Jie Li, Leah N Barlow, Miguel Martinez Santos, Kyla N Sask
The surface of polydimethylsiloxane (PDMS) can be modified to immobilize proteins; however, most existing approaches are limited to complex reactions and achieving multifunctional modifications is challenging. This work applies a simple technique to modify PDMS using polydopamine (PDA) and investigates immobilization of multiple proteins. The surfaces were characterized in detail and stability was assessed, demonstrating that in a buffer solution, PDA modification was maintained without an effect on surface properties. Bovine serum albumin (BSA) and bovine fetuin-A (Fet-A) were used as model biomolecules for simultaneous or sequential immobilization and to understand their use for surface backfilling and functionalization. Based on 125I radiolabeling, amounts of BSA and Fet-A on PDA were determined to be close to double that were obtained on control PDMS surfaces. Following elution with sodium dodecyl sulfate, around 67% of BSA and 63% of Fet-A were retained on the surface. The amount of immobilized protein was influenced by the process (simultaneous or sequential) and surface affinity of the proteins. With simultaneous modification, a balanced level of both proteins could be achieved, whereas with the sequential process, the initially immobilized protein was more strongly attached. After incubation with plasma and fetal bovine serum, the PDA-modified surfaces maintained over 90% of the proteins immobilized. This demonstrates that the biological environments also play an important role in the binding and stability of conjugated proteins. This combination of PDA and surface immobilization methods provides fundamental knowledge for tailoring multifunctional PDMS-based biomaterials with applications in cell-material interactions, biosensing, and medical devices.
{"title":"Polydopamine modification of polydimethylsiloxane for multifunctional biomaterials: Immobilization and stability of albumin and fetuin-A on modified surfaces.","authors":"Jie Li, Leah N Barlow, Miguel Martinez Santos, Kyla N Sask","doi":"10.1116/6.0003078","DOIUrl":"10.1116/6.0003078","url":null,"abstract":"<p><p>The surface of polydimethylsiloxane (PDMS) can be modified to immobilize proteins; however, most existing approaches are limited to complex reactions and achieving multifunctional modifications is challenging. This work applies a simple technique to modify PDMS using polydopamine (PDA) and investigates immobilization of multiple proteins. The surfaces were characterized in detail and stability was assessed, demonstrating that in a buffer solution, PDA modification was maintained without an effect on surface properties. Bovine serum albumin (BSA) and bovine fetuin-A (Fet-A) were used as model biomolecules for simultaneous or sequential immobilization and to understand their use for surface backfilling and functionalization. Based on 125I radiolabeling, amounts of BSA and Fet-A on PDA were determined to be close to double that were obtained on control PDMS surfaces. Following elution with sodium dodecyl sulfate, around 67% of BSA and 63% of Fet-A were retained on the surface. The amount of immobilized protein was influenced by the process (simultaneous or sequential) and surface affinity of the proteins. With simultaneous modification, a balanced level of both proteins could be achieved, whereas with the sequential process, the initially immobilized protein was more strongly attached. After incubation with plasma and fetal bovine serum, the PDA-modified surfaces maintained over 90% of the proteins immobilized. This demonstrates that the biological environments also play an important role in the binding and stability of conjugated proteins. This combination of PDA and surface immobilization methods provides fundamental knowledge for tailoring multifunctional PDMS-based biomaterials with applications in cell-material interactions, biosensing, and medical devices.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This Tutorial focuses on the use of secondary ion mass spectrometry for the analysis of cellular and tissue samples. The Tutorial aims to cover the considerations in sample preparation analytical set up and some specific aspects of data interpretation associated with such analysis.
{"title":"Cell and tissue imaging by secondary ion mass spectrometry.","authors":"Inci Barut, John S Fletcher","doi":"10.1116/6.0003140","DOIUrl":"10.1116/6.0003140","url":null,"abstract":"<p><p>This Tutorial focuses on the use of secondary ion mass spectrometry for the analysis of cellular and tissue samples. The Tutorial aims to cover the considerations in sample preparation analytical set up and some specific aspects of data interpretation associated with such analysis.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antra Patel, Bhavana Bhavanam, Trevor Keenan, Venkat Maruthamuthu
Cell adhesion is of fundamental importance in cell and tissue organization and for designing cell-laden constructs for tissue engineering. Prior methods to assess cell adhesion strength for strongly adherent cells using hydrodynamic shear flow either involved the use of specialized flow devices to generate high shear stress or used simpler implementations like larger height parallel plate chambers that enable multihour cell culture but generate low wall shear stress and are, hence, more applicable for weakly adherent cells. Here, we propose a shear flow assay for adhesion strength assessment of strongly adherent cells that employs off-the-shelf parallel plate chambers for shear flow as well as simultaneous trypsin treatment to tune down the adhesion strength of cells. We implement the assay with a strongly adherent cell type and show that wall shear stress in the 0.07-7 Pa range is sufficient to dislodge the cells with simultaneous trypsin treatment. Imaging of cells over a square centimeter area allows cell morphological analysis of hundreds of cells. We show that the cell area of cells that are dislodged, on average, does not monotonically increase with wall shear stress at the higher end of wall shear stresses used and suggest that this can be explained by the likely higher resistance of high circularity cells to trypsin digestion. The adhesion strength assay proposed can be used to assess the adhesion strength of both weakly and strongly adherent cell types and has the potential to be adapted for substrate stiffness-dependent adhesion strength assessment in mechanobiology studies.
