首页 > 最新文献

BMJ Health & Care Informatics最新文献

英文 中文
What characteristics of clinical decision support system implementations lead to adoption for regular use? A scoping review. 临床决策支持系统实施的哪些特点会导致其被经常采用?范围审查。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-08-24 DOI: 10.1136/bmjhci-2024-101046
Adele Hill, Dylan Morrissey, William Marsh

Introduction: Digital healthcare innovation has yielded many prototype clinical decision support (CDS) systems, however, few are fully adopted into practice, despite successful research outcomes. We aimed to explore the characteristics of implementations in clinical practice to inform future innovation.

Methods: Web of Science, Trip Database, PubMed, NHS Digital and the BMA website were searched for examples of CDS systems in May 2022 and updated in June 2023. Papers were included if they reported on a CDS giving pathway advice to a clinician, adopted into regular clinical practice and had sufficient published information for analysis. Examples were excluded if they were only used in a research setting or intended for patients. Articles found in citation searches were assessed alongside a detailed hand search of the grey literature to gather all available information, including commercial information. Examples were excluded if there was insufficient information for analysis. The normalisation process theory (NPT) framework informed analysis.

Results: 22 implemented CDS projects were included, with 53 related publications or sources of information (40 peer-reviewed publications and 13 alternative sources). NPT framework analysis indicated organisational support was paramount to successful adoption of CDS. Ensuring that workflows were optimised for patient care alongside iterative, mixed-methods implementation was key to engaging clinicians.

Conclusion: Extensive searches revealed few examples of CDS available for analysis, highlighting the implementation gap between research and healthcare innovation. Lessons from included projects include the need for organisational support, an underpinning mixed-methods implementation strategy and an iterative approach to address clinician feedback.

介绍:数字医疗创新产生了许多临床决策支持(CDS)系统的原型,然而,尽管研究取得了成功,但完全应用于实践的系统却寥寥无几。我们旨在探索临床实践中的实施特点,为未来的创新提供参考:方法:在 Web of Science、Trip Database、PubMed、NHS Digital 和 BMA 网站上搜索 2022 年 5 月和 2023 年 6 月更新的 CDS 系统实例。如果论文报道了向临床医生提供路径建议的 CDS,并将其应用于常规临床实践,且有足够的已发表信息可供分析,则纳入该论文。如果仅用于研究环境或针对患者,则排除在外。在对灰色文献进行详细手工检索以收集所有可用信息(包括商业信息)的同时,还对引文检索中发现的文章进行了评估。如果没有足够的信息进行分析,则会将例子排除在外。结果:共纳入 22 个已实施的 CDS 项目,53 篇相关出版物或信息来源(40 篇同行评审出版物和 13 篇其他来源)。NPT 框架分析表明,组织支持对于成功采用 CDS 至关重要。在迭代、混合方法实施的同时,确保工作流程为患者护理最优化是吸引临床医生参与的关键:通过广泛的搜索发现,可用于分析的 CDS 案例很少,这凸显了研究与医疗创新之间的实施差距。从所包含的项目中获得的经验包括:组织支持的必要性、混合方法实施策略的基础以及处理临床医生反馈的迭代方法。
{"title":"What characteristics of clinical decision support system implementations lead to adoption for regular use? A scoping review.","authors":"Adele Hill, Dylan Morrissey, William Marsh","doi":"10.1136/bmjhci-2024-101046","DOIUrl":"10.1136/bmjhci-2024-101046","url":null,"abstract":"<p><strong>Introduction: </strong>Digital healthcare innovation has yielded many prototype clinical decision support (CDS) systems, however, few are fully adopted into practice, despite successful research outcomes. We aimed to explore the characteristics of implementations in clinical practice to inform future innovation.</p><p><strong>Methods: </strong>Web of Science, Trip Database, PubMed, NHS Digital and the BMA website were searched for examples of CDS systems in May 2022 and updated in June 2023. Papers were included if they reported on a CDS giving pathway advice to a clinician, adopted into regular clinical practice and had sufficient published information for analysis. Examples were excluded if they were only used in a research setting or intended for patients. Articles found in citation searches were assessed alongside a detailed hand search of the grey literature to gather all available information, including commercial information. Examples were excluded if there was insufficient information for analysis. The normalisation process theory (NPT) framework informed analysis.</p><p><strong>Results: </strong>22 implemented CDS projects were included, with 53 related publications or sources of information (40 peer-reviewed publications and 13 alternative sources). NPT framework analysis indicated organisational support was paramount to successful adoption of CDS. Ensuring that workflows were optimised for patient care alongside iterative, mixed-methods implementation was key to engaging clinicians.</p><p><strong>Conclusion: </strong>Extensive searches revealed few examples of CDS available for analysis, highlighting the implementation gap between research and healthcare innovation. Lessons from included projects include the need for organisational support, an underpinning mixed-methods implementation strategy and an iterative approach to address clinician feedback.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of forecasting future critical care bed availability using bed management data. 利用病床管理数据预测未来重症监护病床可用性的可行性。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-08-19 DOI: 10.1136/bmjhci-2024-101096
John Palmer, Areti Manataki, Laura Moss, Aileen Neilson, Tsz-Yan Milly Lo

Objectives: This project aims to determine the feasibility of predicting future critical care bed availability using data-driven computational forecast modelling and routinely collected hospital bed management data.

Methods: In this proof-of-concept, single-centre data informatics feasibility study, regression-based and classification data science techniques were applied retrospectively to prospectively collect routine hospital-wide bed management data to forecast critical care bed capacity. The availability of at least one critical care bed was forecasted using a forecast horizon of 1, 7 and 14 days in advance.

