首页 > 最新文献

BMC Medical Imaging最新文献

英文 中文
Cellularity habitat-based MRI radiomics for non-invasive grading and IDH mutation prediction in adult-type diffuse glioma. 基于细胞栖息地的MRI放射组学用于成人型弥漫性胶质瘤的非侵入性分级和IDH突变预测。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-31 DOI: 10.1186/s12880-026-02182-w
Fangrong Liang, Xin Zhen, Jiaxin Lin, Junjie Li, Jie Zhan, Ruili Wei, Wanli Zhang, Yujie He, Mengni Wu, Yongzhou Xu, Yaou Liu, Shengsheng Lai, Ruimeng Yang

Background: Magnetic resonance imaging (MRI) radiomics has shown promise in glioma grading and isocitrate dehydrogenase (IDH) mutation prediction, but traditional whole-tumor approaches overlook intratumoral heterogeneity, limiting diagnostic accuracy and interpretability. This study aims to explore cellularity habitat-based MRI radiomics for precise grading and IDH mutation status prediction in adult-type diffuse glioma (ADG).

Methods: A total of 625 ADG patients were retrospectively collected. Whole-tumor volumes of interest (VOIs) were delineated on four conventional MRI sequences (T1WI, T2WI, T2-FLAIR, and CE-T1WI) and segmented into three cellularity habitats using apparent diffusion coefficient (ADC)-based K-means clustering: H1 (low ADC), H2 (medium ADC), and H3 (high ADC). Radiomic features were extracted from individual and combined habitats, and predictive models were developed using a disentangled-learning-based multi-sequence fusion network (DMSFN). Performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE).

Results: The optimal habitats for ADG grading (Grade 2 vs. Grade 3 + 4, Grade 2 + 3 vs. Grade 4) and IDH prediction were H1 + 2, H1 + 2, and H2 + 3, respectively. Combining T1WI, CE-T1WI, and T2-FLAIR sequences yielded the highest AUCs of 0.9360, 0.9605, and 0.8721 in the training set, and 0.8070, 0.8236, and 0.8180 in the independent test set. Shapley Additive exPlanation (SHAP) analysis identified key radiomic features contributing to model predictions, with CE-T1WI features consistently demonstrating high discriminative power.

Conclusions: Integrating ADC-derived cellularity habitats with MRI radiomics significantly improves the accuracy and biological interpretability of ADG grading and IDH mutation status prediction, offering a robust, non-invasive approach for glioma characterization.

Trial registration: Retrospectively registered.

