首页 > 最新文献

Biointerphases最新文献

英文 中文
Enhanced bactericidal performance of textiles through compound antimicrobial agents. 通过复合抗菌剂提高纺织品的杀菌性能。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-05-01 DOI: 10.1116/6.0003710
Yi Huang, Ying Li, Kai-Bo Chen, Hang Zhang

This study aims to explore the essential functional requirements associated with controlling the proliferation of microbes in the domain of textiles used in public health areas. Herein, three antimicrobial agents, specifically iodopropylbutylcarbamate (IPBC), 1-hydroxypyridine-2-thioketone zinc (ZPT), and 2-octyl-3-isothiazolinone (OIT), were chosen for fabric finishing based on their notable effectiveness, minimal toxicity, cost-efficiency, and chemical stability. Utilizing Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as representative bacterial strains, the Minimum Inhibitory Concentration (MIC50) of individual and combined antimicrobial agents was measured, and their antimicrobial effectiveness was rigorously evaluated. Concurrently, the antimicrobial effectiveness, whiteness, and mechanical durability of the fabric following antimicrobial treatment were thoroughly examined. The results demonstrate that some combinations of the three antimicrobial agents elicit additive effects on both S. aureus and E. coli. Notably, at an equivalent ratio of IPBC, ZPT, and OIT and a total concentration of 0.2 wt. %, the inhibition rates against both bacterial strains surpass 99%. Upon application to nylon fabric, the treated material demonstrates significant antimicrobial properties, with minimal reduction observed in the whiteness and tensile strength of the treated nylon. This study provides practicable strategies relevant to the production of textiles endowed with antimicrobial properties.

本研究旨在探讨在公共卫生领域使用的纺织品中,与控制微生物增殖相关的基本功能要求。在此,我们选择了三种抗菌剂,特别是氨基甲酸碘丙基丁酯(IPBC)、1-羟基吡啶-2-硫酮锌(ZPT)和 2-辛基-3-异噻唑啉酮(OIT),这些抗菌剂具有显著的功效、最小的毒性、成本效益和化学稳定性,可用于织物整理。以金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)为代表菌株,测定了单独抗菌剂和组合抗菌剂的最低抑菌浓度(MIC50),并对其抗菌效果进行了严格评估。同时,还对抗菌处理后织物的抗菌效果、白度和机械耐久性进行了全面检测。结果表明,三种抗菌剂的某些组合对金黄色葡萄球菌和大肠杆菌都有增效作用。值得注意的是,当 IPBC、ZPT 和 OIT 的比例相等且总浓度为 0.2 wt. % 时,对这两种细菌菌株的抑制率都超过了 99%。在应用于尼龙织物时,经处理的材料显示出显著的抗菌特性,而且经处理的尼龙的白度和拉伸强度的降低幅度极小。这项研究为生产具有抗菌特性的纺织品提供了切实可行的策略。
{"title":"Enhanced bactericidal performance of textiles through compound antimicrobial agents.","authors":"Yi Huang, Ying Li, Kai-Bo Chen, Hang Zhang","doi":"10.1116/6.0003710","DOIUrl":"https://doi.org/10.1116/6.0003710","url":null,"abstract":"<p><p>This study aims to explore the essential functional requirements associated with controlling the proliferation of microbes in the domain of textiles used in public health areas. Herein, three antimicrobial agents, specifically iodopropylbutylcarbamate (IPBC), 1-hydroxypyridine-2-thioketone zinc (ZPT), and 2-octyl-3-isothiazolinone (OIT), were chosen for fabric finishing based on their notable effectiveness, minimal toxicity, cost-efficiency, and chemical stability. Utilizing Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as representative bacterial strains, the Minimum Inhibitory Concentration (MIC50) of individual and combined antimicrobial agents was measured, and their antimicrobial effectiveness was rigorously evaluated. Concurrently, the antimicrobial effectiveness, whiteness, and mechanical durability of the fabric following antimicrobial treatment were thoroughly examined. The results demonstrate that some combinations of the three antimicrobial agents elicit additive effects on both S. aureus and E. coli. Notably, at an equivalent ratio of IPBC, ZPT, and OIT and a total concentration of 0.2 wt. %, the inhibition rates against both bacterial strains surpass 99%. Upon application to nylon fabric, the treated material demonstrates significant antimicrobial properties, with minimal reduction observed in the whiteness and tensile strength of the treated nylon. This study provides practicable strategies relevant to the production of textiles endowed with antimicrobial properties.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of biological food processing interfaces: Perspectives on the science of mollusc radula. 生物食品加工界面的性能:软体动物桡足类科学的前景。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-05-01 DOI: 10.1116/6.0003672
Wencke Krings, Stanislav N Gorb

