途径确保它们的稳定供应,包括核苷酸的生物合成。快速生长的细胞(包括癌细胞)对核苷酸的需求量很大,它们高度利用核苷酸生物合成途径。由于快速生长细胞的特性,与正常细胞相比,它们往往会在复制过程中出现更多错误。自然而然,癌细胞会大量使用 DNA 修复和 DNA 损伤旁路,以确保复制的保真度和完成度,而不会出现停滞。目前已有许多模仿核碱基、核苷酸和核苷酸化学结构的抗癌药物,而这些药物的耐药性是一个严重的问题。在此,我们综述了一些具有代表性的核苷酸类似物抗癌药物,如 5-氟尿嘧啶,并具体讨论了它们的作用机制和耐药性。此外,我们还选择了核苷酸生物合成、DNA修复和DNA病变旁路中的几种酶,讨论了这些酶在维持基因组保真度和癌症化疗中的已知和潜在作用。
{"title":"Connecting dots between nucleotide biosynthesis and DNA lesion repair/bypass in cancer.","authors":"Jackson C Lin, Ayobami Oludare, Hunmin Jung","doi":"10.1042/BSR20231382","DOIUrl":"10.1042/BSR20231382","url":null,"abstract":"<p><p>Purine and pyrimidine nucleotides are crucial building blocks for the survival of cells, and there are layers of pathways to make sure a stable supply of them including de novo nucleotide biosynthesis. Fast-growing cells including cancer cells have high demand for nucleotide, and they highly utilize the nucleotide biosynthesis pathways. Due to the nature of the fast-growing cells, they tend to make more errors in replication compared with the normal cells. Naturally, DNA repair and DNA lesion bypass are heavily employed in cancer cells to ensure fidelity and completion of the replication without stalling. There have been a lot of drugs targeting cancer that mimic the chemical structures of the nucleobase, nucleoside, and nucleotides, and the resistance toward those drugs is a serious problem. Herein, we have reviewed some of the representative nucleotide analog anticancer agents such as 5-fluorouracil, specifically their mechanism of action and resistance is discussed. Also, we have chosen several enzymes in nucleotide biosynthesis, DNA repair, and DNA lesion bypass, and we have discussed the known and potential roles of these enzymes in maintaining genomic fidelity and cancer chemotherapy.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotian Zhou, Muhammad F Khan, Yue Xin, Kar L Chan, Anna Roujeinikova
Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.
{"title":"Biochemical characterization of paralyzed flagellum proteins A (PflA) and B (PflB) from Helicobacter pylori flagellar motor.","authors":"Xiaotian Zhou, Muhammad F Khan, Yue Xin, Kar L Chan, Anna Roujeinikova","doi":"10.1042/BSR20240692","DOIUrl":"10.1042/BSR20240692","url":null,"abstract":"<p><p>Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Bandres-Meriz,Marta Inmaculada Sanz-Cuadrado,Irene Hurtado de Mendoza,Alejandro Majali-Martinez,Sophie Elisabeth Honeder,Tereza Cindrova-Davies,Ruth Birner-Gruenberger,Louise Torp Dalgaard,Gernot Desoye
In the first trimester of pregnancy the human placenta grows rapidly, making it sensitive to changes in the intrauterine environment. To test whether exposure to an environment in utero often associated with obesity modifies placental proteome and function, we performed untargeted proteomics (LC-MS/MS) in placentas from 19 women (gestational age 35-48 days). Maternal clinical traits (body mass index, leptin, glucose, C-peptide and insulin sensitivity) and gestational age were recorded. DNA replication and cell cycle pathways were enriched in the proteome of placentas of women with low maternal insulin sensitivity. Driving these pathways were the minichromosome maintenance (MCM) proteins MCM2-7 (MCM-complex). These proteins are part of the pre-replicative complex and participate in DNA damage repair. Indeed, MCM6 and γH2AX (DNA-damage marker) protein levels correlated in first trimester placental tissue (r=0.514, p<0.01). MCM6 and γH2AX co-localized to nuclei of villous cytotrophoblast cells, the proliferative cell type of the placenta, suggesting increased DNA damage in this cell type. To mimic key features of the intrauterine obesogenic environment, a first trimester trophoblast cell line, i.e., ACH-3P, was exposed to high insulin (10nM) or low oxygen tension (2.5% O2). There was a significant correlation between MCM6 and γH2AX protein levels, but these were independent of insulin or oxygen exposure. These findings show that chronic exposure in utero to reduced maternal insulin sensitivity during early pregnancy induces changes in the early first trimester placental proteome. Pathways related to DNA replication, cell cycle and DNA damage repair appear especially sensitive to such an in utero environment.
