Pub Date : 2024-09-25eCollection Date: 2024-10-01DOI: 10.1364/BOE.537602
Jake R Rosvold, Giulia Zanini, Chenchen Handler, Eric Frank, Jiarui Li, Michele I Vitolo, Stuart S Martin, Giuliano Scarcelli
We present the use of stimulated Brillouin scattering spectroscopy to achieve rapid measurements of cell biomechanics in a flow cytometer setup. Specifically, our stimulated Brillouin scattering flow cytometry can acquire at a rate of 200 Hz, with a spectral acquisition time of 5 ms, which marks a 10x improvement compared to previous demonstrations of spontaneous Brillouin scattering flow cytometry. We experimentally validate our stimulated Brillouin scattering flow cytometer by measuring cell populations of normal breast epithelial cells and metastatic breast epithelial cancer cells.
{"title":"Stimulated Brillouin scattering flow cytometry.","authors":"Jake R Rosvold, Giulia Zanini, Chenchen Handler, Eric Frank, Jiarui Li, Michele I Vitolo, Stuart S Martin, Giuliano Scarcelli","doi":"10.1364/BOE.537602","DOIUrl":"https://doi.org/10.1364/BOE.537602","url":null,"abstract":"<p><p>We present the use of stimulated Brillouin scattering spectroscopy to achieve rapid measurements of cell biomechanics in a flow cytometer setup. Specifically, our stimulated Brillouin scattering flow cytometry can acquire at a rate of 200 Hz, with a spectral acquisition time of 5 ms, which marks a 10x improvement compared to previous demonstrations of spontaneous Brillouin scattering flow cytometry. We experimentally validate our stimulated Brillouin scattering flow cytometer by measuring cell populations of normal breast epithelial cells and metastatic breast epithelial cancer cells.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"6024-6035"},"PeriodicalIF":2.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25eCollection Date: 2024-10-01DOI: 10.1364/BOE.537727
Albert K Dadzie, David Le, Mansour Abtahi, Behrouz Ebrahimi, Tobiloba Adejumo, Taeyoon Son, Michael J Heiferman, Jennifer I Lim, Xincheng Yao
Optical coherence tomography angiography (OCTA) has significantly advanced the study and diagnosis of eye diseases. However, current clinical OCTA systems and software tools lack comprehensive quantitative analysis capabilities, limiting their full clinical utility. This paper introduces the OCTA Retinal Vessel Analyzer (OCTA-ReVA), a versatile open-source platform featuring a user-friendly graphical interface designed for the automated extraction and quantitative analysis of OCTA features. OCTA-ReVA includes traditional established OCTA features based on binary vascular image processing, such as blood vessel density (BVD), foveal avascular zone area (FAZ-A), blood vessel tortuosity (BVT), and blood vessel caliber (BVC). Additionally, it introduces new features based on blood perfusion intensity processing, such as perfusion intensity density (PID), vessel area flux (VAF), and normalized blood flow index (NBFI), which provide deeper insights into retinal perfusion conditions. These additional capabilities are crucial for the early detection and monitoring of retinal diseases. OCTA-ReVA demystifies the intricate task of retinal vasculature quantification, offering a robust tool for researchers and clinicians to objectively evaluate eye diseases and enhance the precision of retinal health assessments.