The Mollusca comprises a diverse range of organisms, with the class Gastropoda alone boasting approximately 80 000 extant species. Their adaptability across various habitats is facilitated by the evolution of the radula, a key structure for food acquisition. The radula's composition and mechanical properties, including its chitinous membrane, teeth, and supporting structures, enable efficient food gathering and processing. Through adaptive tooth morphology and composition, an interplay between radular components is facilitated, which results in collective effects to withstand forces encountered during feeding and reduce structural failure, with the broad range of variations reflecting ecological niches. Furthermore, teeth consist of composite materials with sometimes high contents of iron, calcium, or silicon to reduce wear. During interaction with the food, the radula performs complex three-dimensional motions, challenging to document. Here, we provide a review on the morphology, the mechanical properties, the composition, and various other parameters that contribute to radular performance. Due to, e.g., the smallness of these structures, there are, however, limitations to radular research. However, numerical simulations and physical models tested on substrates offer avenues for further understanding radular function and performance during feeding. These studies not only advance our knowledge of molluscan biology and ecology but also provide inspirations for biomimetic design and further advances in materials engineering.

软体动物包括多种多样的生物,仅腹足纲就有大约 8 万个现存物种。桡足类是获取食物的关键结构,桡足类的进化促进了它们在各种栖息地的适应性。桡足类的组成和机械特性,包括壳质膜、牙齿和支撑结构,使它们能够高效地采集和处理食物。通过适应性牙齿形态和组成,促进了桡骨各组成部分之间的相互作用,从而产生集体效应,抵御进食过程中遇到的力量,减少结构失效。此外,牙齿由复合材料组成,有时铁、钙或硅含量较高,以减少磨损。在与食物相互作用的过程中,桡骨会进行复杂的三维运动,这对记录具有挑战性。在此,我们将对形态、机械性能、成分以及影响镭射性能的其他各种参数进行综述。然而,由于桡骨结构较小等原因,桡骨研究受到一定限制。不过,在基质上测试的数值模拟和物理模型为进一步了解桡骨的功能和进食时的表现提供了途径。这些研究不仅增进了我们对软体动物生物学和生态学的了解,还为生物仿生设计和材料工程学的进一步发展提供了灵感。
{"title":"Performance of biological food processing interfaces: Perspectives on the science of mollusc radula.","authors":"Wencke Krings, Stanislav N Gorb","doi":"10.1116/6.0003672","DOIUrl":"https://doi.org/10.1116/6.0003672","url":null,"abstract":"<p><p>The Mollusca comprises a diverse range of organisms, with the class Gastropoda alone boasting approximately 80 000 extant species. Their adaptability across various habitats is facilitated by the evolution of the radula, a key structure for food acquisition. The radula's composition and mechanical properties, including its chitinous membrane, teeth, and supporting structures, enable efficient food gathering and processing. Through adaptive tooth morphology and composition, an interplay between radular components is facilitated, which results in collective effects to withstand forces encountered during feeding and reduce structural failure, with the broad range of variations reflecting ecological niches. Furthermore, teeth consist of composite materials with sometimes high contents of iron, calcium, or silicon to reduce wear. During interaction with the food, the radula performs complex three-dimensional motions, challenging to document. Here, we provide a review on the morphology, the mechanical properties, the composition, and various other parameters that contribute to radular performance. Due to, e.g., the smallness of these structures, there are, however, limitations to radular research. However, numerical simulations and physical models tested on substrates offer avenues for further understanding radular function and performance during feeding. These studies not only advance our knowledge of molluscan biology and ecology but also provide inspirations for biomimetic design and further advances in materials engineering.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. 磁电纳米粒子对神经元电活动影响的建模:模拟电路方法
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-05-01 DOI: 10.1116/5.0199163
Zeinab Ramezani, Victoria André, Sakhrat Khizroev

This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.