{"title":"MCM Proteins are Upregulated in Placentas of Women with Reduced Insulin Sensitivity.","authors":"Julia Bandres-Meriz,Marta Inmaculada Sanz-Cuadrado,Irene Hurtado de Mendoza,Alejandro Majali-Martinez,Sophie Elisabeth Honeder,Tereza Cindrova-Davies,Ruth Birner-Gruenberger,Louise Torp Dalgaard,Gernot Desoye","doi":"10.1042/bsr20240430","DOIUrl":"https://doi.org/10.1042/bsr20240430","url":null,"abstract":"In the first trimester of pregnancy the human placenta grows rapidly, making it sensitive to changes in the intrauterine environment. To test whether exposure to an environment in utero often associated with obesity modifies placental proteome and function, we performed untargeted proteomics (LC-MS/MS) in placentas from 19 women (gestational age 35-48 days). Maternal clinical traits (body mass index, leptin, glucose, C-peptide and insulin sensitivity) and gestational age were recorded. DNA replication and cell cycle pathways were enriched in the proteome of placentas of women with low maternal insulin sensitivity. Driving these pathways were the minichromosome maintenance (MCM) proteins MCM2-7 (MCM-complex). These proteins are part of the pre-replicative complex and participate in DNA damage repair. Indeed, MCM6 and γH2AX (DNA-damage marker) protein levels correlated in first trimester placental tissue (r=0.514, p<0.01). MCM6 and γH2AX co-localized to nuclei of villous cytotrophoblast cells, the proliferative cell type of the placenta, suggesting increased DNA damage in this cell type. To mimic key features of the intrauterine obesogenic environment, a first trimester trophoblast cell line, i.e., ACH-3P, was exposed to high insulin (10nM) or low oxygen tension (2.5% O2). There was a significant correlation between MCM6 and γH2AX protein levels, but these were independent of insulin or oxygen exposure. These findings show that chronic exposure in utero to reduced maternal insulin sensitivity during early pregnancy induces changes in the early first trimester placental proteome. Pathways related to DNA replication, cell cycle and DNA damage repair appear especially sensitive to such an in utero environment.","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"16 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adhesion G protein coupled receptors (AGPCRs), containing large N-terminal ligand-binding domains for environmental mechano-sensing, have been increasingly recognized to play important roles in numerous physiologic and pathologic processes. However, their impact on the heart, which undergoes dynamic mechanical alterations in healthy and failing states, remains understudied. ADGRG1 (formerly known as GPR56) is widely expressed, including in skeletal muscle where it was previously shown to mediate mechanical overload-induced muscle hypertrophy, thus we hypothesized that it could impact the development of cardiac dysfunction and remodeling in response to pressure overload. In this study, we generated a cardiomyocyte (CM)-specific ADGRG1 knockout mouse model, which, although not initially displaying features of cardiac dysfunction, does develop increased systolic and diastolic LV volumes and internal diameters over time. Notably, when challenged with chronic pressure overload, CM-specific ADGRG1 deletion accelerates cardiac dysfunction, concurrent with blunted CM hypertrophy, enhanced cardiac inflammation and increased mortality, suggesting that ADGRG1 plays an important role in the early adaptation to chronic cardiac stress. Altogether, this study provides an important proof-of-concept that targeting CM-expressed AGPCRs may offer a new avenue for regulating the development of heart failure.
