Bowen Li MSc, Xueyan Zhang PhD, Nan Qiao MSc, Jiawei Chen MSc, Weijie Bi, Weijia Zhi PhD, Lizhen Ma PhD, Congcong Miao, Lifeng Wang PhD, Yong Zou PhD, Xiangjun Hu PhD
With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.
{"title":"A real-time working memory evaluation system for macaques in microwave fields","authors":"Bowen Li MSc, Xueyan Zhang PhD, Nan Qiao MSc, Jiawei Chen MSc, Weijie Bi, Weijia Zhi PhD, Lizhen Ma PhD, Congcong Miao, Lifeng Wang PhD, Yong Zou PhD, Xiangjun Hu PhD","doi":"10.1002/bem.22519","DOIUrl":"10.1002/bem.22519","url":null,"abstract":"<p>With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"338-347"},"PeriodicalIF":1.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth Joyner PhD, Michael Milligan LLM, Phillip Knipe PhD
The aim of this research was to quantify the levels of radiofrequency electromagnetic energy (RF-EME) in a residential home/apartment equipped with a range of wireless devices, often referred to as internet of things (IoT) devices or smart devices and subsequently develop a tool that could be useful for estimating the levels of RF-EME in a domestic environment. Over the course of 3 years measurements were performed in peoples' homes on a total of 43 devices across 16 device categories. Another 12 devices were measured in detail in a laboratory setup. In all a total of 55 individual devices across 23 device categories were measured. Based on this measurement data we developed predictive software that showed that even with a single device in 23 device categories operating near maximum they would, in total, produce exposures at a distance of 1 m of 0.17% of the ICNIRP (2020) public exposure limits. Measurements were also made in two separate smart apartments—one contained over 50 IoT devices and a second with over 100 IoT devices with the devices driven as hard as could reasonably be achieved. The respective 6-min average exposure level recorded were 0.0077% and 0.44% of the ICNIRP (2020) 30-min average public exposure limit.
{"title":"Estimates and measurements of radiofrequency exposures in smart-connected homes","authors":"Kenneth Joyner PhD, Michael Milligan LLM, Phillip Knipe PhD","doi":"10.1002/bem.22518","DOIUrl":"10.1002/bem.22518","url":null,"abstract":"<p>The aim of this research was to quantify the levels of radiofrequency electromagnetic energy (RF-EME) in a residential home/apartment equipped with a range of wireless devices, often referred to as internet of things (IoT) devices or smart devices and subsequently develop a tool that could be useful for estimating the levels of RF-EME in a domestic environment. Over the course of 3 years measurements were performed in peoples' homes on a total of 43 devices across 16 device categories. Another 12 devices were measured in detail in a laboratory setup. In all a total of 55 individual devices across 23 device categories were measured. Based on this measurement data we developed predictive software that showed that even with a single device in 23 device categories operating near maximum they would, in total, produce exposures at a distance of 1 m of 0.17% of the ICNIRP (2020) public exposure limits. Measurements were also made in two separate smart apartments—one contained over 50 IoT devices and a second with over 100 IoT devices with the devices driven as hard as could reasonably be achieved. The respective 6-min average exposure level recorded were 0.0077% and 0.44% of the ICNIRP (2020) 30-min average public exposure limit.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"329-337"},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD
Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (ΔT °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.
