首页 > 最新文献

Bioscience Reports最新文献

英文 中文
Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. (E)-(2,4-二羟基)-a-氨基肉桂酸(一种羟基肉桂酸衍生物)对 TNBS 诱导的溃疡性结肠炎模型的保护作用。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20240797
Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández

Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.

溃疡性结肠炎(UC)是一种多因素疾病,会引起消化道长期炎症和溃疡。溃疡性结肠炎是最常见的炎症性肠病(IBD)。目前治疗轻度至中度 UC 的方法是使用 5-氨基水杨酸盐(5-ASA),但这种化合物大部分未被吸收,而是通过 N-乙酰化代谢。此后,人们开始努力评估来自合成或天然来源的新分子。最近有报道称,(E)-(5-氯-2-羟基)-α-氨基肉桂酸(2c)和(E)-(2,4-二羟基)-a-氨基肉桂酸(2f)是与 5-ASA 一样好或更好的髓过氧化物酶(MPO)抑制剂和抗氧化剂。因此,本研究旨在评估 2c 和 2f 对 2,4,6-三硝基苯磺酸(TNBS)诱导的 UC 大鼠模型的保护作用。结果表明,TNBS 会诱导大鼠出现结肠溃疡,并导致 MPO 活性和丙二醛(MDA)显著升高,谷胱甘肽(GSH)含量下降。服用 2f、2c 和 5-ASA 可减少溃疡的出现,抑制 MPO 过氧化活性和 MPO 的存在(通过免疫荧光测定),增加 GSH 并降低 MDA 含量。因此,在 TNBS 诱导的大鼠 UC 模型中,2f 发挥保护作用的主要机制是通过抑制 MPO 活性及其抗氧化活性。
{"title":"Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS.","authors":"Astrid Mayleth Rivera Antonio, Itzia Irene Padilla Martínez, Yazmín Karina Márquez-Flores, Alan Hipólito Juárez Solano, Mónica A Torres Ramos, Martha Cecilia Rosales Hernández","doi":"10.1042/BSR20240797","DOIUrl":"10.1042/BSR20240797","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells. 多酚黄酮类化合物鱼腥草素和槲皮素对人间质基质细胞脂肪分化的影响
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20240623
Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil

Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.

鱼腥草素和槲皮素是多酚黄酮类化合物,已被证明具有抗炎、抗氧化和抗癌等多种有益的药理作用。我们之前的研究表明,鱼腥草素还能通过调节 Hippo-YAP 信号通路影响人类间充质干细胞(hMSCs)的成脂-成骨谱系。虽然槲皮素的结构与鱼腥草素相似,但其对 hMSCs 功能特性的影响尚未得到研究。本研究的目的是确定槲皮素对 hMSCs 各种特性的影响,包括增殖、迁移以及向脂肪生成系和成骨系分化的能力。结果表明,虽然鱼藤黄素能增加 hMSCs 的成脂分化,但槲皮素却能抑制 hMSCs 的成脂分化。这种抑制作用至少部分是通过激活 hippo 信号传导和上调 miR-27b 来实现的,miR-27b 可抑制参与脂滴生物生成所有关键步骤的基因的表达,从而导致 hMSCs 中脂滴数量的减少。与鱼腥草素相比,槲皮素的 A 环上的 5 位缺乏羟基化可能是其对 hMSCs 的成脂-成骨细胞系分化产生不同影响的原因。分子对接和分子动力学模拟表明,鱼腥草素和槲皮素可能与丝氨酸/苏氨酸蛋白激酶4(STK4/MST1)结合,而STK4/MST1是导致LATS磷酸化的上游激酶。综上所述,我们的研究结果进一步揭示了黄酮类化合物鱼腥草素和槲皮素在调控脂肪生成过程中的作用机制。
{"title":"Effect of the polyphenol flavonoids fisetin and quercetin on the adipogenic differentiation of human mesenchymal stromal cells.","authors":"Chanchao Lorthongpanich, Thanapon Charoenwongpaiboon, Praphasri Septham, Chuti Laowtammathron, Pimonwan Srisook, Pakpoom Kheolamai, Sirikul Manochantr, Surapol Issaragrisil","doi":"10.1042/BSR20240623","DOIUrl":"10.1042/BSR20240623","url":null,"abstract":"<p><p>Fisetin and quercetin, polyphenol flavonoids, have been shown to have a wide range of beneficial pharmacological effects including anti-inflammatory, antioxidative, and anti-cancer. Our previous work shows that fisetin also affects the specification of the adipogenic-osteogenic lineage of human mesenchymal stem cells (hMSCs) by modulating the Hippo-YAP signaling pathway. Although quercetin has a structure similar to that of fisetin, its effects on the functional properties of hMSCs have not yet been investigated. The objective of the present study is to determine the effects of quercetin on the various properties of hMSCs, including proliferation, migration, and differentiation capacity toward adipogenic and osteogenic lineages. The results show that while fisetin increases hMSC adipogenic differentiation, quercetin inhibited adipogenic differentiation of hMSCs. The inhibition is mediated, at least in part, by the activation of hippo signaling and up-regulation of miR-27b, which inhibits the expression of genes involved in all critical steps of lipid droplet biogenesis, resulting in a decrease in the number of lipid droplets in hMSCs. It is possible that the lack of hydroxylation of the 5 position on the A ring of quercetin could be responsible for its different effect on the adipogenic-osteogenic lineage specification of hMSCs compared with fisetin. Molecular docking and molecular dynamics simulation suggested that fisetin and quercetin possibly bind to serine / threonine protein kinases 4 (STK4/MST1), which is an upstream kinase responsible for LATS phosphorylation. Taken together, our results demonstrate more insight into the mechanism underlying the role of flavonoid fisetin and quercetin in the regulation of adipogenesis.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis. 关注表达:miRNA-103 通过下调鞘磷脂激酶-1 促进软骨细胞凋亡,并改善骨关节炎中的 PI3K/AKT 通路。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR-2019-1255_EOC
{"title":"Expression of Concern: miRNA-103 promotes chondrocyte apoptosis by downregulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis.","authors":"","doi":"10.1042/BSR-2019-1255_EOC","DOIUrl":"10.1042/BSR-2019-1255_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo. 关注表达:C1QTNF6 在体外和体内调节 NSCLC 的细胞增殖和凋亡。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR-2020-1541_EOC
{"title":"Expression of Concern: C1QTNF6 regulates cell proliferation and apoptosis of NSCLC in vitro and in vivo.","authors":"","doi":"10.1042/BSR-2020-1541_EOC","DOIUrl":"10.1042/BSR-2020-1541_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Concern: HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property in a NFκB-dependent way. 关注表达:HER2 通过依赖 NFκB 的方式诱导干细胞样特性,降低卵巢癌细胞对药物的敏感性。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR-2018-0829_EOC
{"title":"Expression of Concern: HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property in a NFκB-dependent way.","authors":"","doi":"10.1042/BSR-2018-0829_EOC","DOIUrl":"10.1042/BSR-2018-0829_EOC","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. 用于研究膜蛋白二聚化的胞外双分子荧光互补:使用 B 类 GPCR 的概念验证。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20240449
Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay

Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.

双分子荧光互补(BiFC)方法利用分裂荧光蛋白来检测活细胞中蛋白质之间的相互作用。迄今为止,双分子荧光互补一直被用于研究受体二聚化,方法是在不同受体成分的细胞内部分之间拆分荧光蛋白。我们认为,将这些分裂蛋白连接到细胞外的 N 端可以提高这种方法的灵活性,并降低细胞内信号转导受损的可能性。作为概念验证,我们使用了降钙素基因相关肽受体,它由降钙素受体或降钙素受体样受体与附属蛋白(受体活性修饰蛋白 1)复合而成的异二聚体组成。我们创建了融合构建体,将分裂的 mVenus 片段连接到受体亚基的 C 端或 N 端。将得到的构建体转染到 Cos7 和 HEK293S 细胞中,我们测量了配体刺激下 cAMP 的产生、细胞表面受体复合物的表达以及 BiFC 荧光。此外,我们还研究了配体在 HEK293S 细胞中的依赖性内化。我们发现 N 端融合在 cAMP 信号转导和受体内化方面具有更好的耐受性。N 端融合还可以重组功能性荧光 mVenus 蛋白,但荧光产量低于 C 端融合。我们的研究结果表明,BiFC 方法可以应用于受体 N 端,从而提高了这种方法的灵活性,并能进一步深入了解受体的二聚化。
{"title":"Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs.","authors":"Michael L Garelja, Tyla I Alexander, Christopher S Walker, Debbie L Hay","doi":"10.1042/BSR20240449","DOIUrl":"10.1042/BSR20240449","url":null,"abstract":"<p><p>Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function. 耐力运动员体内有利的高密度脂蛋白成分与高密度脂蛋白体外抗氧化和内皮抗炎功能的变化无关。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20241165
Jack David Beazer, Anne Sillars, Sally Beck, Christina Christoffersen, Maria J Ferraz, Monique T Mulder, Delyth Graham, Helen Karlsson, Stefan Ljunggren, Jason Gill, Dilys J Freeman

Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.