{"title":"OCTA-ReVA: an open-source toolbox for comprehensive retinal vessel feature analysis in optical coherence tomography angiography.","authors":"Albert K Dadzie, David Le, Mansour Abtahi, Behrouz Ebrahimi, Tobiloba Adejumo, Taeyoon Son, Michael J Heiferman, Jennifer I Lim, Xincheng Yao","doi":"10.1364/BOE.537727","DOIUrl":"https://doi.org/10.1364/BOE.537727","url":null,"abstract":"<p><p>Optical coherence tomography angiography (OCTA) has significantly advanced the study and diagnosis of eye diseases. However, current clinical OCTA systems and software tools lack comprehensive quantitative analysis capabilities, limiting their full clinical utility. This paper introduces the OCTA Retinal Vessel Analyzer (OCTA-ReVA), a versatile open-source platform featuring a user-friendly graphical interface designed for the automated extraction and quantitative analysis of OCTA features. OCTA-ReVA includes traditional established OCTA features based on binary vascular image processing, such as blood vessel density (BVD), foveal avascular zone area (FAZ-A), blood vessel tortuosity (BVT), and blood vessel caliber (BVC). Additionally, it introduces new features based on blood perfusion intensity processing, such as perfusion intensity density (PID), vessel area flux (VAF), and normalized blood flow index (NBFI), which provide deeper insights into retinal perfusion conditions. These additional capabilities are crucial for the early detection and monitoring of retinal diseases. OCTA-ReVA demystifies the intricate task of retinal vasculature quantification, offering a robust tool for researchers and clinicians to objectively evaluate eye diseases and enhance the precision of retinal health assessments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"6010-6023"},"PeriodicalIF":2.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24eCollection Date: 2024-10-01DOI: 10.1364/BOE.533091
Ana Espinosa-Momox, Brandon Norton, Maria Cywinska, Bryce Evans, Juan Vivero-Escoto, Rosario Porras-Aguilar
This study showcases the multifunctionality of a single-shot quantitative phase microscopy (QPM) system for comprehensive cell analysis. The system captures four high-contrast images in one shot, enabling tasks like cell segmentation, measuring cell confluence, and estimating cell mass. We demonstrate the usability of the QPM system in routine biological workflows, showing how its integration with computational algorithms enables automated, precise analysis, achieving accuracy scores between 85% and 97% across samples with varying cell densities, even those with low signal-to-noise ratios. This cost-effective tool operates under low-intensity light and resists vibrations, making it highly versatile for researchers in both optical and biological fields.
{"title":"Single-shot quantitative phase microscopy: a multi-functional tool for cell analysis.","authors":"Ana Espinosa-Momox, Brandon Norton, Maria Cywinska, Bryce Evans, Juan Vivero-Escoto, Rosario Porras-Aguilar","doi":"10.1364/BOE.533091","DOIUrl":"https://doi.org/10.1364/BOE.533091","url":null,"abstract":"<p><p>This study showcases the multifunctionality of a single-shot quantitative phase microscopy (QPM) system for comprehensive cell analysis. The system captures four high-contrast images in one shot, enabling tasks like cell segmentation, measuring cell confluence, and estimating cell mass. We demonstrate the usability of the QPM system in routine biological workflows, showing how its integration with computational algorithms enables automated, precise analysis, achieving accuracy scores between 85% and 97% across samples with varying cell densities, even those with low signal-to-noise ratios. This cost-effective tool operates under low-intensity light and resists vibrations, making it highly versatile for researchers in both optical and biological fields.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5999-6009"},"PeriodicalIF":2.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19eCollection Date: 2024-10-01DOI: 10.1364/BOE.534563
Mengjing Xu, Boyang Shi, Haofeng Li, Xiaohan Mai, Lan Mi, Jiong Ma, Xiangdong Zhu, Guowei Wang, Yiyan Fei
Label-free optical biosensors have become powerful tools in the study of biomolecular interactions without the need for labels. High throughput and low detection limit are desirable for rapid and accurate biomolecule detection. The oblique-incidence reflectivity difference (OI-RD) technique is capable of detecting thousands of biomolecular interactions in a high-throughput mode, specifically for biomolecules larger than 1000 Da. In order to enhance the detection capability of OI-RD for small molecules (typically < 500 Da), we have developed a three-dimensional biochip that utilized carboxymethyl chitosan (CMCS) functionalized slides. By investigating various factors such as sonication time, protein immobilization time, CMCS molecular weight, and glutaraldehyde (GA) functionalization time, we have achieved a detection limit of 6.8 pM for avidin (68 kDa). Furthermore, accurate detection of D-biotin with a molecular weight of 244 Da has also been achieved. This paper presents an effective solution for achieving both high throughput and low detection limits using the OI-RD technique in the field of biomolecular interaction detection.