Results: We demonstrated for the first time the feasibility of forecasting critical care bed capacity without requiring detailed patient-level data using only routinely collected hospital bed management data and interpretable models. Predictive performance for bed availability 1 day in the future was better than 14 days (mean absolute error 1.33 vs 1.61 and area under the curve 0.78 vs 0.73, respectively). By analysing feature importance, we demonstrated that the models relied mainly on critical care and temporal data rather than data from other wards in the hospital.

Discussion: Our data-driven forecasting tool only required hospital bed management data to forecast critical care bed availability. This novel approach means no patient-sensitive data are required in the modelling and warrants further work to refine this approach in future bed availability forecast in other hospital wards.

Conclusions: Data-driven critical care bed availability prediction was possible. Further investigations into its utility in multicentre critical care settings or in other clinical settings are warranted.

目标:本项目旨在利用数据驱动的计算预测模型和日常收集的医院病床管理数据,确定预测未来重症监护病床可用性的可行性:本项目旨在利用数据驱动的计算预测模型和日常收集的医院病床管理数据,确定预测未来重症监护病床可用性的可行性:在这项概念验证、单中心数据信息学可行性研究中,基于回归和分类的数据科学技术被应用于回顾性前瞻性收集全院范围内的常规病床管理数据,以预测重症监护病床容量。通过提前 1 天、7 天和 14 天的预测范围对至少一张重症监护病床的可用性进行了预测:我们首次证明了预测重症监护床位容量的可行性,无需详细的患者级别数据,只需使用日常收集的医院床位管理数据和可解释模型。对未来 1 天病床可用性的预测效果优于 14 天(平均绝对误差分别为 1.33 和 1.61,曲线下面积分别为 0.78 和 0.73)。通过对特征重要性的分析,我们发现模型主要依赖于重症监护和时间数据,而不是医院其他病房的数据:我们的数据驱动预测工具只需要医院床位管理数据就能预测重症监护床位的可用性。这种新颖的方法意味着在建模过程中不需要病人敏感数据,因此有必要进一步改进这种方法,以便在未来预测其他病房的床位供应情况:结论:数据驱动的重症监护床位可用性预测是可行的。结论:数据驱动的重症监护床位可用性预测是可行的,需要进一步研究其在多中心重症监护环境或其他临床环境中的实用性。
{"title":"Feasibility of forecasting future critical care bed availability using bed management data.","authors":"John Palmer, Areti Manataki, Laura Moss, Aileen Neilson, Tsz-Yan Milly Lo","doi":"10.1136/bmjhci-2024-101096","DOIUrl":"10.1136/bmjhci-2024-101096","url":null,"abstract":"<p><strong>Objectives: </strong>This project aims to determine the feasibility of predicting future critical care bed availability using data-driven computational forecast modelling and routinely collected hospital bed management data.</p><p><strong>Methods: </strong>In this proof-of-concept, single-centre data informatics feasibility study, regression-based and classification data science techniques were applied retrospectively to prospectively collect routine hospital-wide bed management data to forecast critical care bed capacity. The availability of at least one critical care bed was forecasted using a forecast horizon of 1, 7 and 14 days in advance.</p><p><strong>Results: </strong>We demonstrated for the first time the feasibility of forecasting critical care bed capacity without requiring detailed patient-level data using only routinely collected hospital bed management data and interpretable models. Predictive performance for bed availability 1 day in the future was better than 14 days (mean absolute error 1.33 vs 1.61 and area under the curve 0.78 vs 0.73, respectively). By analysing feature importance, we demonstrated that the models relied mainly on critical care and temporal data rather than data from other wards in the hospital.</p><p><strong>Discussion: </strong>Our data-driven forecasting tool only required hospital bed management data to forecast critical care bed availability. This novel approach means no patient-sensitive data are required in the modelling and warrants further work to refine this approach in future bed availability forecast in other hospital wards.</p><p><strong>Conclusions: </strong>Data-driven critical care bed availability prediction was possible. Further investigations into its utility in multicentre critical care settings or in other clinical settings are warranted.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
User perceptions and utilisation of features of an AI-enabled workplace digital mental wellness platform 'mindline at work'. 用户对人工智能工作场所数字心理健康平台 "mindline at work "功能的看法和使用情况。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-08-17 DOI: 10.1136/bmjhci-2024-101045
Sungwon Yoon, Hendra Goh, Xinyi Casuarine Low, Janice Huiqin Weng, Creighton Heaukulani

Background: The working population encounters unique work-related stressors. Despite these challenges, accessibility to mental healthcare remains limited. Digital technology-enabled mental wellness tools can offer much-needed access to mental healthcare. However, existing literature has given limited attention to their relevance and user engagement, particularly for the working population.

Aim: This study aims to assess user perceptions and feature utilisation of mindline at work, a nationally developed AI-enabled digital platform designed to improve mental wellness in the working population.

Methods: This study adopted a mixed-methods design comprising a survey (n=399) and semistructured interviews (n=40) with office-based working adults. Participants were asked to use mindline at work for 4 weeks. We collected data about utilisation of the platform features, intention for sustained use and perceptions of specific features.

Results: Participants under 5 years of work experience reported lower utilisation of multimedia resources but higher utilisation of emotion self-assessment tools and the AI chatbot compared with their counterparts (p<0.001). The platform received a moderate level of satisfaction (57%) and positive intention for sustained use (58%). Participants regarded mindline at work as an 'essential' safeguard against workplace stress, valuing its secure and non-judgmental space and user anonymity. However, they wanted greater institutional support for office workers' mental wellness to enhance the uptake. The AI chatbot was perceived as useful for self-reflection and problem-solving, despite limited maturity.

