Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes. Genomic analysis has identified novel BMCs and their loci, often including genes for signature enzymes critical to their function, but further characterization is needed to confirm their roles. Among the various BMCs, carboxysomes, which are found in cyanobacteria and some chemoautotrophic bacteria, and are most extensively investigated. These self-assembling polyhedral proteinaceous BMCs are essential for carbon fixation. Carboxysomes encapsulate the enzymes RuBisCo and carbonic anhydrase, which increase the carbon fixation rate in the cell and decrease the oxygenation rate by RuBisCo. The ability of carboxysomes to concentrate carbon dioxide in crops and industrially relevant microorganisms renders them attractive targets for carbon assimilation bioengineering. Thus, carboxysome characterization is the first step toward developing carboxysome-based applications. Therefore, this review comprehensively explores carboxysome morphology, physiology, and biochemistry. It also discusses recent advances in microscopy and complementary techniques for isolating and characterizing this versatile class of prokaryotic organelles.
{"title":"Carboxysomes: The next frontier in biotechnology and sustainable solutions.","authors":"Sulamita Santos Correa, Júnia Schultz, Brandon Zahodnik-Huntington, Andreas Naschberger, Alexandre Soares Rosado","doi":"10.1016/j.biotechadv.2024.108511","DOIUrl":"10.1016/j.biotechadv.2024.108511","url":null,"abstract":"<p><p>Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes. Genomic analysis has identified novel BMCs and their loci, often including genes for signature enzymes critical to their function, but further characterization is needed to confirm their roles. Among the various BMCs, carboxysomes, which are found in cyanobacteria and some chemoautotrophic bacteria, and are most extensively investigated. These self-assembling polyhedral proteinaceous BMCs are essential for carbon fixation. Carboxysomes encapsulate the enzymes RuBisCo and carbonic anhydrase, which increase the carbon fixation rate in the cell and decrease the oxygenation rate by RuBisCo. The ability of carboxysomes to concentrate carbon dioxide in crops and industrially relevant microorganisms renders them attractive targets for carbon assimilation bioengineering. Thus, carboxysome characterization is the first step toward developing carboxysome-based applications. Therefore, this review comprehensively explores carboxysome morphology, physiology, and biochemistry. It also discusses recent advances in microscopy and complementary techniques for isolating and characterizing this versatile class of prokaryotic organelles.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108511"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
{"title":"Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products.","authors":"Jian Han, Faqiha Hamza, Jianming Guo, Mahmoud Sayed, Sang-Hyun Pyo, Yong Xu","doi":"10.1016/j.biotechadv.2024.108509","DOIUrl":"10.1016/j.biotechadv.2024.108509","url":null,"abstract":"<p><p>The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108509"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1016/j.biotechadv.2024.108510
Deok-Kun Oh, Tae-Eui Lee, Jin Lee, Kyung-Chul Shin, Jin-Byung Park
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.
{"title":"Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids.","authors":"Deok-Kun Oh, Tae-Eui Lee, Jin Lee, Kyung-Chul Shin, Jin-Byung Park","doi":"10.1016/j.biotechadv.2024.108510","DOIUrl":"10.1016/j.biotechadv.2024.108510","url":null,"abstract":"<p><p>The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108510"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.biotechadv.2024.108506
Sai Guna Ranjan Gurazada, Hannah M Kennedy, Richard D Braatz, Steven J Mehrman, Shawn W Polson, Irene T Rombel
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-Omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-Omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
{"title":"HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing.","authors":"Sai Guna Ranjan Gurazada, Hannah M Kennedy, Richard D Braatz, Steven J Mehrman, Shawn W Polson, Irene T Rombel","doi":"10.1016/j.biotechadv.2024.108506","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108506","url":null,"abstract":"<p><p>Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-Omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of \"HEK-Omics\" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108506"},"PeriodicalIF":12.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging. THz-SNOM is attracting considerable attention for its potential in advanced biomedical research and diagnosis. Currently, its family typically includes four members based on distinct principles, which are suitable for different biological applications. This review provides an overview of the principles of these THz-SNOM modalities, outlines their various applications, identifies the obstacles hindering their performance, and envisions their future development.