细胞粘附对于细胞和组织的组织以及设计用于组织工程的细胞负载构建物至关重要。之前使用流体动力剪切流评估强粘附细胞粘附强度的方法要么涉及使用专门的流体设备产生高剪切应力,要么使用更简单的实施方法,如可进行多小时细胞培养但产生低壁剪切应力的较大高度平行板室,因此更适用于弱粘附细胞。在这里,我们提出了一种用于评估强粘附细胞粘附强度的剪切流试验,该试验采用现成的平行板室进行剪切流,并同时进行胰蛋白酶处理,以降低细胞的粘附强度。我们用一种强粘附细胞类型进行了实验,结果表明,0.07-7 Pa 范围内的细胞壁剪切应力足以使细胞脱落,并同时进行胰蛋白酶处理。在一平方厘米的区域内对细胞进行成像,可对数百个细胞进行形态分析。我们发现,在较高的壁剪切应力下,脱落细胞的平均面积不会随壁剪切应力的增加而单调增加,这是因为高圆周率细胞对胰蛋白酶消化的阻力可能更大。所提出的粘附强度测定方法可用于评估弱粘附和强粘附细胞类型的粘附强度,并有可能在机械生物学研究中用于评估依赖于基质硬度的粘附强度。
{"title":"Integrating shear flow and trypsin treatment to assess cell adhesion strength.","authors":"Antra Patel, Bhavana Bhavanam, Trevor Keenan, Venkat Maruthamuthu","doi":"10.1116/6.0003028","DOIUrl":"10.1116/6.0003028","url":null,"abstract":"<p><p>Cell adhesion is of fundamental importance in cell and tissue organization and for designing cell-laden constructs for tissue engineering. Prior methods to assess cell adhesion strength for strongly adherent cells using hydrodynamic shear flow either involved the use of specialized flow devices to generate high shear stress or used simpler implementations like larger height parallel plate chambers that enable multihour cell culture but generate low wall shear stress and are, hence, more applicable for weakly adherent cells. Here, we propose a shear flow assay for adhesion strength assessment of strongly adherent cells that employs off-the-shelf parallel plate chambers for shear flow as well as simultaneous trypsin treatment to tune down the adhesion strength of cells. We implement the assay with a strongly adherent cell type and show that wall shear stress in the 0.07-7 Pa range is sufficient to dislodge the cells with simultaneous trypsin treatment. Imaging of cells over a square centimeter area allows cell morphological analysis of hundreds of cells. We show that the cell area of cells that are dislodged, on average, does not monotonically increase with wall shear stress at the higher end of wall shear stresses used and suggest that this can be explained by the likely higher resistance of high circularity cells to trypsin digestion. The adhesion strength assay proposed can be used to assess the adhesion strength of both weakly and strongly adherent cell types and has the potential to be adapted for substrate stiffness-dependent adhesion strength assessment in mechanobiology studies.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 6","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.
{"title":"\"Nonlinear\" pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces.","authors":"Andrew P Carpenter, Thaddeus W Golbek","doi":"10.1116/6.0003059","DOIUrl":"10.1116/6.0003059","url":null,"abstract":"<p><p>Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
{"title":"Development of corneal contact lens materials and current clinical application of contact lenses: A review.","authors":"Weichen Yuan, Fangkun Zhao, Xiaoyu Liu, Jun Xu","doi":"10.1116/6.0002618","DOIUrl":"10.1116/6.0002618","url":null,"abstract":"<p><p>Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Per- and polyfluoroalkyl substances (PFAS) at the interface of biological and environmental systems.","authors":"Onur Apul, Caitlin Howell, M Dilara Hatinoglu","doi":"10.1116/6.0003104","DOIUrl":"10.1116/6.0003104","url":null,"abstract":"","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nucleic acid-based therapies hold promise for treating previously intractable diseases but require effective delivery vectors to protect the therapeutic agents and ensure efficient transfection. Cationic polymeric vectors are particularly notable for their adaptability, high transfection efficiency, and low cost, but their positive charge often attracts blood proteins, causing aggregation and reduced transfection efficiency. Addressing this, we designed an anionic peptide-grafted dextran (Dex-LipE5H) to serve as a cross-linkable coating to bolster the stability of cationic polymer/nucleic acid complexes. The Dex-LipE5H was synthesized through a Michael addition reaction, combining an anionic peptide (LipE5H) with dextran modified by divinyl sulfone. We demonstrated Dex-lipE5H utility in a novel ternary nucleic acid delivery system, CDex-LipE5H/PEI/nucleic acid. CDex-LipE5H/PEI/nucleic acid demonstrated lower cytotoxicity and superior anti-protein absorption ability compared to PEI/pDNA and Dex-LipE5H/PEI/pDNA. Most notably, the crosslinked CDex-LipE5H/PEI/pDNA demonstrated remarkable transfection performance in HepG2 cells, which poses significant transfection challenges, even in a medium with 20% serum. This system's effective siRNA interference performance was further validated through a PCSK9 gene knockdown assay. This investigation provides novel insights and contributes to the design of cost-effective, next-generation nucleic acid delivery systems with enhanced blood stability and transfection efficiency.