{"title":"Transcriptional response of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields","authors":"Jody C. Cantu PhD, Joseph W. Butterworth PhD, Jason A. Payne MSc, Ibtissam Echchgadda PhD","doi":"10.1002/bem.22517","DOIUrl":"10.1002/bem.22517","url":null,"abstract":"<p>Exposure to radiofrequency (RF) electromagnetic fields (EMF) has been associated with the modulation of neuronal electrophysiology and synaptic plasticity. Given the potential of these changes to coincide with alterations in gene expression, this study investigated whether a transcriptional response would occur in neurons following exposure to RF-EMF, under both thermal and nonthermal conditions. Rat primary hippocampal neurons (PHNs) underwent either a single (one-time) or a multiple (3-times, once a day) exposures to RF-EMF (3.0 GHz, CW) at two different mean specific absorption rate (SAR) values of 0.57 W/kg or 5.91 W/kg, which induced a temperature change (Δ<i>T</i> °C) of approximately 0.3°C or 3.6°C, respectively. Alteration in transcription in the RF-EMF-exposed PHNs versus the sham counterparts was assessed at 0, 4, and 24 h postexposure via high-throughput RNA sequencing using Illumina HiSeq. 2000. A total of 20 differentially expressed genes (DEGs) exhibited significant upregulation due to RF-EMF exposure, observed only with the high SAR dose that induced a thermal rise. However, the expression of these DEGs was not significant at 24 h postexposure. Our findings confirmed a lack of nonthermal effects on gene expression under low RF-EMF exposure conditions as evaluated. Additionally, the results indicated a slight thermal effect of exposures at the dose nearing the standards threshold of 4 W/kg; however, the effect appeared to be transient. The study suggests that RF-EMF exposures at a level close to the standards threshold, despite inducing mild temperature elevations (i.e., 3–5°C above normal), would not trigger biologically critical cellular changes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"348-362"},"PeriodicalIF":1.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human cytogenetic biomonitoring (HCB) has long been used to evaluate the potential effects of work environments on the DNA integrity of workers. However, HCB studies on the genotoxic effects of occupational exposure to extremely low-frequency electromagnetic fields (ELF-MFs) were limited by the quality of the exposure assessment. More specifically, concerns were raised regarding the method of exposure assessment, the selection of exposure metrics, and the definition of exposure group. In this study, genotoxic effects of occupational exposure to ELF-MFs were assessed on peripheral blood lymphocytes of 88 workers from the electrical sector using the comet and cytokinesis-block micronucleus assay, considering workers' actual exposure over three consecutive days. Different methods were applied to define exposure groups. Overall, the summarized ELF-MF data indicated a low exposure level in the whole study population. It also showed that relying solely on job titles might misclassify 12 workers into exposure groups. We proposed combining hierarchical agglomerative clustering on personal exposure data and job titles to define exposure groups. The final results showed that occupational MF exposure did not significantly induce more genetic damage. Other factors such as age or past smoking rather than ELF-MF exposure could affect the cytogenetic test outcomes.
{"title":"Exposure assessment and cytogenetic biomonitoring study of workers occupationally exposed to extremely low-frequency magnetic fields","authors":"Ha Nguyen PhD, Giovani Vandewalle MD, Birgit Mertens PhD, Jean-Francois Collard PhD, Maurice Hinsenkamp MD, PhD, Luc Verschaeve PhD, Veronique Feipel PhD, Isabelle Magne PhD, Martine Souques PhD, Véronique Beauvois IR, Maryse Ledent MPE","doi":"10.1002/bem.22506","DOIUrl":"10.1002/bem.22506","url":null,"abstract":"<p>Human cytogenetic biomonitoring (HCB) has long been used to evaluate the potential effects of work environments on the DNA integrity of workers. However, HCB studies on the genotoxic effects of occupational exposure to extremely low-frequency electromagnetic fields (ELF-MFs) were limited by the quality of the exposure assessment. More specifically, concerns were raised regarding the method of exposure assessment, the selection of exposure metrics, and the definition of exposure group. In this study, genotoxic effects of occupational exposure to ELF-MFs were assessed on peripheral blood lymphocytes of 88 workers from the electrical sector using the comet and cytokinesis-block micronucleus assay, considering workers' actual exposure over three consecutive days. Different methods were applied to define exposure groups. Overall, the summarized ELF-MF data indicated a low exposure level in the whole study population. It also showed that relying solely on job titles might misclassify 12 workers into exposure groups. We proposed combining hierarchical agglomerative clustering on personal exposure data and job titles to define exposure groups. The final results showed that occupational MF exposure did not significantly induce more genetic damage. Other factors such as age or past smoking rather than ELF-MF exposure could affect the cytogenetic test outcomes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"260-280"},"PeriodicalIF":1.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Léa Bedja-Iacona MSc, Riccardo Scorretti PhD, Marie Ducrot MSc, Christian Vollaire PhD, Laure Franqueville PhD
Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10–12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10–12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10–12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.
{"title":"Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase","authors":"Léa Bedja-Iacona MSc, Riccardo Scorretti PhD, Marie Ducrot MSc, Christian Vollaire PhD, Laure Franqueville PhD","doi":"10.1002/bem.22508","DOIUrl":"10.1002/bem.22508","url":null,"abstract":"<p>Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10–12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10–12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10–12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"293-309"},"PeriodicalIF":1.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sen Liu PhD, Kazuhiro Tobita, Teruo Onishi PhD, Masao Taki PhD, Soichi Watanabe PhD
Fifth generation (5G) wireless communication is being rolled out around the world. In this work, the latest radio frequency electromagnetic field (EMF) exposure measurement results on commercial 28-GHz band 5G base stations (BSs) deployed in the urban area of Tokyo, Japan, are presented. The measurements were conducted under realistic traffic conditions with a 5G smartphone and using both omnidirectional and horn antennas. First and foremost, in all cases, the electric-field (E-field) intensity is much lower (<−38 dB) than the exposure limits. The E-field intensities for traffic-off cases do not show any significant difference between the two antennas with the maximum being 3.6 dB. For traffic-on cases, the omnidirectional antenna can undesirably capture the radio wave from the smartphone in some cases, resulting in a 7–13 dB higher E-field intensity than that using the horn antenna. We also present comparative results between 4G long term evolution BSs and sub-6-GHz band and 28-GHz band 5G BSs and provide recommendations on acquiring meaningful EMF exposure data. This work is a further step toward the standardization of the measurement method regarding quasi-millimeter/millimeter wave 5G BSs.