Conclusion: Identifying the unique benefits of specific features for different segments of working adults can foster a personalised user experience and promote mental well-being. Increasing workplace awareness is essential for platform adoption.

背景:职业人群会遇到与工作相关的独特压力。尽管存在这些挑战,但获得心理保健的机会仍然有限。借助数字技术的心理健康工具可以提供亟需的心理保健服务。目的:本研究旨在评估用户对 "工作中的心灵热线"(mindline at work)的看法和使用情况,这是一个由国家开发的人工智能数字平台,旨在改善工作人群的心理健康:本研究采用混合方法设计,包括对办公室工作的成年人进行问卷调查(n=399)和半结构式访谈(n=40)。参与者被要求在工作中使用心灵热线 4 周。我们收集了有关平台功能的使用情况、持续使用的意向以及对特定功能的看法等数据:工作经验在 5 年以下的参与者对多媒体资源的使用率较低,但对情绪自我评估工具和人工智能聊天机器人的使用率较高,而工作经验在 5 年以上的参与者对多媒体资源的使用率较低,但对情绪自我评估工具和人工智能聊天机器人的使用率较高。不过,他们希望得到更多机构对上班族心理健康的支持,以提高使用率。尽管人工智能聊天机器人的成熟度有限,但他们认为它有助于自我反思和解决问题:针对不同的上班族群体,确定特定功能的独特益处,可以促进个性化的用户体验,提高心理健康水平。提高工作场所的认识对于平台的采用至关重要。
{"title":"User perceptions and utilisation of features of an AI-enabled workplace digital mental wellness platform 'mindline at work<i>'</i>.","authors":"Sungwon Yoon, Hendra Goh, Xinyi Casuarine Low, Janice Huiqin Weng, Creighton Heaukulani","doi":"10.1136/bmjhci-2024-101045","DOIUrl":"10.1136/bmjhci-2024-101045","url":null,"abstract":"<p><strong>Background: </strong>The working population encounters unique work-related stressors. Despite these challenges, accessibility to mental healthcare remains limited. Digital technology-enabled mental wellness tools can offer much-needed access to mental healthcare. However, existing literature has given limited attention to their relevance and user engagement, particularly for the working population.</p><p><strong>Aim: </strong>This study aims to assess user perceptions and feature utilisation of <i>mindline at work</i>, a nationally developed AI-enabled digital platform designed to improve mental wellness in the working population.</p><p><strong>Methods: </strong>This study adopted a mixed-methods design comprising a survey (n=399) and semistructured interviews (n=40) with office-based working adults. Participants were asked to use <i>mindline at work</i> for 4 weeks. We collected data about utilisation of the platform features, intention for sustained use and perceptions of specific features.</p><p><strong>Results: </strong>Participants under 5 years of work experience reported lower utilisation of multimedia resources but higher utilisation of emotion self-assessment tools and the AI chatbot compared with their counterparts (p<0.001). The platform received a moderate level of satisfaction (57%) and positive intention for sustained use (58%). Participants regarded <i>mindline at work</i> as an 'essential' safeguard against workplace stress, valuing its secure and non-judgmental space and user anonymity. However, they wanted greater institutional support for office workers' mental wellness to enhance the uptake. The AI chatbot was perceived as useful for self-reflection and problem-solving, despite limited maturity.</p><p><strong>Conclusion: </strong>Identifying the unique benefits of specific features for different segments of working adults can foster a personalised user experience and promote mental well-being. Increasing workplace awareness is essential for platform adoption.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and architecture of the CARA infrastructure for visualising and benchmarking patient data from general practice. 设计和构建 CARA 基础设施,以实现全科病人数据的可视化和基准化。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-08-09 DOI: 10.1136/bmjhci-2024-101059
Nathaly Garzón-Orjuela, Agustin Garcia Pereira, Heike Vornhagen, Katarzyna Stasiewicz, Sana Parveen, Doaa Amin, Lukasz Porwol, Mathieu d'Aquin, Claire Collins, Fintan Stanley, Mike O'Callaghan, Akke Vellinga

Objective: Collaborate, Analyse, Research and Audit (CARA) project set out to provide an infrastructure to enable Irish general practitioners (GPs) to use their routinely collected patient management software (PMS) data to better understand their patient population, disease management and prescribing through data dashboards. This paper explains the design and development of the CARA infrastructure.

Methods: The first exemplar dashboard was developed with GPs and focused on antibiotic prescribing to develop and showcase the proposed infrastructure. The data integration process involved extracting, loading and transforming de-identified patient data into data models which connect to the interactive dashboards for GPs to visualise, compare and audit their data.

Results: The architecture of the CARA infrastructure includes two main sections: extract, load and transform process (ELT, de-identified patient data into data models) and a Representational State Transfer Application Programming Interface (REST API) (which provides the security barrier between the data models and their visualisation on the CARA dashboard). CARAconnect was created to facilitate the extraction and de-identification of patient data from the practice database.

Discussion: The CARA infrastructure allows seamless connectivity with and compatibility with the main PMS in Irish general practice and provides a reproducible template to access and visualise patient data. CARA includes two dashboards, a practice overview and a topic-specific dashboard (example focused on antibiotic prescribing), which includes an audit tool, filters (within practice) and between-practice comparisons.