背景:磁共振成像(MRI)放射组学在胶质瘤分级和异柠檬酸脱氢酶(IDH)突变预测方面显示出前景,但传统的全肿瘤方法忽略了肿瘤内的异质性,限制了诊断的准确性和可解释性。本研究旨在探索基于细胞栖息地的MRI放射组学,用于成人型弥漫性胶质瘤(ADG)的精确分级和IDH突变状态预测。方法:对625例ADG患者进行回顾性分析。在四种常规MRI序列(T1WI, T2WI, T2-FLAIR和CE-T1WI)上描绘整个肿瘤感兴趣体积(VOIs),并使用基于表观扩散系数(ADC)的k均值聚类将其划分为三个细胞栖息地:H1(低ADC), H2(中等ADC)和H3(高ADC)。从单个栖息地和组合栖息地提取放射性特征,并使用基于解纠缠学习的多序列融合网络(DMSFN)建立预测模型。使用受试者工作特征曲线下面积(AUC)、准确度(ACC)、灵敏度(SEN)和特异性(SPE)来评估其性能。结果:ADG分级(2级vs 3 + 4级,2 + 3级vs 4级)和IDH预测的最佳生境分别为H1 + 2、H1 + 2和H2 + 3。T1WI、CE-T1WI和T2-FLAIR序列组合的auc在训练集中最高,分别为0.9360、0.9605和0.8721,在独立测试集中最高,分别为0.8070、0.8236和0.8180。Shapley加性解释(SHAP)分析确定了有助于模型预测的关键放射性特征,CE-T1WI特征始终显示出高判别能力。结论:将adc衍生的细胞结构栖息地与MRI放射组学相结合,可显著提高ADG分级和IDH突变状态预测的准确性和生物学可解释性,为胶质瘤表征提供了一种可靠的、无创的方法。试验注册:回顾性注册。
{"title":"Cellularity habitat-based MRI radiomics for non-invasive grading and IDH mutation prediction in adult-type diffuse glioma.","authors":"Fangrong Liang, Xin Zhen, Jiaxin Lin, Junjie Li, Jie Zhan, Ruili Wei, Wanli Zhang, Yujie He, Mengni Wu, Yongzhou Xu, Yaou Liu, Shengsheng Lai, Ruimeng Yang","doi":"10.1186/s12880-026-02182-w","DOIUrl":"https://doi.org/10.1186/s12880-026-02182-w","url":null,"abstract":"<p><strong>Background: </strong>Magnetic resonance imaging (MRI) radiomics has shown promise in glioma grading and isocitrate dehydrogenase (IDH) mutation prediction, but traditional whole-tumor approaches overlook intratumoral heterogeneity, limiting diagnostic accuracy and interpretability. This study aims to explore cellularity habitat-based MRI radiomics for precise grading and IDH mutation status prediction in adult-type diffuse glioma (ADG).</p><p><strong>Methods: </strong>A total of 625 ADG patients were retrospectively collected. Whole-tumor volumes of interest (VOIs) were delineated on four conventional MRI sequences (T1WI, T2WI, T2-FLAIR, and CE-T1WI) and segmented into three cellularity habitats using apparent diffusion coefficient (ADC)-based K-means clustering: H<sub>1</sub> (low ADC), H<sub>2</sub> (medium ADC), and H<sub>3</sub> (high ADC). Radiomic features were extracted from individual and combined habitats, and predictive models were developed using a disentangled-learning-based multi-sequence fusion network (DMSFN). Performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE).</p><p><strong>Results: </strong>The optimal habitats for ADG grading (Grade 2 vs. Grade 3 + 4, Grade 2 + 3 vs. Grade 4) and IDH prediction were H<sub>1 + 2</sub>, H<sub>1 + 2</sub>, and H<sub>2 + 3</sub>, respectively. Combining T1WI, CE-T1WI, and T2-FLAIR sequences yielded the highest AUCs of 0.9360, 0.9605, and 0.8721 in the training set, and 0.8070, 0.8236, and 0.8180 in the independent test set. Shapley Additive exPlanation (SHAP) analysis identified key radiomic features contributing to model predictions, with CE-T1WI features consistently demonstrating high discriminative power.</p><p><strong>Conclusions: </strong>Integrating ADC-derived cellularity habitats with MRI radiomics significantly improves the accuracy and biological interpretability of ADG grading and IDH mutation status prediction, offering a robust, non-invasive approach for glioma characterization.</p><p><strong>Trial registration: </strong>Retrospectively registered.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing WSI image classification with graph convolutional neural networks and model uncertainty modeling. 利用图卷积神经网络和模型不确定性建模增强WSI图像分类。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-31 DOI: 10.1186/s12880-025-02130-0
Chaoyue Liu, Yongxiang Cheng, Ting Li, Yanke Hao, Qiang Zhang
{"title":"Enhancing WSI image classification with graph convolutional neural networks and model uncertainty modeling.","authors":"Chaoyue Liu, Yongxiang Cheng, Ting Li, Yanke Hao, Qiang Zhang","doi":"10.1186/s12880-025-02130-0","DOIUrl":"https://doi.org/10.1186/s12880-025-02130-0","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical translation of a DWI-radiomics nomogram integrating serum biomarkers for pretreatment staging of cervical cancer. 整合血清生物标志物的宫颈癌预处理分期dwi -放射组学nomogram临床翻译
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-30 DOI: 10.1186/s12880-026-02175-9
