In this study, bovine serum albumin (BSA) is used as a globular protein model to examine the conformational changes that occur during the interaction of BSA with N-hydroxysulfo-succinimide (sodium salt)-functionalized gold nanourchins (GNUs), for which dynamic spectroscopic techniques are employed. The results showed that the absorbance of phosphate-buffered saline-BSA at 278 nm decreased when a GNU was added to the solution due to adsorption, and it decreased further when the GNU was increased. The intensity and width of the peak of local surface plasmon resonance increased, indicating the effect of corona formation. Dynamic UV-vis spectroscopy and scattering revealed a nonlinear behavior of BSA-GNU interaction. The bioplasmonic solution resulted in higher transmission and scattering than the BSA solution. Fourier transform-near-infrared spectra exhibited several bands due to overtones and combinations of the amide group and different proportions of α-helix and β-sheet components in BSA before and after the addition of the GNU. Time-resolved fluorescence spectroscopy demonstrated an initial increase in blueshifted emission, followed by a redshifted quenching of two major peaks of Tyr and tryptophan (Trp). The binding and dissociation constants were determined as Kb = 2.17 × 1010 M-1 and Kd = 4.6 × 10-11, respectively, using the Stern-Volmer relation. Both the dynamic CMOS-based imaging and the cadmium sulfide sensors demonstrated a nonlinear response of bioplasmonic solution. By increasing the GNU, the resistance of the solution decreased in the order of A > S1 > S3, where S3 exhibited the highest initial transmission with a longer desorption time. MATLAB modeling showed 80% surface coverage by the protein in 15 s at 0.05M, equivalent to a thickness of 1.7 nm, which was in agreement with the value determined by using the Stokes-Einstein relation.