粘附 G 蛋白偶联受体(AGPCR)含有用于环境机械感应的大 N 端配体结合域,越来越多的人认识到它们在许多生理和病理过程中发挥着重要作用。然而,它们对心脏的影响仍未得到充分研究,因为心脏在健康和衰竭状态下都会发生动态机械变化。ADGRG1(以前称为 GPR56)广泛表达,包括在骨骼肌中的表达,在骨骼肌中它曾被证明介导机械过载诱导的肌肉肥大,因此我们假设它可能会影响心脏功能障碍的发展和压力过载下的重塑。在这项研究中,我们建立了一个心肌细胞(CM)特异性 ADGRG1 基因敲除小鼠模型,该模型虽然最初没有表现出心功能不全的特征,但随着时间的推移,收缩期和舒张期左心室容积和内径确实会增大。值得注意的是,当受到慢性压力过载的挑战时,CM 特异性 ADGRG1 基因缺失会加速心功能不全,同时出现 CM 肥大减弱、心脏炎症增强和死亡率升高,这表明 ADGRG1 在早期适应慢性心脏压力方面发挥着重要作用。总之,这项研究提供了一个重要的概念证明,即靶向 CM 表达的 AGPCR 可为调控心力衰竭的发展提供一条新途径。
{"title":"Loss of cardiomyocyte-specific Adhesion G Protein Coupled Receptor G1 (ADGRG1/GPR56) promotes pressure overload-induced heart failure.","authors":"Jeanette Einspahr,Heli Xu,Rajika Roy,Nikki Dietz,Jacob Melchior,Jhansi Raja,Rhonda L Carter,Xianhua Piao,Douglas Tilley","doi":"10.1042/bsr20240826","DOIUrl":"https://doi.org/10.1042/bsr20240826","url":null,"abstract":"Adhesion G protein coupled receptors (AGPCRs), containing large N-terminal ligand-binding domains for environmental mechano-sensing, have been increasingly recognized to play important roles in numerous physiologic and pathologic processes. However, their impact on the heart, which undergoes dynamic mechanical alterations in healthy and failing states, remains understudied. ADGRG1 (formerly known as GPR56) is widely expressed, including in skeletal muscle where it was previously shown to mediate mechanical overload-induced muscle hypertrophy, thus we hypothesized that it could impact the development of cardiac dysfunction and remodeling in response to pressure overload. In this study, we generated a cardiomyocyte (CM)-specific ADGRG1 knockout mouse model, which, although not initially displaying features of cardiac dysfunction, does develop increased systolic and diastolic LV volumes and internal diameters over time. Notably, when challenged with chronic pressure overload, CM-specific ADGRG1 deletion accelerates cardiac dysfunction, concurrent with blunted CM hypertrophy, enhanced cardiac inflammation and increased mortality, suggesting that ADGRG1 plays an important role in the early adaptation to chronic cardiac stress. Altogether, this study provides an important proof-of-concept that targeting CM-expressed AGPCRs may offer a new avenue for regulating the development of heart failure.","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"10 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliana C Ferreira, Samar Fadl, Thyago H S Cardoso, Bruno Silva Andrade, Tarcisio S Melo, Edson Mario de Andrade Silva, Anupriya Agarwal, Stuart J Turville, Nitin K Saksena, Wael M Rabeh
SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.
SARS-CoV-2 于 2019 年首次被发现,目前已在全球范围内传播,达到了大流行的程度,造成了巨大的健康和经济负担。虽然针对 SARS-CoV-2 的疫苗已经研制成功,但其长期疗效和特异性尚未确定,抗病毒药物仍然是必要的。黄酮类化合物通常存在于植物、水果和蔬菜中,也是人类饮食的一部分,由于其抗病毒和抗菌活性以及对其他生物活动(如炎症)的影响,黄酮类化合物作为潜在的治疗药物已引起广泛关注。本研究结合生化、细胞、分子动力学和分子对接实验,提供了令人信服的证据,证明黄酮类化合物木犀草素(2-(3,4-二羟基苯基)-5,7-二羟基-4H-色烯-4-酮)对 SARS-CoV-2 3-糜蛋白酶样蛋白酶(3CLpro)具有抗病毒活性,镁、锌和维生素 C 能协同增强这种活性。热力学稳定性分析表明,木犀草素对 3CLpro 结构的影响微乎其微,而金属离子和维生素 C 则会显著改变蛋白酶的热力学稳定性。相互作用组分析发现了潜在的宿主-病毒相互作用以及与木犀草素活性相关的功能簇,从而支持了这种黄酮类化合物与抗击SARS-CoV-2感染的相关性。这项全面的研究揭示了木犀草素的治疗潜力,并深入探讨了它对 SARS-CoV-2 的作用机制。叶黄素、镁、锌和维生素 C 的新配方可能是治疗 COVID-19 患者的有效途径。
{"title":"Boosting immunity: synergistic antiviral effects of luteolin, vitamin C, magnesium and zinc against SARS-CoV-2 3CLpro.","authors":"Juliana C Ferreira, Samar Fadl, Thyago H S Cardoso, Bruno Silva Andrade, Tarcisio S Melo, Edson Mario de Andrade Silva, Anupriya Agarwal, Stuart J Turville, Nitin K Saksena, Wael M Rabeh","doi":"10.1042/BSR20240617","DOIUrl":"10.1042/BSR20240617","url":null,"abstract":"<p><p>SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}