Conclusion: CARA supports evidence-based decision-making by providing GPs with valuable insights through interactive data dashboards to optimise patient care, identify potential areas for improvement and benchmark their performance against other practices.Supplementary file 1. Graphical abstract.

目标:协作、分析、研究和审计(CARA)项目旨在提供一个基础设施,使爱尔兰的全科医生(GPs)能够使用他们日常收集的病人管理软件(PMS)数据,通过数据仪表板更好地了解他们的病人群体、疾病管理和处方情况。本文介绍了 CARA 基础设施的设计和开发过程:第一个示例仪表板是与全科医生共同开发的,重点关注抗生素处方,以开发和展示拟议的基础设施。数据整合过程包括提取、加载和转换去标识化的患者数据到数据模型中,这些数据模型连接到交互式仪表盘,供全科医生可视化、比较和审计其数据:CARA 基础设施的架构包括两个主要部分:提取、加载和转换流程(ELT,将去身份化患者数据转换为数据模型)和表示状态传输应用编程接口(REST API)(为数据模型和 CARA 面板上的可视化数据之间提供安全屏障)。创建 CARAconnect 的目的是为了方便从实践数据库中提取和去标识化患者数据:CARA 基础设施可与爱尔兰全科医生的主要 PMS 系统实现无缝连接和兼容,并提供一个可重复的模板来访问和可视化病人数据。CARA 包括两个仪表盘,一个是实践概览,另一个是特定主题仪表盘(例如,以抗生素处方为例),其中包括审计工具、过滤器(实践内)和实践间比较:CARA支持循证决策,通过交互式数据仪表盘为全科医生提供有价值的见解,以优化患者护理,确定潜在的改进领域,并将其表现与其他诊所进行比较。图表摘要。
{"title":"Design and architecture of the CARA infrastructure for visualising and benchmarking patient data from general practice.","authors":"Nathaly Garzón-Orjuela, Agustin Garcia Pereira, Heike Vornhagen, Katarzyna Stasiewicz, Sana Parveen, Doaa Amin, Lukasz Porwol, Mathieu d'Aquin, Claire Collins, Fintan Stanley, Mike O'Callaghan, Akke Vellinga","doi":"10.1136/bmjhci-2024-101059","DOIUrl":"10.1136/bmjhci-2024-101059","url":null,"abstract":"<p><strong>Objective: </strong>Collaborate, Analyse, Research and Audit (CARA) project set out to provide an infrastructure to enable Irish general practitioners (GPs) to use their routinely collected patient management software (PMS) data to better understand their patient population, disease management and prescribing through data dashboards. This paper explains the design and development of the CARA infrastructure.</p><p><strong>Methods: </strong>The first exemplar dashboard was developed with GPs and focused on antibiotic prescribing to develop and showcase the proposed infrastructure. The data integration process involved extracting, loading and transforming de-identified patient data into data models which connect to the interactive dashboards for GPs to visualise, compare and audit their data.</p><p><strong>Results: </strong>The architecture of the CARA infrastructure includes two main sections: extract, load and transform process (ELT, de-identified patient data into data models) and a Representational State Transfer Application Programming Interface (REST API) (which provides the security barrier between the data models and their visualisation on the CARA dashboard). CARAconnect was created to facilitate the extraction and de-identification of patient data from the practice database.</p><p><strong>Discussion: </strong>The CARA infrastructure allows seamless connectivity with and compatibility with the main PMS in Irish general practice and provides a reproducible template to access and visualise patient data. CARA includes two dashboards, a practice overview and a topic-specific dashboard (example focused on antibiotic prescribing), which includes an audit tool, filters (within practice) and between-practice comparisons.</p><p><strong>Conclusion: </strong>CARA supports evidence-based decision-making by providing GPs with valuable insights through interactive data dashboards to optimise patient care, identify potential areas for improvement and benchmark their performance against other practices.Supplementary file 1. Graphical abstract.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspectives on telemedicine across urban, rural and remote areas in the Philippines during the COVID-19 pandemic. 对 COVID-19 大流行期间菲律宾城市、农村和偏远地区远程医疗的看法。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-08-07 DOI: 10.1136/bmjhci-2023-100837
Noleen Fabian, Regine Ynez De Mesa, Carol Tan-Lim, Gillian Sandigan, Johanna Lopez, Arianna Maever Loreche, Leonila Dans, Zharie Benzon, Herbert Zabala, Josephine Sanchez, Nanette Sundiang, Mia Rey, Antonio Dans

Objectives: This study explored attitudes, subjective norms, and perceived behavioural control of participants across urban, rural and remote settings and examined intention-to-use telemedicine (defined in this study as remote patient-clinician consultations) during the COVID-19 pandemic.

Methods: This is a cross-sectional study. 12 focus group discussions were conducted with 60 diverse telemedicine user and non-user participants across 3 study settings. Analysis of responses was done to understand the attitudes, norms and perceived behavioural control of participants. This explored the relationship between the aforementioned factors and intention to use.

Results: Both users and non-users of telemedicine relayed that the benefits of telemedicine include protection from COVID-19 exposure, decreased out-of-pocket expenses and better work-life balance. Both groups also relayed perceived barriers to telemedicine. Users from the urban site relayed that the lack of preferred physicians discouraged use. Users from the rural and remote sites were concerned about spending on resources (ie, compatible smartphones) to access telemedicine. Non-users from all three sites mentioned that they would not try telemedicine if they felt overwhelmed prior to access.