无标记光学生物传感器已成为研究生物分子相互作用的强大工具,无需标记。高通量和低检测限是快速准确检测生物分子的理想选择。斜入射反射率差分(OI-RD)技术能够在高通量模式下检测成千上万的生物分子相互作用,尤其适用于大于 1000 Da 的生物分子。为了提高 OI-RD 对小分子(通常为
{"title":"Development of a carboxymethyl chitosan functionalized slide for small molecule detection using oblique-incidence reflectivity difference technology.","authors":"Mengjing Xu, Boyang Shi, Haofeng Li, Xiaohan Mai, Lan Mi, Jiong Ma, Xiangdong Zhu, Guowei Wang, Yiyan Fei","doi":"10.1364/BOE.534563","DOIUrl":"https://doi.org/10.1364/BOE.534563","url":null,"abstract":"<p><p>Label-free optical biosensors have become powerful tools in the study of biomolecular interactions without the need for labels. High throughput and low detection limit are desirable for rapid and accurate biomolecule detection. The oblique-incidence reflectivity difference (OI-RD) technique is capable of detecting thousands of biomolecular interactions in a high-throughput mode, specifically for biomolecules larger than 1000 Da. In order to enhance the detection capability of OI-RD for small molecules (typically < 500 Da), we have developed a three-dimensional biochip that utilized carboxymethyl chitosan (CMCS) functionalized slides. By investigating various factors such as sonication time, protein immobilization time, CMCS molecular weight, and glutaraldehyde (GA) functionalization time, we have achieved a detection limit of 6.8 pM for avidin (68 kDa). Furthermore, accurate detection of D-biotin with a molecular weight of 244 Da has also been achieved. This paper presents an effective solution for achieving both high throughput and low detection limits using the OI-RD technique in the field of biomolecular interaction detection.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5947-5959"},"PeriodicalIF":2.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-10-01DOI: 10.1364/BOE.535123
Siqi Yang, Jeongsoo Kim, Mary E Swartz, Johann K Eberhart, Shwetadwip Chowdhury
Optical diffraction tomography (ODT) enables label-free and morphological 3D imaging of biological samples using refractive-index (RI) contrast. To accomplish this, ODT systems typically capture multiple angular-specific scattering measurements, which are used to computationally reconstruct a sample's 3D RI. Standard ODT systems employ scanning mirrors to generate angular illuminations. However, scanning mirrors are limited to illuminating the sample from only one angle at a time. Furthermore, when operated at high speeds, these mirrors may exhibit mechanical instabilities that compromise image quality and measurement speed. Recently, newer ODT systems have been introduced that utilize digital-micromirror devices (DMD), spatial light modulators (SLMs), or LED arrays to achieve switchable angle-scanning with no physically-scanning components. However, these systems associate with power inefficiencies and/or spurious diffraction orders that can also limit imaging performance. In this work, we developed a novel non-interferometric ODT system that utilizes a fully switchable module for angle scanning composed of a DMD and microlens array (MLA). Compared to other switchable ODT systems, this module enables each illumination angle to be generated fully independently from every other illumination angle (i.e., no spurious diffraction orders) while also optimizing the power efficiency based on the required density of illumination angles. We validate the quantitative imaging capability of this system using calibration microspheres. We also demonstrate its capability for imaging multiple-scattering samples by imaging an early-stage zebrafish embryo.
{"title":"DMD and microlens array as a switchable module for illumination angle scanning in optical diffraction tomography.","authors":"Siqi Yang, Jeongsoo Kim, Mary E Swartz, Johann K Eberhart, Shwetadwip Chowdhury","doi":"10.1364/BOE.535123","DOIUrl":"10.1364/BOE.535123","url":null,"abstract":"<p><p>Optical diffraction tomography (ODT) enables label-free and morphological 3D imaging of biological samples using refractive-index (RI) contrast. To accomplish this, ODT systems typically capture multiple angular-specific scattering measurements, which are used to computationally reconstruct a sample's 3D RI. Standard ODT systems employ scanning mirrors to generate angular illuminations. However, scanning mirrors are limited to illuminating the sample from only one angle at a time. Furthermore, when operated at high speeds, these mirrors may exhibit mechanical instabilities that compromise image quality and measurement speed. Recently, newer ODT systems have been introduced that utilize digital-micromirror devices (DMD), spatial light modulators (SLMs), or LED arrays to achieve switchable angle-scanning with no physically-scanning components. However, these systems associate with power inefficiencies and/or spurious diffraction orders that can also limit imaging performance. In this work, we developed a novel non-interferometric ODT system that utilizes a fully switchable module for angle scanning composed of a DMD and microlens array (MLA). Compared to other switchable ODT systems, this module enables each illumination angle to be generated fully independently from every other illumination angle (i.e., no spurious diffraction orders) while also optimizing the power efficiency based on the required density of illumination angles. We validate the quantitative imaging capability of this system using calibration microspheres. We also demonstrate its capability for imaging multiple-scattering samples by imaging an early-stage zebrafish embryo.