本文介绍了一种物理神经元模型,该模型将磁电纳米粒子(MENPs)作为无线控制局部神经活动的重要电路元件。这种模型的出现非常重要,因为磁电纳米粒子由于其磁电效应,可以无线、无创地调节神经活动,这反过来又对寻找神经系统疾病的治疗方法和创建无线无创高分辨率脑机接口具有重要意义。当被置于神经元膜上时,MENPs 就像磁场控制的有限大小电偶极子,会随着磁场的变化在膜上产生局部电场,从而可控地激活局部离子通道并在局部启动动作电位。在这里,神经元电特性描述是基于离子通道激活和抑制机制。通过结合霍奇金-赫胥黎模型和单个 MENP 的等效电路模型,提取出基于 MENP 的记忆性霍奇金-赫胥黎电路模型。在该模型中,每个 MENP 都是神经元的组成部分,从而实现了对神经元电路本身的无线局部控制。此外,该模型还可扩展到多个 MENP,以描述神经系统中的集体效应。
{"title":"Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach.","authors":"Zeinab Ramezani, Victoria André, Sakhrat Khizroev","doi":"10.1116/5.0199163","DOIUrl":"https://doi.org/10.1116/5.0199163","url":null,"abstract":"<p><p>This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipids and proteins: Insights into the dynamics of assembly, recognition, condensate formation. What is still missing? 脂质和蛋白质:对组装、识别和凝结物形成动力学的见解。还缺少什么?
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-05-01 DOI: 10.1116/6.0003662
Pablo G Argudo

Lipid membranes and proteins, which are part of us throughout our lives, have been studied for decades. However, every year, new discoveries show how little we know about them. In a reader-friendly manner for people not involved in the field, this paper tries to serve as a bridge between physicists and biologists and new young researchers diving into the field to show its relevance, pointing out just some of the plethora of lines of research yet to be unraveled. It illustrates how new ways, from experimental to theoretical approaches, are needed in order to understand the structures and interactions that take place in a single lipid, protein, or multicomponent system, as we are still only scratching the surface.

脂质膜和蛋白质与我们的生活息息相关,对它们的研究已有几十年的历史。然而,每年都有新的发现表明,我们对它们的了解是多么的少。本文试图以一种读者易于理解的方式,在物理学家、生物学家和涉足该领域的年轻新研究人员之间架起一座桥梁,展示该领域的相关性,指出大量研究领域中尚待解开的一些谜团。这篇文章说明,要了解单个脂质、蛋白质或多组分系统中的结构和相互作用,从实验到理论方法都需要新的途径,因为我们仍然只是在浅尝辄止。
{"title":"Lipids and proteins: Insights into the dynamics of assembly, recognition, condensate formation. What is still missing?","authors":"Pablo G Argudo","doi":"10.1116/6.0003662","DOIUrl":"10.1116/6.0003662","url":null,"abstract":"<p><p>Lipid membranes and proteins, which are part of us throughout our lives, have been studied for decades. However, every year, new discoveries show how little we know about them. In a reader-friendly manner for people not involved in the field, this paper tries to serve as a bridge between physicists and biologists and new young researchers diving into the field to show its relevance, pointing out just some of the plethora of lines of research yet to be unraveled. It illustrates how new ways, from experimental to theoretical approaches, are needed in order to understand the structures and interactions that take place in a single lipid, protein, or multicomponent system, as we are still only scratching the surface.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process optimization and character evaluation of Bletilla striata polysaccharide (BSP) and chitosan (CS) composite hemostatic sponge (BSP-CS). Bletilla striata 多糖(BSP)和壳聚糖(CS)复合止血海绵(BSP-CS)的工艺优化和特性评估。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-03-01 DOI: 10.1116/6.0003369
Yeshan Zhang, Xue Han, Jun Zhao, Menglan Gan, Yaya Chen, Jinxia Zhang, Yu He, Mingkai Wu, Hai Liu

Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.