Discussion: First-hand experiences, peer promotions, and maximising resource support instil hope that telemedicine can help people gain more access to healthcare. However, utilisation will remain low if patients feel overwhelmed by the behavioural modifications and material resources needed to access telemedicine. Boosting infrastructure must come with improving confidence and trust among people.

Conclusion: Sustainable access beyond the pandemic requires an understanding of factors that prevent usage. Sufficient investment in infrastructure and other related resources is needed if telemedicine will be used to address inequities in healthcare access, especially in rural and remote areas.

研究目的本研究探讨了城市、农村和偏远地区参与者的态度、主观规范和感知行为控制,并考察了在 COVID-19 大流行期间使用远程医疗(本研究将其定义为患者与医生之间的远程会诊)的意愿:这是一项横断面研究。在 3 个研究环境中与 60 名不同的远程医疗用户和非用户参与者进行了 12 次焦点小组讨论。对参与者的回答进行了分析,以了解他们的态度、规范和行为控制感知。这探讨了上述因素与使用意向之间的关系:结果:远程医疗的使用者和非使用者都表示,远程医疗的好处包括避免接触 COVID-19、减少自付费用和更好地平衡工作与生活。两组用户还反映了远程医疗的障碍。城市用户反映,缺乏首选医生阻碍了他们使用远程医疗。农村和偏远地区的用户则对使用远程医疗所需的资源(即兼容的智能手机)表示担忧。所有三个地点的非用户都提到,如果他们在使用远程医疗前感到不知所措,他们就不会尝试:讨论:亲身经历、同侪宣传以及最大限度地利用资源支持,让人们对远程医疗能够帮助人们获得更多的医疗保健抱有希望。然而,如果患者对使用远程医疗所需的行为改变和物质资源感到不知所措,那么使用率仍将很低。在加强基础设施建设的同时,还必须提高人们的信心和信任:结论:要想在大流行病过后持续提供远程医疗服务,就必须了解阻碍使用的因素。如果要利用远程医疗来解决医疗服务不公平的问题,尤其是在农村和偏远地区,就需要对基础设施和其他相关资源进行充足的投资。
{"title":"Perspectives on telemedicine across urban, rural and remote areas in the Philippines during the COVID-19 pandemic.","authors":"Noleen Fabian, Regine Ynez De Mesa, Carol Tan-Lim, Gillian Sandigan, Johanna Lopez, Arianna Maever Loreche, Leonila Dans, Zharie Benzon, Herbert Zabala, Josephine Sanchez, Nanette Sundiang, Mia Rey, Antonio Dans","doi":"10.1136/bmjhci-2023-100837","DOIUrl":"10.1136/bmjhci-2023-100837","url":null,"abstract":"<p><strong>Objectives: </strong>This study explored attitudes, subjective norms, and perceived behavioural control of participants across urban, rural and remote settings and examined intention-to-use telemedicine (defined in this study as remote patient-clinician consultations) during the COVID-19 pandemic.</p><p><strong>Methods: </strong>This is a cross-sectional study. 12 focus group discussions were conducted with 60 diverse telemedicine user and non-user participants across 3 study settings. Analysis of responses was done to understand the attitudes, norms and perceived behavioural control of participants. This explored the relationship between the aforementioned factors and intention to use.</p><p><strong>Results: </strong>Both users and non-users of telemedicine relayed that the benefits of telemedicine include protection from COVID-19 exposure, decreased out-of-pocket expenses and better work-life balance. Both groups also relayed perceived barriers to telemedicine. Users from the urban site relayed that the lack of preferred physicians discouraged use. Users from the rural and remote sites were concerned about spending on resources (ie, compatible smartphones) to access telemedicine. Non-users from all three sites mentioned that they would not try telemedicine if they felt overwhelmed prior to access.</p><p><strong>Discussion: </strong>First-hand experiences, peer promotions, and maximising resource support instil hope that telemedicine can help people gain more access to healthcare. However, utilisation will remain low if patients feel overwhelmed by the behavioural modifications and material resources needed to access telemedicine. Boosting infrastructure must come with improving confidence and trust among people.</p><p><strong>Conclusion: </strong>Sustainable access beyond the pandemic requires an understanding of factors that prevent usage. Sufficient investment in infrastructure and other related resources is needed if telemedicine will be used to address inequities in healthcare access, especially in rural and remote areas.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease. 交流儿科疾病年龄聚类中的探索性无监督机器学习分析。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-07-29 DOI: 10.1136/bmjhci-2023-100963
Joshua William Spear, Eleni Pissaridou, Stuart Bowyer, William A Bryant, Daniel Key, John Booth, Anastasia Spiridou, Spiros Denaxas, Rebecca Pope, Andrew M Taylor, Harry Hemingway, Neil J Sebire

Background: Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-driven decision-making within routine hospital workflows thus far, has remained limited. Through the lens of deriving clusters of diagnoses by age, this study investigated the type of ML analysis that can be performed using EHR data and how results could be communicated to lay stakeholders.

Methods: Observational EHR data from a tertiary paediatric hospital, containing 61 522 unique patients and 3315 unique ICD-10 diagnosis codes was used, after preprocessing. K-means clustering was applied to identify age distributions of patient diagnoses. The final model was selected using quantitative metrics and expert assessment of the clinical validity of the clusters. Additionally, uncertainty over preprocessing decisions was analysed.