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5932-5946"},"PeriodicalIF":2.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17eCollection Date: 2024-10-01DOI: 10.1364/BOE.531775
Georgina Leadley, Robert J Cooper, Topun Austin, Jeremy C Hebden, Gemma Bale
This paper investigates the theoretical capability of near-infrared spectroscopy (NIRS) systems to accurately measure changes in the oxidation state of cerebral cytochrome-c-oxidase (CCO) alongside the hemoglobins, for a deeper understanding of NIRS limitations. Concentration changes of oxy and deoxyhemoglobin (HbO and HbR) indicate the oxygen status of blood vessels and correlate with several other physiological parameters across different pathologies. The oxidation state of CCO indicates cellular energy usage efficiency through oxidative metabolism, potentially serving as a biomarker for brain and other tissue disorders. This study employs an analytical model based on the diffusion equation and statistical analyses to explore the dependency of estimated concentration changes on various systematic parameters, such as choice of wavelengths, spectral bandwidth, and uncertainties in extinction coefficient (ε) and differential pathlength factor (DPF). When there is a 10% uncertainty in DPF and ε, errors were found to be highly dependent on the number of discrete wavelengths, but not on their bandwidth if appropriate considerations are taken to account for it.
{"title":"Investigating the effect of limited spectral information on NIRS-derived changes in hemoglobin and cytochrome-c-oxidase concentration with a diffusion-based model.","authors":"Georgina Leadley, Robert J Cooper, Topun Austin, Jeremy C Hebden, Gemma Bale","doi":"10.1364/BOE.531775","DOIUrl":"https://doi.org/10.1364/BOE.531775","url":null,"abstract":"<p><p>This paper investigates the theoretical capability of near-infrared spectroscopy (NIRS) systems to accurately measure changes in the oxidation state of cerebral cytochrome-c-oxidase (CCO) alongside the hemoglobins, for a deeper understanding of NIRS limitations. Concentration changes of oxy and deoxyhemoglobin (HbO and HbR) indicate the oxygen status of blood vessels and correlate with several other physiological parameters across different pathologies. The oxidation state of CCO indicates cellular energy usage efficiency through oxidative metabolism, potentially serving as a biomarker for brain and other tissue disorders. This study employs an analytical model based on the diffusion equation and statistical analyses to explore the dependency of estimated concentration changes on various systematic parameters, such as choice of wavelengths, spectral bandwidth, and uncertainties in extinction coefficient (<i>ε</i>) and differential pathlength factor (DPF). When there is a 10% uncertainty in DPF and <i>ε</i>, errors were found to be highly dependent on the number of discrete wavelengths, but not on their bandwidth if appropriate considerations are taken to account for it.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5912-5931"},"PeriodicalIF":2.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17eCollection Date: 2024-10-01DOI: 10.1364/BOE.536501
Ramya Natarajan, Bianca Maceo Heilman, Marco Ruggeri, Arthur Ho, Vivek M Singh, Robert Augusteyn, Jean-Marie Parel, Pravin K Vaddavalli, Fabrice Manns
We measured the average group refractive index (RI) of 120 isolated lenses from 120 human donors (age: 0.03 to 61 years). The average group RI was calculated from a measurement of the optical thickness of the lens using optical coherence tomography and the apparent window shift of the test chamber caused by the lens. The estimated measurement uncertainty was ±0.004. The group RI at 880 nm was converted to phase RI at 589 nm using the dispersion equation of water and protein. From 2 to 61 years, the mean value of the RI was 1.415 ± 0.002 (group index at 880 nm) and 1.406 ± 0.002 (phase index at 589 nm) independent of age (p = 0.774). Two lenses from donors of age 0.33 and 3 months had significantly lower RI (group index: 1.405 and 1.403; phase index: 1.396 and 1.394). From age 2 to 61, the average lens RI is constant with age within the measurement uncertainty (±0.004).