用草酰氯对条纹紫苏多糖(BSP)和壳聚糖(CS)进行化学交联,制备出一种复合止血海绵(BSP-CS),并采用箱-贝肯设计(BBD)和响应面方法对工艺参数进行了优化。为了优化止血海绵的性能,我们调整了自变量的比例、草酰氯的添加量和冻干体积。我们对 BSP-CS 的止血适用性进行了一系列评估。表征结果显示,BSP-CS 在 72 小时内对大肠杆菌、金黄色葡萄球菌和绿脓杆菌具有稳定的抑菌作用,抑菌率在 30% 以上。CCK-8 细胞毒性试验表明,BSP-CS 对 L929 细胞的增殖有一定的促进作用。在小鼠断尾实验中,BSP-CS 的止血时间为(463.0±38.16)s,与纱布组的(554.3±34.67)s 相比,平均缩短了 91.3s。BSP-CS 组的失血量为 28.47±3.74 毫克,比对照纱布组(43.6±3.83 毫克)低 34.7%。在体外凝血实验中,BSP-CS 组的体外凝血指数为 97.29%±1.8%,低于对照组的 8.6%。BSP-CS 组的 CT 值为 240±15 s,比纱布组(355±31.22 s)低 155 s。所有表征结果表明,BSP-CS 是一种出色的止血材料。
{"title":"Process optimization and character evaluation of Bletilla striata polysaccharide (BSP) and chitosan (CS) composite hemostatic sponge (BSP-CS).","authors":"Yeshan Zhang, Xue Han, Jun Zhao, Menglan Gan, Yaya Chen, Jinxia Zhang, Yu He, Mingkai Wu, Hai Liu","doi":"10.1116/6.0003369","DOIUrl":"10.1116/6.0003369","url":null,"abstract":"<p><p>Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol inhalation of inflammatory cells-targeted dendrimer-dexamethasone conjugate for efficient allergic asthma therapy. 气溶胶吸入靶向炎症细胞的树枝状聚合物-地塞米松共轭物,用于过敏性哮喘的高效治疗。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-03-01 DOI: 10.1116/6.0003480
Danfei Chen, Xiaobo Xuan, Yuyan Chen, Xia Fang, Liwei Liu, Guowei Wang, Jian Chen

Allergic asthma (AA) is a common breathing disorder clinically characterized by the high occurrence of acute and continuous inflammation. However, the current treatment options for AA are lacking in effectiveness and diversity. In this study, we determined that the cell membrane receptor of gamma-glutamyl transferase (GGT) was highly overexpressed on the inflammatory cells that infiltrate the pulmonary tissues in AA cases. Therefore, we developed a GGT-specific dendrimer-dexamethasone conjugate (GSHDDC) that could be administered via aerosol inhalation to treat AA in a rapid and sustained manner. The GSHDDC was fabricated by the covalent attachment of 6-hydroxyhexyl acrylate-modified dexamethasone to polyamidoamine dendrimers via a carbonic ester linkage and the amino Michael addition, followed by the surface modification of the dendrimers with the GGT substrate of glutathione. After aerosol inhalation by the AA mice, the small particle-sized GSHDDC could easily diffuse into pulmonary alveoli and touch with the inflammatory cells via the glutathione ligand/GGT receptor-mediated recognition. The overexpressed GGT on the surface of inflammatory cells then triggers the gamma-glutamyl transfer reactions of glutathione to generate positively charged primary amines, thereby inducing rapid cationization-mediated cellular endocytosis into the inflammatory cells. The dexamethasone was gradually released by the intracellular enzyme hydrolysis, enabling sustained anti-inflammatory effects (e.g., reducing eosinophil infiltration, decreasing the levels of inflammatory factors) in the ovalbumin-induced AA mice. This study demonstrates the effectiveness of an inhalational and active inflammatory cells-targeted dendrimer-dexamethasone conjugate for efficient AA therapy.