Findings: Four age clusters of diseases were identified, broadly aligning to ages between: 0 and 1; 1 and 5; 5 and 13; 13 and 18. Diagnoses, within the clusters, aligned to existing knowledge regarding the propensity of presentation at different ages, and sequential clusters presented known disease progressions. The results validated similar methodologies within the literature. The impact of uncertainty induced by preprocessing decisions was large at the individual diagnoses but not at a population level. Strategies for mitigating, or communicating, this uncertainty were successfully demonstrated.

Conclusion: Unsupervised ML applied to EHR data identifies clinically relevant age distributions of diagnoses which can augment existing decision making. However, biases within healthcare datasets dramatically impact results if not appropriately mitigated or communicated.

背景:尽管电子医疗记录(EHR)数据的可用性越来越高,即插即用的机器学习(ML)应用编程接口也越来越广泛,但迄今为止,在医院常规工作流程中采用数据驱动决策的情况仍然有限。本研究通过按年龄推导诊断集群的视角,调查了可使用电子病历数据进行的机器学习分析类型,以及如何将结果传达给非专业的利益相关者:方法:预处理后,使用一家三级儿科医院的观察性电子病历数据,该数据包含 61 522 名独特的患者和 3315 个独特的 ICD-10 诊断代码。采用 K 均值聚类来确定患者诊断的年龄分布。通过定量指标和专家对聚类临床有效性的评估,选定了最终模型。此外,还对预处理决策的不确定性进行了分析:研究结果:确定了四个疾病年龄群,大致符合以下年龄段:0 至 1 岁;1 至 5 岁;6 至 12 岁:结果:确定了四个疾病年龄群,大致符合以下年龄段:0 至 1 岁;1 至 5 岁;5 至 13 岁;13 至 18 岁。这些群组中的诊断符合现有的关于不同年龄发病倾向的知识,而连续群组则呈现了已知的疾病进展。结果验证了文献中的类似方法。预处理决定所引起的不确定性对个体诊断的影响很大,但对群体水平的影响不大。我们成功地展示了减轻或传达这种不确定性的策略:应用于电子病历数据的无监督 ML 可以识别与临床相关的诊断年龄分布,从而增强现有的决策制定。但是,如果不适当地减轻或传达医疗数据集中的偏差,则会对结果产生极大的影响。
{"title":"Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease.","authors":"Joshua William Spear, Eleni Pissaridou, Stuart Bowyer, William A Bryant, Daniel Key, John Booth, Anastasia Spiridou, Spiros Denaxas, Rebecca Pope, Andrew M Taylor, Harry Hemingway, Neil J Sebire","doi":"10.1136/bmjhci-2023-100963","DOIUrl":"10.1136/bmjhci-2023-100963","url":null,"abstract":"<p><strong>Background: </strong>Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-driven decision-making within routine hospital workflows thus far, has remained limited. Through the lens of deriving clusters of diagnoses by age, this study investigated the type of ML analysis that can be performed using EHR data and how results could be communicated to lay stakeholders.</p><p><strong>Methods: </strong>Observational EHR data from a tertiary paediatric hospital, containing 61 522 unique patients and 3315 unique ICD-10 diagnosis codes was used, after preprocessing. K-means clustering was applied to identify age distributions of patient diagnoses. The final model was selected using quantitative metrics and expert assessment of the clinical validity of the clusters. Additionally, uncertainty over preprocessing decisions was analysed.</p><p><strong>Findings: </strong>Four age clusters of diseases were identified, broadly aligning to ages between: 0 and 1; 1 and 5; 5 and 13; 13 and 18. Diagnoses, within the clusters, aligned to existing knowledge regarding the propensity of presentation at different ages, and sequential clusters presented known disease progressions. The results validated similar methodologies within the literature. The impact of uncertainty induced by preprocessing decisions was large at the individual diagnoses but not at a population level. Strategies for mitigating, or communicating, this uncertainty were successfully demonstrated.</p><p><strong>Conclusion: </strong>Unsupervised ML applied to EHR data identifies clinically relevant age distributions of diagnoses which can augment existing decision making. However, biases within healthcare datasets dramatically impact results if not appropriately mitigated or communicated.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards inclusive biodesign and innovation: lowering barriers to entry in medical device development through large language model tools. 实现包容性生物设计和创新:通过大型语言模型工具降低医疗器械开发的准入门槛。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-07-23 DOI: 10.1136/bmjhci-2023-100952
John T Moon, Nicholas J Lima, Eleanor Froula, Hanzhou Li, Janice Newsome, Hari Trivedi, Zachary Bercu, Judy Wawira Gichoya

In the following narrative review, we discuss the potential role of large language models (LLMs) in medical device innovation, specifically examples using generative pretrained transformer-4. Throughout the biodesign process, LLMs can offer prompt-driven insights, aiding problem identification, knowledge assimilation and decision-making. Intellectual property analysis, regulatory assessment and market analysis emerge as key LLM applications. Through case examples, we underscore LLMs' transformative ability to democratise information access and expertise, facilitating inclusive innovation in medical devices as well as its effectiveness with providing real-time, individualised feedback for innovators of all experience levels. By mitigating entry barriers, LLMs accelerate transformative advancements, fostering collaboration among established and emerging stakeholders.