Nan Jiang, Zhonghong Xin, Yueyue Zhang, Yuanqing Liu, Meng Chen, Xiaoxia Ping, Qian Meng, Chunhong Hu
{"title":"Clinical translation of a DWI-radiomics nomogram integrating serum biomarkers for pretreatment staging of cervical cancer.","authors":"Nan Jiang, Zhonghong Xin, Yueyue Zhang, Yuanqing Liu, Meng Chen, Xiaoxia Ping, Qian Meng, Chunhong Hu","doi":"10.1186/s12880-026-02175-9","DOIUrl":"https://doi.org/10.1186/s12880-026-02175-9","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146091988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative intravoxel incoherent motion diffusion-weighted imaging histogram profiling identifies diffusion biomarkers for active thyroid-associated ophthalmopathy. 定量体素内非相干运动弥散加权成像直方图分析确定活动性甲状腺相关眼病的弥散生物标志物。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-30 DOI: 10.1186/s12880-026-02174-w
Defu Li, Na Zhang, Yujin Wang, Tingting Zhu
{"title":"Quantitative intravoxel incoherent motion diffusion-weighted imaging histogram profiling identifies diffusion biomarkers for active thyroid-associated ophthalmopathy.","authors":"Defu Li, Na Zhang, Yujin Wang, Tingting Zhu","doi":"10.1186/s12880-026-02174-w","DOIUrl":"https://doi.org/10.1186/s12880-026-02174-w","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of imaging protocol and radiomics-based nomogram for assessing lesion reversibility in connective tissue disease-associated interstitial lung disease. 结缔组织病相关间质性肺疾病病变可逆性的影像学方案和基于放射组学的影像学评估
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-29 DOI: 10.1186/s12880-026-02191-9
Ying Zhang, Feng Zhang, Huawei Wu, Yu Wang, Xiao Yu, Shusen Lin, Ye Yu, Jiaxu Wei, Yan Zhou
{"title":"Development of imaging protocol and radiomics-based nomogram for assessing lesion reversibility in connective tissue disease-associated interstitial lung disease.","authors":"Ying Zhang, Feng Zhang, Huawei Wu, Yu Wang, Xiao Yu, Shusen Lin, Ye Yu, Jiaxu Wei, Yan Zhou","doi":"10.1186/s12880-026-02191-9","DOIUrl":"https://doi.org/10.1186/s12880-026-02191-9","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal deep learning using preoperative CT and ultrasound for recurrence risk prediction in high-grade serous ovarian carcinoma. 术前CT和超声应用多模式深度学习预测高级别浆液性卵巢癌复发风险。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-29 DOI: 10.1186/s12880-026-02192-8
Silin Nie, Yumin Jiang, Yanan Duan, Yulu Han, Danni Jiang, Aiping Chen, Huijun Chu
{"title":"Multimodal deep learning using preoperative CT and ultrasound for recurrence risk prediction in high-grade serous ovarian carcinoma.","authors":"Silin Nie, Yumin Jiang, Yanan Duan, Yulu Han, Danni Jiang, Aiping Chen, Huijun Chu","doi":"10.1186/s12880-026-02192-8","DOIUrl":"https://doi.org/10.1186/s12880-026-02192-8","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABUS-based glandular tissue component classification for breast cancer risk prediction in Chinese women with dense breasts: a retrospective study. 基于abb的乳腺组织成分分类对中国致密性乳腺女性乳腺癌风险预测的回顾性研究
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-29 DOI: 10.1186/s12880-026-02190-w
Jia-Nan Huang, Hong-Ju Yan, Yu-Xuan Qiu, Chao-Chao Dai, Li-Fang Yu, Yan-Juan Tan, Ke-Yin Ye, Tong-Tong Gao, Ling-Yun Bao
{"title":"ABUS-based glandular tissue component classification for breast cancer risk prediction in Chinese women with dense breasts: a retrospective study.","authors":"Jia-Nan Huang, Hong-Ju Yan, Yu-Xuan Qiu, Chao-Chao Dai, Li-Fang Yu, Yan-Juan Tan, Ke-Yin Ye, Tong-Tong Gao, Ling-Yun Bao","doi":"10.1186/s12880-026-02190-w","DOIUrl":"https://doi.org/10.1186/s12880-026-02190-w","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146084136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early detection of right atrial dysfunction assessed by MR-feature tracking in patients with arrhythmogenic right ventricular cardiomyopathy. 心律失常性右室心肌病患者早期发现右心房功能障碍的mr特征跟踪评估。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-28 DOI: 10.1186/s12880-026-02172-y
Jingjing Shi, Yiyuan Gao, Xiaojie Wang, Wanzhen Li, Wenqi Liu, Jie Lin, Qian Li, Qingze Zeng, Fan Zhang, Mindi Ma, Ping Xiang, Weijin Yuan, Risheng Yu, Maosheng Xu