过敏性哮喘(AA)是一种常见的呼吸系统疾病,临床特点是急性和持续性炎症的高发率。然而,目前治疗 AA 的方法缺乏有效性和多样性。在这项研究中,我们发现γ-谷氨酰转移酶(GGT)的细胞膜受体在 AA 病例中浸润肺组织的炎症细胞上高度过表达。因此,我们开发了一种GGT特异性树枝状聚合物-地塞米松共轭物(GSHDDC),可通过气溶胶吸入来快速、持续地治疗AA。通过碳酸酯连接和氨基迈克尔加成,6-羟基己基丙烯酸酯修饰的地塞米松与聚酰胺胺树枝状聚合物共价连接,然后用谷胱甘肽的GGT底物对树枝状聚合物进行表面修饰,就制成了GSHDDC。AA 小鼠吸入气溶胶后,小颗粒大小的 GSHDDC 很容易扩散到肺泡,并通过谷胱甘肽配体/GGT 受体介导的识别与炎症细胞接触。炎症细胞表面过量表达的 GGT 会引发谷胱甘肽的γ-谷氨酰转移反应,生成带正电荷的伯胺,从而诱导阳离子化介导的细胞内吞迅速进入炎症细胞。地塞米松通过细胞内酶水解逐渐释放,从而在卵清蛋白诱导的 AA 小鼠体内产生持续的抗炎效果(如减少嗜酸性粒细胞浸润、降低炎症因子水平)。这项研究表明,吸入性和活性炎症细胞靶向树枝状聚合物-地塞米松共轭物可有效治疗 AA。
{"title":"Aerosol inhalation of inflammatory cells-targeted dendrimer-dexamethasone conjugate for efficient allergic asthma therapy.","authors":"Danfei Chen, Xiaobo Xuan, Yuyan Chen, Xia Fang, Liwei Liu, Guowei Wang, Jian Chen","doi":"10.1116/6.0003480","DOIUrl":"10.1116/6.0003480","url":null,"abstract":"<p><p>Allergic asthma (AA) is a common breathing disorder clinically characterized by the high occurrence of acute and continuous inflammation. However, the current treatment options for AA are lacking in effectiveness and diversity. In this study, we determined that the cell membrane receptor of gamma-glutamyl transferase (GGT) was highly overexpressed on the inflammatory cells that infiltrate the pulmonary tissues in AA cases. Therefore, we developed a GGT-specific dendrimer-dexamethasone conjugate (GSHDDC) that could be administered via aerosol inhalation to treat AA in a rapid and sustained manner. The GSHDDC was fabricated by the covalent attachment of 6-hydroxyhexyl acrylate-modified dexamethasone to polyamidoamine dendrimers via a carbonic ester linkage and the amino Michael addition, followed by the surface modification of the dendrimers with the GGT substrate of glutathione. After aerosol inhalation by the AA mice, the small particle-sized GSHDDC could easily diffuse into pulmonary alveoli and touch with the inflammatory cells via the glutathione ligand/GGT receptor-mediated recognition. The overexpressed GGT on the surface of inflammatory cells then triggers the gamma-glutamyl transfer reactions of glutathione to generate positively charged primary amines, thereby inducing rapid cationization-mediated cellular endocytosis into the inflammatory cells. The dexamethasone was gradually released by the intracellular enzyme hydrolysis, enabling sustained anti-inflammatory effects (e.g., reducing eosinophil infiltration, decreasing the levels of inflammatory factors) in the ovalbumin-induced AA mice. This study demonstrates the effectiveness of an inhalational and active inflammatory cells-targeted dendrimer-dexamethasone conjugate for efficient AA therapy.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma. 基于细胞膜涂层的工程纳米粒子癌症疗法:对抗致命且具有挑战性的肝细胞癌的有力武器。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-03-01 DOI: 10.1116/6.0003204
Jiachen Zhang, Hongjuan Yu, Gang Li

Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.