在下面的叙述性综述中,我们将讨论大型语言模型(LLMs)在医疗设备创新中的潜在作用,特别是使用生成式预训练变压器-4 的实例。在整个生物设计过程中,大型语言模型可以提供及时驱动的见解,帮助发现问题、吸收知识和做出决策。知识产权分析、监管评估和市场分析是 LLM 的主要应用领域。通过案例,我们强调了 LLM 在实现信息获取和专业知识民主化、促进医疗设备包容性创新方面的变革能力,以及它为各种经验水平的创新者提供实时、个性化反馈的有效性。通过降低准入门槛,LLM 加快了变革性进步,促进了既有和新兴利益相关者之间的合作。
{"title":"Towards inclusive biodesign and innovation: lowering barriers to entry in medical device development through large language model tools.","authors":"John T Moon, Nicholas J Lima, Eleanor Froula, Hanzhou Li, Janice Newsome, Hari Trivedi, Zachary Bercu, Judy Wawira Gichoya","doi":"10.1136/bmjhci-2023-100952","DOIUrl":"10.1136/bmjhci-2023-100952","url":null,"abstract":"<p><p>In the following narrative review, we discuss the potential role of large language models (LLMs) in medical device innovation, specifically examples using generative pretrained transformer-4. Throughout the biodesign process, LLMs can offer prompt-driven insights, aiding problem identification, knowledge assimilation and decision-making. Intellectual property analysis, regulatory assessment and market analysis emerge as key LLM applications. Through case examples, we underscore LLMs' transformative ability to democratise information access and expertise, facilitating inclusive innovation in medical devices as well as its effectiveness with providing real-time, individualised feedback for innovators of all experience levels. By mitigating entry barriers, LLMs accelerate transformative advancements, fostering collaboration among established and emerging stakeholders.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why BMJ HCI-the internal fear to find an appropriate academic journal. 为什么选择 BMJ HCI--内部担心找不到合适的学术期刊。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-07-22 DOI: 10.1136/bmjhci-2024-101060
Elisavet Andrikopoulou
{"title":"Why <i>BMJ HCI</i>-the internal fear to find an appropriate academic journal.","authors":"Elisavet Andrikopoulou","doi":"10.1136/bmjhci-2024-101060","DOIUrl":"10.1136/bmjhci-2024-101060","url":null,"abstract":"","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perioperative application of chatbots: a systematic review and meta-analysis. 聊天机器人的围手术期应用:系统回顾和荟萃分析。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-07-20 DOI: 10.1136/bmjhci-2023-100985
Shih-Jung Lin, Chin-Yu Sun, Dan-Ni Chen, Yi-No Kang, Nai Ming Lai, Kee-Hsin Chen, Chiehfeng Chen

Background and objectives: Patient-clinician communication and shared decision-making face challenges in the perioperative period. Chatbots have emerged as valuable support tools in perioperative care. A simultaneous and complete comparison of overall benefits and harm of chatbot application is conducted.

Materials: MEDLINE, EMBASE and the Cochrane Library were systematically searched for studies published before May 2023 on the benefits and harm of chatbots used in the perioperative period. The major outcomes assessed were patient satisfaction and knowledge acquisition. Untransformed proportion (PR) with a 95% CI was used for the analysis of continuous data. Risk of bias was assessed using the Cochrane Risk of Bias assessment tool version 2 and the Methodological Index for Non-Randomised Studies.

Results: Eight trials comprising 1073 adults from four countries were included. Most interventions (n = 5, 62.5%) targeted perioperative care in orthopaedics. Most interventions use rule-based chatbots (n = 7, 87.5%). This meta-analysis found that the majority of the participants were satisfied with the use of chatbots (mean proportion=0.73; 95% CI: 0.62 to 0.85), and agreed that they gained knowledge in their perioperative period (mean proportion=0.80; 95% CI: 0.74 to 0.87).

Conclusion: This review demonstrates that perioperative chatbots are well received by the majority of patients with no reports of harm to-date. Chatbots may be considered as an aid in perioperative communication between patients and clinicians and shared decision-making. These findings may be used to guide the healthcare providers, policymakers and researchers for enhancing perioperative care.

背景和目的:在围手术期,患者与医生之间的沟通和共同决策面临挑战。聊天机器人已成为围手术期护理的重要支持工具。我们同时对聊天机器人应用的整体利益和危害进行了全面比较:系统检索了 MEDLINE、EMBASE 和 Cochrane 图书馆在 2023 年 5 月之前发表的关于围手术期使用聊天机器人的益处和害处的研究。评估的主要结果是患者满意度和知识获取。连续数据的分析采用未经转换的比例 (PR) 和 95% CI。使用 Cochrane 第 2 版偏倚风险评估工具和非随机研究方法指数评估偏倚风险:共纳入了 8 项试验,包括来自 4 个国家的 1073 名成人。大多数干预措施(n = 5,62.5%)针对骨科围手术期护理。大多数干预措施使用基于规则的聊天机器人(n = 7,87.5%)。这项荟萃分析发现,大多数参与者对聊天机器人的使用感到满意(平均比例=0.73;95% CI:0.62 至 0.85),并认为他们在围手术期获得了知识(平均比例=0.80;95% CI:0.74 至 0.87):本综述表明,围手术期聊天机器人受到了大多数患者的欢迎,迄今为止还没有关于伤害的报道。聊天机器人可被视为围术期患者与临床医生沟通和共同决策的辅助工具。这些发现可用于指导医疗服务提供者、决策者和研究人员加强围手术期护理。
{"title":"Perioperative application of chatbots: a systematic review and meta-analysis.","authors":"Shih-Jung Lin, Chin-Yu Sun, Dan-Ni Chen, Yi-No Kang, Nai Ming Lai, Kee-Hsin Chen, Chiehfeng Chen","doi":"10.1136/bmjhci-2023-100985","DOIUrl":"10.1136/bmjhci-2023-100985","url":null,"abstract":"<p><strong>Background and objectives: </strong>Patient-clinician communication and shared decision-making face challenges in the perioperative period. Chatbots have emerged as valuable support tools in perioperative care. A simultaneous and complete comparison of overall benefits and harm of chatbot application is conducted.</p><p><strong>Materials: </strong>MEDLINE, EMBASE and the Cochrane Library were systematically searched for studies published before May 2023 on the benefits and harm of chatbots used in the perioperative period. The major outcomes assessed were patient satisfaction and knowledge acquisition. Untransformed proportion (PR) with a 95% CI was used for the analysis of continuous data. Risk of bias was assessed using the Cochrane Risk of Bias assessment tool version 2 and the Methodological Index for Non-Randomised Studies.</p><p><strong>Results: </strong>Eight trials comprising 1073 adults from four countries were included. Most interventions (n = 5, 62.5%) targeted perioperative care in orthopaedics. Most interventions use rule-based chatbots (n = 7, 87.5%). This meta-analysis found that the majority of the participants were satisfied with the use of chatbots (mean proportion=0.73; 95% CI: 0.62 to 0.85), and agreed that they gained knowledge in their perioperative period (mean proportion=0.80; 95% CI: 0.74 to 0.87).</p><p><strong>Conclusion: </strong>This review demonstrates that perioperative chatbots are well received by the majority of patients with no reports of harm to-date. Chatbots may be considered as an aid in perioperative communication between patients and clinicians and shared decision-making. These findings may be used to guide the healthcare providers, policymakers and researchers for enhancing perioperative care.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the information provided by ChatGPT regarding exercise for patients with type 2 diabetes: a pilot study. 评估 ChatGPT 为 2 型糖尿病患者提供的运动信息:一项试点研究。
IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES Pub Date : 2024-07-04 DOI: 10.1136/bmjhci-2023-101006
Seung Min Chung, Min Cheol Chang

