Micaela Vanina Buzzatto, Fabiana Cristina Benegas Guerrero, Pablo Ariel Álvarez, María Paz Zizzias, Luis Mariano Polo, Claudia Nora Tomes
Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.
{"title":"Expression, purification and application of a recombinant, membrane permeating version of the light chain of botulinum toxin B.","authors":"Micaela Vanina Buzzatto, Fabiana Cristina Benegas Guerrero, Pablo Ariel Álvarez, María Paz Zizzias, Luis Mariano Polo, Claudia Nora Tomes","doi":"10.1042/BSR20240117","DOIUrl":"10.1042/BSR20240117","url":null,"abstract":"<p><p>Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1042/BSR-2018-2101_RET
{"title":"Retraction: LncRNA ANRIL affects the sensitivity of ovarian cancer to cisplatin via regulation of let-7a/HMGA2 axis.","authors":"","doi":"10.1042/BSR-2018-2101_RET","DOIUrl":"10.1042/BSR-2018-2101_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1042/BSR-2019-0291_EOC
{"title":"Expression of Concern: Long non-coding RNA TUSC7 suppresses osteosarcoma by targeting miR-211.","authors":"","doi":"10.1042/BSR-2019-0291_EOC","DOIUrl":"10.1042/BSR-2019-0291_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cindy Mendes, Isabel Lemos, Ana Hipólito, Bruna Abreu, Catarina Freitas-Dias, Filipa Martins, Rita F Pires, Hélio Barros, Vasco D B Bonifácio, Luís G Gonçalves, Jacinta Serpa
Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.
{"title":"Metabolic profiling and combined therapeutic strategies unveil the cytotoxic potential of selenium-chrysin (SeChry) in NSCLC cells.","authors":"Cindy Mendes, Isabel Lemos, Ana Hipólito, Bruna Abreu, Catarina Freitas-Dias, Filipa Martins, Rita F Pires, Hélio Barros, Vasco D B Bonifácio, Luís G Gonçalves, Jacinta Serpa","doi":"10.1042/BSR20240752","DOIUrl":"10.1042/BSR20240752","url":null,"abstract":"<p><p>Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1042/BSR-2021-0093_EOC
{"title":"Expression of Concern: Erianin induces triple-negative breast cancer cells apoptosis by activating PI3K/Akt pathway.","authors":"","doi":"10.1042/BSR-2021-0093_EOC","DOIUrl":"10.1042/BSR-2021-0093_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.
{"title":"Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress.","authors":"Xiao Hua Hao, Ke Xin Liu, Meng Yuan Zhang","doi":"10.1042/BSR20240215","DOIUrl":"10.1042/BSR20240215","url":null,"abstract":"<p><p>Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1042/BSR-2019-4347_EOC
{"title":"Expression of Concern: Madecassoside protects retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis through the activation of Nrf2/HO-1 pathway.","authors":"","doi":"10.1042/BSR-2019-4347_EOC","DOIUrl":"10.1042/BSR-2019-4347_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural and synthetic polymeric materials, particularly soft and hard tissue replacements, are paramount in medicine. We prepared calcium-incorporated sulfonated polyether-ether ketone (SPEEK) polymer membranes for bone applications. The bioactivity was higher after 21 days of immersion in simulated body fluid (SBF) due to calcium concentration in the membrane. We present a new biomaterial healing system composed of calcium and sulfonated polyether ether ketone (Ca-SPEEK) that can function as a successful biomaterial without causing inflammation when tested on bone marrow cells. The Ca-SPEEK exhibited 13 ± 0.5% clot with low fibrin mesh formation compared to 21 ± 0.5% in SPEEK. In addition, the Ca-SPEEK showed higher protein adsorption than SPEEK membranes. As an inflammatory response, IL-1 and TNF-α in the case of Ca-SPEEK were lower than those for SPEEK. We found an early regulation of IL-10 in the case of Ca-SPEEK at 6 h, which may be attributed to the down-regulation of the inflammatory markers IL-1 and TNF-α. These results evidence the innovative bioactivity of Ca-SPEEK with low inflammatory response, opening venues for bone applications.
{"title":"Bioactivity, hemocompatibility, and inflammatory response of calcium incorporated sulfonated polyether ether ketone on mouse-derived bone marrow cells.","authors":"Shanmuga Sundar Saravanabhavan, Prabhu Narayanaswamy Venkatesan, Narendranath Jonna, Kamalakannan Vasantha Palaniappan, Zsolt Sarang, Balasubramanian Natesan, Consolato M Sergi","doi":"10.1042/BSR20232162","DOIUrl":"10.1042/BSR20232162","url":null,"abstract":"<p><p>Natural and synthetic polymeric materials, particularly soft and hard tissue replacements, are paramount in medicine. We prepared calcium-incorporated sulfonated polyether-ether ketone (SPEEK) polymer membranes for bone applications. The bioactivity was higher after 21 days of immersion in simulated body fluid (SBF) due to calcium concentration in the membrane. We present a new biomaterial healing system composed of calcium and sulfonated polyether ether ketone (Ca-SPEEK) that can function as a successful biomaterial without causing inflammation when tested on bone marrow cells. The Ca-SPEEK exhibited 13 ± 0.5% clot with low fibrin mesh formation compared to 21 ± 0.5% in SPEEK. In addition, the Ca-SPEEK showed higher protein adsorption than SPEEK membranes. As an inflammatory response, IL-1 and TNF-α in the case of Ca-SPEEK were lower than those for SPEEK. We found an early regulation of IL-10 in the case of Ca-SPEEK at 6 h, which may be attributed to the down-regulation of the inflammatory markers IL-1 and TNF-α. These results evidence the innovative bioactivity of Ca-SPEEK with low inflammatory response, opening venues for bone applications.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.
{"title":"Spatiotemporal regulation of the hepatocyte growth factor receptor MET activity by sorting nexins 1/2 in HCT116 colorectal cancer cells.","authors":"Laiyen Garcia Delgado, Amélie Derome, Samantha Longpré, Marilyne Giroux-Dansereau, Ghenwa Basbous, Christine Lavoie, Caroline Saucier, Jean-Bernard Denault","doi":"10.1042/BSR20240182","DOIUrl":"10.1042/BSR20240182","url":null,"abstract":"<p><p>Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy Collins, Rebecca Scott, Caroline L Wilson, Giuseppe Abbate, Gabrielle B Ecclestone, Adam G Albanese, Demi Biddles, Steven White, Jeremy French, John Moir, Wasfi Alrawashdeh, Colin Wilson, Sanjay Pandanaboyana, John S Hammond, Rohan Thakkar, Fiona Oakley, Jelena Mann, Derek A Mann, Niall S Kenneth
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.
{"title":"UCHL1-dependent control of hypoxia-inducible factor transcriptional activity during liver fibrosis.","authors":"Amy Collins, Rebecca Scott, Caroline L Wilson, Giuseppe Abbate, Gabrielle B Ecclestone, Adam G Albanese, Demi Biddles, Steven White, Jeremy French, John Moir, Wasfi Alrawashdeh, Colin Wilson, Sanjay Pandanaboyana, John S Hammond, Rohan Thakkar, Fiona Oakley, Jelena Mann, Derek A Mann, Niall S Kenneth","doi":"10.1042/BSR20232147","DOIUrl":"10.1042/BSR20232147","url":null,"abstract":"<p><p>Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}