肝细胞癌(HCC)已成为一个重要的公共卫生问题,临床治疗中仍有许多难题需要克服。近年来,纳米给药系统(NDDS)得到了长足的发展,许多研究人员都对 NDDS 治疗 HCC 进行了探索。工程细胞膜包被纳米颗粒(ECNPs)应运而生,它结合了细胞膜的独特功能和合成纳米颗粒(NPs)的工程多功能性,能有效地递送治疗药物。其设计具有以下功能:特异性活性靶向、免疫避避、延长血液循环时间、控释给药、降低药物的系统毒性。因此,ECNPs 是治疗 HCC 的一种前景广阔的仿生工具,具有实现联合和综合治疗的可操作性。本综述重点探讨了ECNPs治疗HCC的机制和策略,并总结了近年来ECNPs在治疗HCC方面的研究进展。
{"title":"Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma.","authors":"Jiachen Zhang, Hongjuan Yu, Gang Li","doi":"10.1116/6.0003204","DOIUrl":"https://doi.org/10.1116/6.0003204","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity. ToF-SIMS 和基质辅助激光解吸电离质谱成像对蚯蚓样品中除草剂阿特拉津的脂质相关离子抑制作用以及气相碱性的作用。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-03-01 DOI: 10.1116/6.0003437
Timo Weintraut, Sven Heiles, Dennis Gerbig, Anja Henss, Johannes Junck, Rolf-Alexander Düring, Marcus Rohnke

In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.

在质谱成像(MSI)中,离子抑制会导致对结果的误读。特别是磷脂,其中大部分都具有高气相碱性(GB),众所周知会抑制代谢物和药物的检测。本研究的起因是观察到一种除草剂(即阿特拉津)的信号在蚯蚓组织切片的 MSI 检测中被抑制。通过飞行时间二次离子质谱法和基质辅助激光解吸电离质谱成像(MALDI-MSI)研究了除草剂在蚯蚓体内的积累情况。此外,还分析了没有阿特拉津积累但除草剂均匀喷雾沉积的蚯蚓组织切片,以突出特定区域的离子抑制。此外,两种 MSI 技术还研究了脂质、氨基酸和阿特拉津二元混合物中信号强度与 GB 的关系。通过对所获得的二元氨基酸混合物的强度比进行线性绘制,从实验和理论上确定了阿特拉津的国标。在 ToF-SIMS 和 MALDI-MSI 中,实验测定的阿特拉津的 GB 值分别为 896 和 906 kJ/mol,933 和 987 kJ/mol;通过量子力学计算,阿特拉津的 GB 值为 913 kJ/mol。与主要脂质成分磷脂酰胆碱的 GB 值(GBPC = 1044.7 kJ/mol)相比,阿特拉津的实验和计算所确定的 GB 值要低得多,因此在含有极性脂质的生物样品中容易受到离子抑制。
{"title":"Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity.","authors":"Timo Weintraut, Sven Heiles, Dennis Gerbig, Anja Henss, Johannes Junck, Rolf-Alexander Düring, Marcus Rohnke","doi":"10.1116/6.0003437","DOIUrl":"https://doi.org/10.1116/6.0003437","url":null,"abstract":"<p><p>In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine's experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface for the Biointerphases special topic collection on polymeric biointerfaces - a collection in celebration of Nicholas D. Spencer's career. 为纪念尼古拉斯-D-斯宾塞的职业生涯而出版的《生物界面》专题集《聚合物生物界面》作序。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1116/6.0003375
Tobias Weidner
{"title":"Preface for the Biointerphases special topic collection on polymeric biointerfaces - a collection in celebration of Nicholas D. Spencer's career.","authors":"Tobias Weidner","doi":"10.1116/6.0003375","DOIUrl":"10.1116/6.0003375","url":null,"abstract":"","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ Fourier transform infrared-attenuated total reflection spectroscopy and modeling investigation of protein adsorption: Case of expanded bovine serum albumin on titanium dioxide anatase. 蛋白质吸附的原位傅立叶变换红外全反射光谱和模型研究:二氧化钛锐钛矿上的膨胀牛血清白蛋白案例。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1116/6.0003020
Moustafa Tadjine, Fatima Bouzidi, Abderrezak Berbri, Hamid Nehmar, Ahmed Bouhekka