Objectives: We assessed the feasibility of ChatGPT for patients with type 2 diabetes seeking information about exercise.

Methods: In this pilot study, two physicians with expertise in diabetes care and rehabilitative treatment in Republic of Korea discussed and determined the 14 most asked questions on exercise for managing type 2 diabetes by patients in clinical practice. Each question was inputted into ChatGPT (V.4.0), and the answers from ChatGPT were assessed. The Likert scale was calculated for each category of validity (1-4), safety (1-4) and utility (1-4) based on position statements of the American Diabetes Association and American College of Sports Medicine.

Results: Regarding validity, 4 of 14 ChatGPT (28.6%) responses were scored as 3, indicating accurate but incomplete information. The other 10 responses (71.4%) were scored as 4, indicating complete accuracy with complete information. Safety and utility scored 4 (no danger and completely useful) for all 14 ChatGPT responses.

Conclusion: ChatGPT can be used as supplementary educational material for diabetic exercise. However, users should be aware that ChatGPT may provide incomplete answers to some questions on exercise for type 2 diabetes.

目的我们评估了针对寻求运动信息的 2 型糖尿病患者使用 ChatGPT 的可行性:在这项试验性研究中,大韩民国两位精通糖尿病护理和康复治疗的医生讨论并确定了临床实践中患者问得最多的 14 个关于运动治疗 2 型糖尿病的问题。每个问题都被输入到 ChatGPT(V.4.0)中,并对 ChatGPT 的答案进行评估。根据美国糖尿病协会和美国运动医学学院的立场声明,对有效性(1-4)、安全性(1-4)和实用性(1-4)的每个类别进行了李克特量表计算:在有效性方面,14 份 ChatGPT 答复中有 4 份(28.6%)被评为 3 分,表明信息准确但不完整。其他 10 个回复(71.4%)被评为 4 分,表示完全准确,信息完整。所有 14 个 ChatGPT 回答的安全性和实用性均为 4 分(无危险且完全有用):结论:ChatGPT 可用作糖尿病运动的辅助教材。结论:ChatGPT 可作为糖尿病运动的辅助教材,但用户应注意,ChatGPT 可能会对某些有关 2 型糖尿病运动的问题提供不完整的答案。
{"title":"Assessment of the information provided by ChatGPT regarding exercise for patients with type 2 diabetes: a pilot study.","authors":"Seung Min Chung, Min Cheol Chang","doi":"10.1136/bmjhci-2023-101006","DOIUrl":"10.1136/bmjhci-2023-101006","url":null,"abstract":"<p><strong>Objectives: </strong>We assessed the feasibility of ChatGPT for patients with type 2 diabetes seeking information about exercise.</p><p><strong>Methods: </strong>In this pilot study, two physicians with expertise in diabetes care and rehabilitative treatment in Republic of Korea discussed and determined the 14 most asked questions on exercise for managing type 2 diabetes by patients in clinical practice. Each question was inputted into ChatGPT (V.4.0), and the answers from ChatGPT were assessed. The Likert scale was calculated for each category of validity (1-4), safety (1-4) and utility (1-4) based on position statements of the American Diabetes Association and American College of Sports Medicine.</p><p><strong>Results: </strong>Regarding validity, 4 of 14 ChatGPT (28.6%) responses were scored as 3, indicating accurate but incomplete information. The other 10 responses (71.4%) were scored as 4, indicating complete accuracy with complete information. Safety and utility scored 4 (no danger and completely useful) for all 14 ChatGPT responses.</p><p><strong>Conclusion: </strong>ChatGPT can be used as supplementary educational material for diabetic exercise. However, users should be aware that ChatGPT may provide incomplete answers to some questions on exercise for type 2 diabetes.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMJ Health & Care Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1