Lately, magnetic nanoparticle (MNP) hyperthermia gained much attention because of its therapeutic efficiency. It is challenging to predict all the treatment parameters during the actual therapeutic environment. Hence, the numerical approaches can be utilized to optimize various parameters of interest. In the present research, MNP hyperthermia on a cancerous tumor placed inside the human brain is investigated numerically using a realistically shaped model for the head layers and the tumor. Applying the boundary conditions, a steady-state Pennes's bioheat transfer equation is solved using the finite element method scheme. The effects of MNP injection volume and location on tumor thermal distribution are examined and discussed in detail. The total volume of the brain tumor is 5990 mm3. Three different volumes of injection per point, namely, 0.6, 1.2, and 3 μl, as well as several injection points, are performed. It is observed that choosing a higher number of MNP injection points affects the temperature distribution in terms of uniformity. In contrast, an accurate injection volume provides lower temperatures for the treatment of cancerous tissue. Moreover, it is concluded that interfaces between the different layers of the anatomically correct brain model play a critical role in thermal therapy. Based on the obtained results, it is concluded that the optimal condition for MNP hyperthermia of a cancerous tumor with a volume of 5990 mm3 is the total injection volume of 80 μl through 20 different points all over the brain tumor considering an injection volume of 4 μl for each point.