{"title":"Electromagnetic field exposure monitoring of commercial 28-GHz band 5G base stations in Tokyo, Japan","authors":"Sen Liu PhD, Kazuhiro Tobita, Teruo Onishi PhD, Masao Taki PhD, Soichi Watanabe PhD","doi":"10.1002/bem.22505","DOIUrl":"10.1002/bem.22505","url":null,"abstract":"<p>Fifth generation (5G) wireless communication is being rolled out around the world. In this work, the latest radio frequency electromagnetic field (EMF) exposure measurement results on commercial 28-GHz band 5G base stations (BSs) deployed in the urban area of Tokyo, Japan, are presented. The measurements were conducted under realistic traffic conditions with a 5G smartphone and using both omnidirectional and horn antennas. First and foremost, in all cases, the electric-field (E-field) intensity is much lower (<−38 dB) than the exposure limits. The E-field intensities for traffic-off cases do not show any significant difference between the two antennas with the maximum being 3.6 dB. For traffic-on cases, the omnidirectional antenna can undesirably capture the radio wave from the smartphone in some cases, resulting in a 7–13 dB higher E-field intensity than that using the horn antenna. We also present comparative results between 4G long term evolution BSs and sub-6-GHz band and 28-GHz band 5G BSs and provide recommendations on acquiring meaningful EMF exposure data. This work is a further step toward the standardization of the measurement method regarding quasi-millimeter/millimeter wave 5G BSs.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 6","pages":"281-292"},"PeriodicalIF":1.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luuk van Wel, Anke Huss, Hans Kromhout, Franco Momoli, Daniel Krewski, Chelsea E. Langer, Gemma Castaño-Vinyals, Michael Kundi, Milena Maule, Lucia Miligi, Siegal Sadetzki, Alex Albert, Juan Alguacil, Nuria Aragones, Francesc Badia, Revital Bruchim, Geertje Goedhart, Patricia de Llobet, Kosuke Kiyohara, Noriko Kojimahara, Brigitte Lacour, Maria Morales-Suarez-Varela, Katja Radon, Thomas Remen, Tobias Weinmann, Martine Vrijheid, Elisabeth Cardis, Roel Vermeulen, MOBI-Kids consortium
Potential differential and non-differential recall error in mobile phone use (MPU) in the multinational MOBI-Kids case–control study were evaluated. We compared self-reported MPU with network operator billing record data up to 3 months, 1 year, and 2 years before the interview date from 702 subjects aged between 10 and 24 years in eight countries. Spearman rank correlations, Kappa coefficients and geometric mean ratios (GMRs) were used. No material differences in MPU recall estimates between cases and controls were observed. The Spearman rank correlation coefficients between self-reported and recorded MPU in the most recent 3 months were 0.57 and 0.59 for call number and for call duration, respectively. The number of calls was on average underestimated by the participants (GMR = 0.69), while the duration of calls was overestimated (GMR = 1.59). Country, years since start of using a mobile phone, age at time of interview, and sex did not appear to influence recall accuracy for either call number or call duration. A trend in recall error was seen with level of self-reported MPU, with underestimation of use at lower levels and overestimation of use at higher levels for both number and duration of calls. Although both systematic and random errors in self-reported MPU among participants were observed, there was no evidence of differential recall error between cases and controls. Nonetheless, these sources of exposure measurement error warrant consideration in interpretation of the MOBI-Kids case–control study results on the association between children's use of mobile phones and potential brain cancer risk.