The purpose of this experimental and modeling research is to study the pH effect and to determine the surface coverage plus the adsorption constant (Ka) of bovine serum albumin (BSA) protein adsorbed on TiO2 anatase surface, respectively. In situ Fourier transform infrared-attenuated total reflection spectroscopy in a flow-through cell was used to study the BSA adsorption on porous TiO2 anatase films. The experiments were performed in water solution, under different pH values, at a concentration of 10-6 mol/l. Theoretically, we extended the two-state model, based on a system of coupled differential equations, by adding a desorption parameter Kd2, for unfolded state. The model was solved taking into account the adsorption (Ka), desorption (Kd1,2), transformation (Kf) coefficients, and the initial solution protein concentration (C0). The findings clearly illustrated that the solution pH drastically changed the behavior of BSA adsorption, whereas the mathematical analytical solutions allowed us to determine the native state (θ1), the unfolded state (θ2), and the full one (θ) surface coverages. Finally, a good application of the approximated model on the experimental work, expanded BSA adsorbed on TiO2 anatase at pH = 1.7, indicated a value of Ka = (408.36 ± 0.996) × 102 mol-1 l min-1.

本实验和建模研究的目的是研究 pH 值效应,并分别确定牛血清白蛋白(BSA)在二氧化钛锐钛矿表面的表面覆盖率和吸附常数(Ka)。在流动池中使用原位傅立叶变换红外-衰减全反射光谱来研究 BSA 在多孔二氧化钛锐钛矿薄膜上的吸附情况。实验在不同 pH 值、浓度为 10-6 mol/l 的水溶液中进行。从理论上讲,我们扩展了基于耦合微分方程系统的双态模型,增加了一个解吸参数 Kd2,以表示未折叠状态。模型的求解考虑了吸附系数(Ka)、解吸系数(Kd1,2)、转化系数(Kf)以及溶液中蛋白质的初始浓度(C0)。研究结果清楚地表明,溶液的 pH 值极大地改变了 BSA 的吸附行为,而数学分析方案则使我们能够确定原生态 (θ1)、展开态 (θ2)和完全态 (θ)的表面覆盖率。最后,在 pH = 1.7 的条件下,将近似模型很好地应用于吸附在锐钛矿二氧化钛上的膨胀 BSA 的实验工作,结果表明 Ka 值 = (408.36 ± 0.996) × 102 mol-1 l min-1。
{"title":"In situ Fourier transform infrared-attenuated total reflection spectroscopy and modeling investigation of protein adsorption: Case of expanded bovine serum albumin on titanium dioxide anatase.","authors":"Moustafa Tadjine, Fatima Bouzidi, Abderrezak Berbri, Hamid Nehmar, Ahmed Bouhekka","doi":"10.1116/6.0003020","DOIUrl":"10.1116/6.0003020","url":null,"abstract":"<p><p>The purpose of this experimental and modeling research is to study the pH effect and to determine the surface coverage plus the adsorption constant (Ka) of bovine serum albumin (BSA) protein adsorbed on TiO2 anatase surface, respectively. In situ Fourier transform infrared-attenuated total reflection spectroscopy in a flow-through cell was used to study the BSA adsorption on porous TiO2 anatase films. The experiments were performed in water solution, under different pH values, at a concentration of 10-6 mol/l. Theoretically, we extended the two-state model, based on a system of coupled differential equations, by adding a desorption parameter Kd2, for unfolded state. The model was solved taking into account the adsorption (Ka), desorption (Kd1,2), transformation (Kf) coefficients, and the initial solution protein concentration (C0). The findings clearly illustrated that the solution pH drastically changed the behavior of BSA adsorption, whereas the mathematical analytical solutions allowed us to determine the native state (θ1), the unfolded state (θ2), and the full one (θ) surface coverages. Finally, a good application of the approximated model on the experimental work, expanded BSA adsorbed on TiO2 anatase at pH = 1.7, indicated a value of Ka = (408.36 ± 0.996) × 102 mol-1 l min-1.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biointerphases
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1