Background: The importance of right atrial (RA) function assessment in arrhythmogenic right ventricular cardiomyopathy (ARVC) is increasingly being recognized. MR-feature tracking (MR-FT) has emerged as a novel approach for quantifying atrial function. Therefore, we aimed to evaluate whether early RA dysfunction, even without RA dilation, can be identified in patients with ARVC using MR-FT.

Methods: Sixty-four patients with ARVC, of whom 47 were non-RA dilated and 17 were RA dilated patients, along with 41 healthy controls were included. RA reservoir, conduit, and booster strain (εs, εe, and εa) and peak positive, early negative, and late negative strain rate (SRs, SRe, and SRa) were measured using MR-FT. Right ventricular (RV) remodeling index was calculated as the ratio of RV to left ventricular end-diastolic volumes.

Results: Patients with ARVC (both RA Dilated and non-RA Dilated group) exhibited significantly lower RA εs, εe, εa, SRs, SRe, and SRa compared to healthy controls. RA dilation patients further reduced these parameters (all P < 0.001). Among RA strain parameters, SRe showed the highest diagnostic value for RV remodeling in patients with ARVC (AUC = 0.799, 95% CI: 0.683-0.915). A strong correlation was observed between RA strain, strain rate, and RA emptying fractions in ARVC patients (P < 0.001). Intra- and inter-observer reproducibility was excellent for RA strain measurements.

Conclusion: Patients with ARVC exhibit impaired RA reservoir, conduit, and booster function even with normal RA volumes. MR-FT may serve as a promising approach for detecting early RA dysfunction in this population.