鉴于提高高密度脂蛋白(HDL)的疗法未能降低心血管疾病风险,人们将注意力转向了高密度脂蛋白的组成和血管保护功能。对于有胰岛素抵抗的人,运动干预可以恢复高密度脂蛋白的功能。然而,运动对健康人高密度脂蛋白的影响尚不清楚。这项横断面研究旨在测量对胰岛素敏感的耐力运动员和健康对照组男性的高密度脂蛋白组成和抗氧化/内皮抗炎功能。采用密度梯度超速离心法分离高密度脂蛋白。采用微孔板检测法测量高密度脂蛋白的组成,包括脂蛋白 A-I、总胆固醇含量和脂蛋白 M。采用原生凝胶电泳法测定高密度脂蛋白亚类分布。高密度脂蛋白的体外抗氧化功能通过副氧杂蒽酮酶-1活性测定法进行测量,抗炎功能通过内皮细胞进行评估。 与对照组相比,耐力运动员的高密度脂蛋白具有更高的脂蛋白A-1(1.65 ± 0.62 mg/mL vs 1.21 ± 0.34 mg/mL,p = 0.028)和更高的总胆固醇含量(1.54 ± 0.33 mmol/L vs 2.09 ± 0.44 mmol/L,p < 0.001)。 蛋白质组学显示,耐力运动员 HDL 中的脂蛋白 A-II、A-IV 和 D 以及转甲状腺素含量高于对照组。在体外高密度脂蛋白抗氧化或抗炎功能方面,对照组和耐力运动员之间没有发现差异。尽管耐力运动员的高密度脂蛋白成分更有利,但其体外抗氧化或抗炎功能并不高。可能高密度脂蛋白的功能有一个上限,即健康的高密度脂蛋白功能无法通过耐力运动得到增强。
{"title":"Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function.","authors":"Jack David Beazer, Anne Sillars, Sally Beck, Christina Christoffersen, Maria J Ferraz, Monique T Mulder, Delyth Graham, Helen Karlsson, Stefan Ljunggren, Jason Gill, Dilys J Freeman","doi":"10.1042/BSR20241165","DOIUrl":"10.1042/BSR20241165","url":null,"abstract":"<p><p>Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the GABARAP binding determinant in PI4K2A. 鉴定 PI4K2A 中的 GABARAP 结合决定因子。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20240200
Yan Chen, Barbara Barylko, John P Eichorst, Joachim D Mueller, Joseph P Albanesi

GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.

GABARAP 是泛素样自噬相关蛋白 ATG8 家族的成员。它最初是作为 GABA-A 受体向质膜转运的促进因子被发现的,后来又被证明能在非自噬条件下促进多种其他蛋白质的胞内转运。我们和其他人已经证明,GABARAP 与 II 型磷脂酰肌醇 4- 激酶 PI4K2A 相互作用,而且这种相互作用对于自噬体与溶酶体融合非常重要。在这里,我们确定了 PI4K2A 催化结构域中包含 GABARAP 相互作用基序(GIM)的 7 个氨基酸片段。该片段位于一个暴露的环中,而该环在哺乳动物的另一种 II 型 PI 4-kinase PI4K2B 中并不保守,这就解释了 GABARAP 与 PI4K2A 异构体结合的特异性。PI4K2A GIM 的突变抑制了 GABARAP 的结合以及 PI4K2A 介导的细胞质 GABARAP 到亚细胞器的招募。我们进一步发现,GABARAP 能与单磷酸化磷酸肌酸、PI3P、PI4P 和 PI5P 结合,这就提出了一种可能性,即这些脂质有助于产生结合能,从而推动 GABARAP 与膜上蛋白的相互作用。
{"title":"Identification of the GABARAP binding determinant in PI4K2A.","authors":"Yan Chen, Barbara Barylko, John P Eichorst, Joachim D Mueller, Joseph P Albanesi","doi":"10.1042/BSR20240200","DOIUrl":"10.1042/BSR20240200","url":null,"abstract":"<p><p>GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of structure in regulatory RNA elements. 结构在 RNA 调控元件中的作用。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR20240139
Jan-Niklas Tants, Andreas Schlundt

Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.

调控 RNA 元件具有翻译调控、转录本水平控制和病毒基因组复制调控等功能。反式作用因子(即 RNA 结合蛋白)与所谓的顺式元件结合,并赋予复合物功能。蛋白质-RNA 复合物(RNP)形成过程中的特异性往往利用了 RNA 的结构可塑性。顺式-反式配对的功能完整性取决于是否存在正确折叠的 RNA 元件,而 RNA 的构象转变可导致疾病。要了解复合体的形成并推断其功能效应,就必须了解 RNA 结构和构象空间。然而,在体内条件下确定 RNA 的结构仍然具有挑战性。本综述概述了真核生物和病毒 RNA 顺式元件的结构,并讨论了 RNA 结构平衡对 RNP 形成的影响。我们展示了 RNA 结构变化对疾病的影响,概述了基于 RNA 结构的药物靶向策略,并总结了破译 RNA 结构的方法工具箱。
{"title":"The role of structure in regulatory RNA elements.","authors":"Jan-Niklas Tants, Andreas Schlundt","doi":"10.1042/BSR20240139","DOIUrl":"10.1042/BSR20240139","url":null,"abstract":"<p><p>Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress, and cell death in mice kidney. 更正:姜黄绿色合成硒纳米粒子对顺铂诱导的氧化-炎症应激和小鼠肾脏细胞死亡具有治疗活性。
IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/BSR-2023-1130_COR
{"title":"Correction: Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress, and cell death in mice kidney.","authors":"","doi":"10.1042/BSR-2023-1130_COR","DOIUrl":"10.1042/BSR-2023-1130_COR","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioscience Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1