{"title":"Age dependence of the average refractive index of the isolated human crystalline lens.","authors":"Ramya Natarajan, Bianca Maceo Heilman, Marco Ruggeri, Arthur Ho, Vivek M Singh, Robert Augusteyn, Jean-Marie Parel, Pravin K Vaddavalli, Fabrice Manns","doi":"10.1364/BOE.536501","DOIUrl":"https://doi.org/10.1364/BOE.536501","url":null,"abstract":"<p><p>We measured the average group refractive index (RI) of 120 isolated lenses from 120 human donors (age: 0.03 to 61 years). The average group RI was calculated from a measurement of the optical thickness of the lens using optical coherence tomography and the apparent window shift of the test chamber caused by the lens. The estimated measurement uncertainty was ±0.004. The group RI at 880 nm was converted to phase RI at 589 nm using the dispersion equation of water and protein. From 2 to 61 years, the mean value of the RI was 1.415 ± 0.002 (group index at 880 nm) and 1.406 ± 0.002 (phase index at 589 nm) independent of age (p = 0.774). Two lenses from donors of age 0.33 and 3 months had significantly lower RI (group index: 1.405 and 1.403; phase index: 1.396 and 1.394). From age 2 to 61, the average lens RI is constant with age within the measurement uncertainty (±0.004).</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5901-5911"},"PeriodicalIF":2.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is an economical and widely applicable technique that significantly enhances the spatial resolution of fluorescence imaging by capitalizing on fluorescence intermittency. However, each variant of FF-SRM imaging has inherent limitations. This study proposes a super-resolution reconstruction strategy (synSRM) by synergizing multiple variants of the FF-SRM approach to address the limitations and achieve high-quality and high-resolution imaging. The simulation and experimental results demonstrate that, compared to images reconstructed using single FF-SRM algorithms, by selecting suitable synSRM routes according to various imaging conditions, further improvements of the spatial resolution and image reconstruction quality can be obtained for super-resolution fluorescence imaging.
{"title":"Fluorescence super-resolution microscopy via fluctuation-based multi-route synergy.","authors":"Zhiping Zeng, Biqing Xu, Jin Qiu, Xinyi Chen, Yantang Huang, Canhua Xu","doi":"10.1364/BOE.534067","DOIUrl":"https://doi.org/10.1364/BOE.534067","url":null,"abstract":"<p><p>Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is an economical and widely applicable technique that significantly enhances the spatial resolution of fluorescence imaging by capitalizing on fluorescence intermittency. However, each variant of FF-SRM imaging has inherent limitations. This study proposes a super-resolution reconstruction strategy (synSRM) by synergizing multiple variants of the FF-SRM approach to address the limitations and achieve high-quality and high-resolution imaging. The simulation and experimental results demonstrate that, compared to images reconstructed using single FF-SRM algorithms, by selecting suitable synSRM routes according to various imaging conditions, further improvements of the spatial resolution and image reconstruction quality can be obtained for super-resolution fluorescence imaging.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5886-5900"},"PeriodicalIF":2.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13eCollection Date: 2024-10-01DOI: 10.1364/BOE.530534
Hongbin Zhang, Ya Feng, Jin Zhang, Guangli Li, Jianguo Wu, Donghong Ji
The classic multiple instance learning (MIL) paradigm is harnessed for weakly-supervised whole slide image (WSI) classification. The spatial position relationship located between positive tissues is crucial for this task due to the small percentage of these tissues in billions of pixels, which has been overlooked by most studies. Therefore, we propose a framework called TDT-MIL. We first serially connect a convolutional neural network and transformer for basic feature extraction. Then, a novel dual-channel spatial positional encoder (DCSPE) module is designed to simultaneously capture the complementary local and global positional information between instances. To further supplement the spatial position relationship, we construct a convolutional triple-attention (CTA) module to attend to the inter-channel information. Thus, the spatial positional and inter-channel information is fully mined by our model to characterize the key pathological semantics in WSI. We evaluated TDT-MIL on two publicly available datasets, including CAMELYON16 and TCGA-NSCLC, with the corresponding classification accuracy and AUC up to 91.54%, 94.96%, and 90.21%, 94.36%, respectively, outperforming state-of-the-art baselines. More importantly, our model possesses a satisfactory capability in solving the imbalanced WSI classification task using an ingenious but interpretable structure.