背景:右心房(RA)功能评估在致心律失常性右室心肌病(ARVC)中的重要性日益被认识。核磁共振特征跟踪(MR-FT)已成为量化心房功能的一种新方法。因此,我们的目的是评估是否可以使用MR-FT在ARVC患者中识别早期RA功能障碍,即使没有RA扩张。方法:64例ARVC患者,其中非RA扩张型患者47例,RA扩张型患者17例,与41例健康对照。用MR-FT测量RA储层应变、导管应变和增强应变(εs、εe和εa)以及峰值正应变率、早期负应变率和晚期负应变率(SRs、SRe和SRa)。右心室重构指数计算为左心室舒张末期容积与右心室容积之比。结果:ARVC患者(包括RA扩张型和非RA扩张型组)RA εs、εe、εa、SRs、SRe和SRa均显著低于健康对照组。结论:即使RA体积正常,ARVC患者也表现出RA储存库、导管和增强功能受损。MR-FT可能作为一种很有希望的方法来检测这一人群的早期RA功能障碍。
{"title":"Early detection of right atrial dysfunction assessed by MR-feature tracking in patients with arrhythmogenic right ventricular cardiomyopathy.","authors":"Jingjing Shi, Yiyuan Gao, Xiaojie Wang, Wanzhen Li, Wenqi Liu, Jie Lin, Qian Li, Qingze Zeng, Fan Zhang, Mindi Ma, Ping Xiang, Weijin Yuan, Risheng Yu, Maosheng Xu","doi":"10.1186/s12880-026-02172-y","DOIUrl":"https://doi.org/10.1186/s12880-026-02172-y","url":null,"abstract":"<p><strong>Background: </strong>The importance of right atrial (RA) function assessment in arrhythmogenic right ventricular cardiomyopathy (ARVC) is increasingly being recognized. MR-feature tracking (MR-FT) has emerged as a novel approach for quantifying atrial function. Therefore, we aimed to evaluate whether early RA dysfunction, even without RA dilation, can be identified in patients with ARVC using MR-FT.</p><p><strong>Methods: </strong>Sixty-four patients with ARVC, of whom 47 were non-RA dilated and 17 were RA dilated patients, along with 41 healthy controls were included. RA reservoir, conduit, and booster strain (εs, εe, and εa) and peak positive, early negative, and late negative strain rate (SRs, SRe, and SRa) were measured using MR-FT. Right ventricular (RV) remodeling index was calculated as the ratio of RV to left ventricular end-diastolic volumes.</p><p><strong>Results: </strong>Patients with ARVC (both RA Dilated and non-RA Dilated group) exhibited significantly lower RA εs, εe, εa, SRs, SRe, and SRa compared to healthy controls. RA dilation patients further reduced these parameters (all P < 0.001). Among RA strain parameters, SRe showed the highest diagnostic value for RV remodeling in patients with ARVC (AUC = 0.799, 95% CI: 0.683-0.915). A strong correlation was observed between RA strain, strain rate, and RA emptying fractions in ARVC patients (P < 0.001). Intra- and inter-observer reproducibility was excellent for RA strain measurements.</p><p><strong>Conclusion: </strong>Patients with ARVC exhibit impaired RA reservoir, conduit, and booster function even with normal RA volumes. MR-FT may serve as a promising approach for detecting early RA dysfunction in this population.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glomeruli detection and classification in histopathological images using deep learning semantic segmentation. 基于深度学习语义分割的组织病理学图像肾小球检测与分类。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-28 DOI: 10.1186/s12880-026-02178-6
Pablo Juan-Ferrer, Nayara Pérez-Sánchez, Filiberto Pla, Ramón A Mollineda, Esther Roselló-Sastre, Enrique Tajahuerce
{"title":"Glomeruli detection and classification in histopathological images using deep learning semantic segmentation.","authors":"Pablo Juan-Ferrer, Nayara Pérez-Sánchez, Filiberto Pla, Ramón A Mollineda, Esther Roselló-Sastre, Enrique Tajahuerce","doi":"10.1186/s12880-026-02178-6","DOIUrl":"https://doi.org/10.1186/s12880-026-02178-6","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic value of ultrasound peritumoral viscoelasticity parameters in breast cancer: enhancing BI-RADS classification performance. 超声瘤周粘弹性参数对乳腺癌的诊断价值:增强BI-RADS分类效能。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-01-27 DOI: 10.1186/s12880-025-02144-8
Jiatong Xu, Junni Shi, Yunqian Huang, Chuanjian Chen, Guanghua Xiang, Wen Zheng, Man Chen
{"title":"Diagnostic value of ultrasound peritumoral viscoelasticity parameters in breast cancer: enhancing BI-RADS classification performance.","authors":"Jiatong Xu, Junni Shi, Yunqian Huang, Chuanjian Chen, Guanghua Xiang, Wen Zheng, Man Chen","doi":"10.1186/s12880-025-02144-8","DOIUrl":"https://doi.org/10.1186/s12880-025-02144-8","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1