{"title":"Elevating nucleic acid delivery via a stable anionic peptide-dextran ternary system.","authors":"Alex Cheng, Ying Liu, Hai-Qing Song","doi":"10.1116/6.0003084","DOIUrl":"10.1116/6.0003084","url":null,"abstract":"<p><p>Nucleic acid-based therapies hold promise for treating previously intractable diseases but require effective delivery vectors to protect the therapeutic agents and ensure efficient transfection. Cationic polymeric vectors are particularly notable for their adaptability, high transfection efficiency, and low cost, but their positive charge often attracts blood proteins, causing aggregation and reduced transfection efficiency. Addressing this, we designed an anionic peptide-grafted dextran (Dex-LipE5H) to serve as a cross-linkable coating to bolster the stability of cationic polymer/nucleic acid complexes. The Dex-LipE5H was synthesized through a Michael addition reaction, combining an anionic peptide (LipE5H) with dextran modified by divinyl sulfone. We demonstrated Dex-lipE5H utility in a novel ternary nucleic acid delivery system, CDex-LipE5H/PEI/nucleic acid. CDex-LipE5H/PEI/nucleic acid demonstrated lower cytotoxicity and superior anti-protein absorption ability compared to PEI/pDNA and Dex-LipE5H/PEI/pDNA. Most notably, the crosslinked CDex-LipE5H/PEI/pDNA demonstrated remarkable transfection performance in HepG2 cells, which poses significant transfection challenges, even in a medium with 20% serum. This system's effective siRNA interference performance was further validated through a PCSK9 gene knockdown assay. This investigation provides novel insights and contributes to the design of cost-effective, next-generation nucleic acid delivery systems with enhanced blood stability and transfection efficiency.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mary Jane Shultz, Patrick Bisson, Jing Wang, Joam Marmolejos, Rebecca G Davies, Emma Gubbins, Ziqing Xiong
An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.
Wolfgang Pauli经常引用的一句话是,上帝制造了体积,但表面是魔鬼发明的。虽然幽默,但这句话确实反映了对表面细节描绘的沮丧。在过去的几十年里,随着许多技术为表面的相互作用和反应提供线索,这种挫败感已经开始减弱。这些技术通常需要大量的先验知识。不规则或柔软表面上的复杂混合物——复杂的界面因此代表了最后的边界。两种光学技术:和频产生(SFG)和二次谐波产生(SHG)开始揭开复杂界面的面纱。在这些技术中,在红外中进行一次激发的SFG有可能提供精细的分子和部分特异性振动数据。该观点旨在帮助新来者在该领域获得吸引力,并展示高相位分辨率的影响。它从光诱导表面偏振的基本描述开始,这是SFG的核心。当输入场足够强以至于相互作用是非线性的时,产生和频。这种非线性对解开数据以揭示分子水平的图像来说是一个挑战。描述了三种揭示表面相互作用的高相位分辨率方法。
{"title":"High phase resolution: Probing interactions in complex interfaces with sum frequency generation.","authors":"Mary Jane Shultz, Patrick Bisson, Jing Wang, Joam Marmolejos, Rebecca G Davies, Emma Gubbins, Ziqing Xiong","doi":"10.1116/6.0002963","DOIUrl":"10.1116/6.0002963","url":null,"abstract":"<p><p>An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole-an active component in eucalyptus oil-exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.
{"title":"Using 1,8-cineole plasma with both pulsed and continuous depositions to modify commercially available wound dressing materials.","authors":"Mia-Rose Kayaian, Morgan J Hawker","doi":"10.1116/6.0003009","DOIUrl":"10.1116/6.0003009","url":null,"abstract":"<p><p>The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole-an active component in eucalyptus oil-exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 5","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simin Moavenzadeh Ghaznavi, Charity Zimmerman, Molly E Shea, Jean D MacRae, John M Peckenham, Caroline L Noblet, Onur G Apul, A Dianne Kopec
This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.
{"title":"Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem.","authors":"Simin Moavenzadeh Ghaznavi, Charity Zimmerman, Molly E Shea, Jean D MacRae, John M Peckenham, Caroline L Noblet, Onur G Apul, A Dianne Kopec","doi":"10.1116/6.0002796","DOIUrl":"https://doi.org/10.1116/6.0002796","url":null,"abstract":"<p><p>This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 4","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10054731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}