经典的多实例学习(MIL)范式被用于弱监督全切片图像(WSI)分类。由于阳性组织在数十亿像素中所占比例较小,因此位于阳性组织之间的空间位置关系对这项任务至关重要,而大多数研究都忽略了这一点。因此,我们提出了一个名为 TDT-MIL 的框架。我们首先将卷积神经网络和变压器串联起来,进行基本的特征提取。然后,我们设计了一个新颖的双通道空间位置编码器(DCSPE)模块,以同时捕捉实例之间互补的局部和全局位置信息。为了进一步补充空间位置关系,我们构建了一个卷积三重关注(CTA)模块来关注通道间信息。因此,我们的模型可以充分挖掘空间位置和信道间信息,从而描述 WSI 中的关键病理语义。我们在两个公开数据集(包括 CAMELYON16 和 TCGA-NSCLC)上对 TDT-MIL 进行了评估,其相应的分类准确率和 AUC 分别高达 91.54%、94.96% 和 90.21%、94.36%,优于最先进的基线模型。更重要的是,我们的模型具有令人满意的能力,能利用巧妙而可解释的结构解决不平衡的 WSI 分类任务。
{"title":"TDT-MIL: a framework with a dual-channel spatial positional encoder for weakly-supervised whole slide image classification.","authors":"Hongbin Zhang, Ya Feng, Jin Zhang, Guangli Li, Jianguo Wu, Donghong Ji","doi":"10.1364/BOE.530534","DOIUrl":"https://doi.org/10.1364/BOE.530534","url":null,"abstract":"<p><p>The classic multiple instance learning (MIL) paradigm is harnessed for weakly-supervised whole slide image (WSI) classification. The spatial position relationship located between positive tissues is crucial for this task due to the small percentage of these tissues in billions of pixels, which has been overlooked by most studies. Therefore, we propose a framework called TDT-MIL. We first serially connect a convolutional neural network and transformer for basic feature extraction. Then, a novel dual-channel spatial positional encoder (DCSPE) module is designed to simultaneously capture the complementary local and global positional information between instances. To further supplement the spatial position relationship, we construct a convolutional triple-attention (CTA) module to attend to the inter-channel information. Thus, the spatial positional and inter-channel information is fully mined by our model to characterize the key pathological semantics in WSI. We evaluated TDT-MIL on two publicly available datasets, including CAMELYON16 and TCGA-NSCLC, with the corresponding classification accuracy and AUC up to 91.54%, 94.96%, and 90.21%, 94.36%, respectively, outperforming state-of-the-art baselines. More importantly, our model possesses a satisfactory capability in solving the imbalanced WSI classification task using an ingenious but interpretable structure.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5831-5855"},"PeriodicalIF":2.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengjin Song, Weichao He, Pengfei Song, Jinping Feng, Yanping Huang, Jingjiang Xu, Lin An, Jia Qin, Kai Gao, Michael D. Twa, Gongpu Lan
Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the in vivo human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an ex vivo porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0–840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%–4.0% agar: 239–782 Hz, 198 Hz/%; porcine cornea: 68–414 Hz, 18 Hz/mmHg, IOP: 5–25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%–7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0–5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%–7.5% agar: 253–1429 Hz, 181 Hz/%; porcine cornea: 76–1240 Hz, 32 Hz/mmHg, IOP: 5–40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.
{"title":"Chirp excitation for natural frequency optical coherence elastography","authors":"Chengjin Song, Weichao He, Pengfei Song, Jinping Feng, Yanping Huang, Jingjiang Xu, Lin An, Jia Qin, Kai Gao, Michael D. Twa, Gongpu Lan","doi":"10.1364/boe.536685","DOIUrl":"https://doi.org/10.1364/boe.536685","url":null,"abstract":"Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the <jats:italic>in vivo</jats:italic> human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an <jats:italic>ex vivo</jats:italic> porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0–840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%–4.0% agar: 239–782 Hz, 198 Hz/%; porcine cornea: 68–414 Hz, 18 Hz/mmHg, IOP: 5–25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%–7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0–5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%–7.5% agar: 253–1429 Hz, 181 Hz/%; porcine cornea: 76–1240 Hz, 32 Hz/mmHg, IOP: 5–40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}