{"title":"Validation of mobile phone use recall in the multinational MOBI-kids study","authors":"Luuk van Wel, Anke Huss, Hans Kromhout, Franco Momoli, Daniel Krewski, Chelsea E. Langer, Gemma Castaño-Vinyals, Michael Kundi, Milena Maule, Lucia Miligi, Siegal Sadetzki, Alex Albert, Juan Alguacil, Nuria Aragones, Francesc Badia, Revital Bruchim, Geertje Goedhart, Patricia de Llobet, Kosuke Kiyohara, Noriko Kojimahara, Brigitte Lacour, Maria Morales-Suarez-Varela, Katja Radon, Thomas Remen, Tobias Weinmann, Martine Vrijheid, Elisabeth Cardis, Roel Vermeulen, MOBI-Kids consortium","doi":"10.1002/bem.22507","DOIUrl":"10.1002/bem.22507","url":null,"abstract":"<p>Potential differential and non-differential recall error in mobile phone use (MPU) in the multinational MOBI-Kids case–control study were evaluated. We compared self-reported MPU with network operator billing record data up to 3 months, 1 year, and 2 years before the interview date from 702 subjects aged between 10 and 24 years in eight countries. Spearman rank correlations, Kappa coefficients and geometric mean ratios (GMRs) were used. No material differences in MPU recall estimates between cases and controls were observed. The Spearman rank correlation coefficients between self-reported and recorded MPU in the most recent 3 months were 0.57 and 0.59 for call number and for call duration, respectively. The number of calls was on average underestimated by the participants (GMR = 0.69), while the duration of calls was overestimated (GMR = 1.59). Country, years since start of using a mobile phone, age at time of interview, and sex did not appear to influence recall accuracy for either call number or call duration. A trend in recall error was seen with level of self-reported MPU, with underestimation of use at lower levels and overestimation of use at higher levels for both number and duration of calls. Although both systematic and random errors in self-reported MPU among participants were observed, there was no evidence of differential recall error between cases and controls. Nonetheless, these sources of exposure measurement error warrant consideration in interpretation of the MOBI-Kids case–control study results on the association between children's use of mobile phones and potential brain cancer risk.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 7","pages":"313-328"},"PeriodicalIF":1.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ertan Katirci PhD, Esma Kirimlioglu PhD, Asli O. Oflamaz PhD, Enis Hidisoglu PhD, Alexandra Cernomorcenco MSc, Piraye Yargıcoğlu PhD, Sukru Ozen PhD, Necdet Demir PhD
With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.
{"title":"Expression levels of tam receptors and ligands in the testes of rats exposed to short and middle-term 2100 MHz radiofrequency radiation","authors":"Ertan Katirci PhD, Esma Kirimlioglu PhD, Asli O. Oflamaz PhD, Enis Hidisoglu PhD, Alexandra Cernomorcenco MSc, Piraye Yargıcoğlu PhD, Sukru Ozen PhD, Necdet Demir PhD","doi":"10.1002/bem.22504","DOIUrl":"10.1002/bem.22504","url":null,"abstract":"<p>With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 5","pages":"235-248"},"PeriodicalIF":1.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.
{"title":"Investigation of the effectiveness of intermittent electromagnetic field stimulation for early internal cartilaginous ossification in prechondrocytic ATDC5 cells","authors":"Takahiro Iwaki MD, Yasunobu Sawaji PhD, Toshinori Masaoka MD, PhD, Eiichi Fukada PhD, Munehiro Date PhD, Kengo Yamamoto MD, PhD","doi":"10.1002/bem.22501","DOIUrl":"10.1002/bem.22501","url":null,"abstract":"<p>Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 5","pages":"226-234"},"PeriodicalIF":1.9,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 μM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 μM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (p > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (p < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.
{"title":"Effects of electromagnetic pulses, exosomes inhibition and their coaction on A549 cells","authors":"Qian Zhang, Qingxia Hou, Guangzhou An","doi":"10.1002/bem.22500","DOIUrl":"10.1002/bem.22500","url":null,"abstract":"<p>Mounting literature indicates that electromagnetic pulses (EMP) is the promising modality to treat cancers with advantages such as noninvasiveness and few side-effects, but its appropriate parameters and underlying mechanisms such as its influence on tumor-derived exosomes (TDEs) are largely unknown. This study aimed to elucidate effects of EMP, exosome inhibition and their coaction on A549 lung adenocarcinoma cells. A549 cells were randomly divided into control group, GW4869 group treated by 20 μM GW4869, vehicle group treated by dimethyl sulfoxide, EMP group treated by EMP exposure, and EMPG group treated by EMP exposure combined with 20 μM GW4869. After EMP exposure, cell proliferation was determined by CCK8 assay, cell cycle and apoptosis was detected by flow cytometry, and cell migration was determined by transwell assay. The results showed that EMP or exosomes inhibition did not affect cell proliferation, cell cycle, apoptosis and cell migration (<i>p</i> > 0.05), but cell migration in EMPG group was significantly decreased compared with vehicle group (<i>p</i> < 0.05). We concluded that under the experimental condition, EMP or GW4869 alone had no effects on behaviors of A549 cells, but their coaction could effectively inhibit the migration of A549 cells.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 5","pages":"218-225"},"PeriodicalIF":1.9,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}