{"title":"Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives.","authors":"Shihan Yan, Guanyin Cheng, Zhongbo Yang, Yuansen Guo, Ligang Chen, Ying Fu, Fucheng Qiu, Jonathan J Wilksch, Tianwu Wang, Yiwen Sun, Junchao Fan, Xunbin Wei, Jiaguang Han, Fei Sun, Shixiang Xu, Huabin Wang","doi":"10.1016/j.biotechadv.2024.108507","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108507","url":null,"abstract":"<p><p>Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging. THz-SNOM is attracting considerable attention for its potential in advanced biomedical research and diagnosis. Currently, its family typically includes four members based on distinct principles, which are suitable for different biological applications. This review provides an overview of the principles of these THz-SNOM modalities, outlines their various applications, identifies the obstacles hindering their performance, and envisions their future development.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108507"},"PeriodicalIF":12.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1016/j.biotechadv.2024.108505
Ana C Afonso, Maria J Saavedra, Manuel Simões, Lúcia C Simões
Bacterial coaggregation is a critical process in multispecies biofilm formation, driven by specific molecular interactions that facilitate the adhesion and aggregation of bacterial cells. These interactions are essential for the development and persistence of complex microbial communities. This review provides a comprehensive analysis of the roles of the proteosurfaceome and exoproteome in bacterial coaggregation. The proteosurfaceome, comprising surface-bound molecules such as adhesins, drives species-specific interactions crucial for partner recognition and adhesion. In parallel, the exoproteome, particularly extracellular polymeric substances (EPS), enhances aggregate stability by reinforcing structural integrity and facilitating intercellular communication, although its direct role in coaggregation remains to be fully clarified. By integrating these perspectives, this review aims to elucidate how the proteosurfaceome and exoproteome influence bacterial coaggregation, offering insights into their combined impact on microbial community structure and function. Furthermore, we highlight existing knowledge gaps and propose directions for future research.
{"title":"The role of the proteosurfaceome and exoproteome in bacterial coaggregation.","authors":"Ana C Afonso, Maria J Saavedra, Manuel Simões, Lúcia C Simões","doi":"10.1016/j.biotechadv.2024.108505","DOIUrl":"10.1016/j.biotechadv.2024.108505","url":null,"abstract":"<p><p>Bacterial coaggregation is a critical process in multispecies biofilm formation, driven by specific molecular interactions that facilitate the adhesion and aggregation of bacterial cells. These interactions are essential for the development and persistence of complex microbial communities. This review provides a comprehensive analysis of the roles of the proteosurfaceome and exoproteome in bacterial coaggregation. The proteosurfaceome, comprising surface-bound molecules such as adhesins, drives species-specific interactions crucial for partner recognition and adhesion. In parallel, the exoproteome, particularly extracellular polymeric substances (EPS), enhances aggregate stability by reinforcing structural integrity and facilitating intercellular communication, although its direct role in coaggregation remains to be fully clarified. By integrating these perspectives, this review aims to elucidate how the proteosurfaceome and exoproteome influence bacterial coaggregation, offering insights into their combined impact on microbial community structure and function. Furthermore, we highlight existing knowledge gaps and propose directions for future research.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108505"},"PeriodicalIF":12.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1016/j.biotechadv.2024.108496
Jie Gu, Wanmeng Mu, Yan Xu, Yao Nie
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.
{"title":"From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis.","authors":"Jie Gu, Wanmeng Mu, Yan Xu, Yao Nie","doi":"10.1016/j.biotechadv.2024.108496","DOIUrl":"10.1016/j.biotechadv.2024.108496","url":null,"abstract":"<p><p>The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108496"},"PeriodicalIF":12.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
{"title":"Direct cloning strategies for large genomic fragments: A review.","authors":"Ya-Nan Chen, You-Zhi Cui, Xiang-Rong Chen, Jun-Yi Wang, Bing-Zhi Li, Ying-Jin Yuan","doi":"10.1016/j.biotechadv.2024.108494","DOIUrl":"10.1016/j.biotechadv.2024.108494","url":null,"abstract":"<p><p>Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108494"},"PeriodicalIF":12.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1016/j.biotechadv.2024.108493
Ana F Esteves, Ana L Gonçalves, Vítor J P Vilar, José C M Pires
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
{"title":"Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation?","authors":"Ana F Esteves, Ana L Gonçalves, Vítor J P Vilar, José C M Pires","doi":"10.1016/j.biotechadv.2024.108493","DOIUrl":"10.1016/j.biotechadv.2024.108493","url":null,"abstract":"<p><p>Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO<sub>2</sub> fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108493"},"PeriodicalIF":12.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1016/j.biotechadv.2024.108497
Wenwen Yu, Ke Jin, Xianhao Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Jian Chen, Xueqin Lv, Long Liu
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
{"title":"Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives.","authors":"Wenwen Yu, Ke Jin, Xianhao Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Jian Chen, Xueqin Lv, Long Liu","doi":"10.1016/j.biotechadv.2024.108497","DOIUrl":"10.1016/j.biotechadv.2024.108497","url":null,"abstract":"<p><p>Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108497"},"PeriodicalIF":12.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}