首页 > 最新文献

BMC Cancer最新文献

英文 中文
Improving prediction accuracy of radiation-induced temporal lobe injury in nasopharyngeal carcinoma using ADC-based deep learning and dosiomics. 基于adc的深度学习和剂量组学提高鼻咽癌辐射诱导颞叶损伤的预测准确性。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-28 DOI: 10.1186/s12885-026-15599-x
Li Wang, Yang Li, Ting Qiu, Junyi Liu, Jiawei Zhou, Han Gao, Hongliang Yu, Yinsu Zhu, Baozhou Sun, Guanyu Yang, Shengfu Huang, Lirong Wu, Li Sun, Xia He

Background: To investigate the potential of apparent diffusion coefficient (ADC) map-based deep learning and dose distribution-based dosiomics in predicting radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC).

Methods: This retrospective study included 3578 NPC patients from Jiangsu Cancer Hospital receiving intensity-modulated radiation therapy (IMRT). Ninety-four RTLI patients were recruited based on inclusion criteria and matched 1:1 with 97 control subjects using propensity scores. Patients were randomly assigned to the training cohort (n = 135) and the validation cohort (n = 59). Deep transfer learning (DTL) features and dosiomics features were extracted from ADC map and three-dimensional dose distribution, respectively. Pearson's correlation coefficient and the least absolute shrinkage and selection operator (LASSO) regression were employed to identify predictive features. Subsequently, eight machine learning classification models were trained to establish a prediction framework, encompassing Support Vector Machine, K-Nearest Neighbor, Random Forest, Extremely Randomized Trees, eXtreme Gradient Boosting, Light Gradient Boosting Machine, Adaptive Boosting and Multilayer Perceptron. The performance of clinical, DTL, dosiomics and feature fusion model was compared by the area under the curve (AUC).

Results: We constructed six pre-trained transfer learning networks and extracted DTL features, respectively. The results showed that pre-trained WideResNet 101 exhibited superior performance with an AUC of 0.786 in the validation cohort. The clinical model based on D1cc and induction chemotherapy demonstrated an AUC of 0.794 and the dosiomics model demonstrated an AUC of 0.903. Features fusion model demonstrated the highest AUC values in both the training (0.988) and validation (0.940) cohorts.

Conclusions: The fusion model based on pretreatment ADC map and dose distribution provided a promising way to predict RTLI in NPC patients receiving IMRT, which can support clinicians in making decisions to develop individualized treatment plans and implement preventive measures.

背景:探讨基于表观扩散系数(ADC)图谱的深度学习和基于剂量分布的剂量组学在鼻咽癌(NPC)辐射诱导颞叶损伤(RTLI)预测中的潜力。方法:回顾性研究江苏省肿瘤医院接受调强放疗(IMRT)的鼻咽癌患者3578例。根据纳入标准招募94名RTLI患者,并使用倾向评分与97名对照受试者进行1:1匹配。患者被随机分配到训练组(n = 135)和验证组(n = 59)。分别从ADC图和三维剂量分布中提取深度迁移学习(DTL)特征和剂量组学特征。使用Pearson相关系数和最小绝对收缩和选择算子(LASSO)回归来识别预测特征。随后,训练了8个机器学习分类模型,包括支持向量机、k近邻、随机森林、极端随机树、极端梯度增强、轻梯度增强机、自适应增强和多层感知机,建立了预测框架。通过曲线下面积(AUC)比较临床模型、DTL模型、剂量组学模型和特征融合模型的性能。结果:我们构建了6个预训练迁移学习网络,并分别提取了DTL特征。结果表明,预训练的WideResNet 101在验证队列中表现出较好的性能,AUC为0.786。基于D1cc和诱导化疗的临床模型AUC为0.794,剂量组学模型AUC为0.903。特征融合模型在训练组(0.988)和验证组(0.940)的AUC值均最高。结论:基于预处理ADC图和剂量分布的融合模型为预测鼻咽癌IMRT患者的RTLI提供了一种有希望的方法,可以支持临床医生制定个性化的治疗方案和实施预防措施。
{"title":"Improving prediction accuracy of radiation-induced temporal lobe injury in nasopharyngeal carcinoma using ADC-based deep learning and dosiomics.","authors":"Li Wang, Yang Li, Ting Qiu, Junyi Liu, Jiawei Zhou, Han Gao, Hongliang Yu, Yinsu Zhu, Baozhou Sun, Guanyu Yang, Shengfu Huang, Lirong Wu, Li Sun, Xia He","doi":"10.1186/s12885-026-15599-x","DOIUrl":"https://doi.org/10.1186/s12885-026-15599-x","url":null,"abstract":"<p><strong>Background: </strong>To investigate the potential of apparent diffusion coefficient (ADC) map-based deep learning and dose distribution-based dosiomics in predicting radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC).</p><p><strong>Methods: </strong>This retrospective study included 3578 NPC patients from Jiangsu Cancer Hospital receiving intensity-modulated radiation therapy (IMRT). Ninety-four RTLI patients were recruited based on inclusion criteria and matched 1:1 with 97 control subjects using propensity scores. Patients were randomly assigned to the training cohort (n = 135) and the validation cohort (n = 59). Deep transfer learning (DTL) features and dosiomics features were extracted from ADC map and three-dimensional dose distribution, respectively. Pearson's correlation coefficient and the least absolute shrinkage and selection operator (LASSO) regression were employed to identify predictive features. Subsequently, eight machine learning classification models were trained to establish a prediction framework, encompassing Support Vector Machine, K-Nearest Neighbor, Random Forest, Extremely Randomized Trees, eXtreme Gradient Boosting, Light Gradient Boosting Machine, Adaptive Boosting and Multilayer Perceptron. The performance of clinical, DTL, dosiomics and feature fusion model was compared by the area under the curve (AUC).</p><p><strong>Results: </strong>We constructed six pre-trained transfer learning networks and extracted DTL features, respectively. The results showed that pre-trained WideResNet 101 exhibited superior performance with an AUC of 0.786 in the validation cohort. The clinical model based on D<sub>1cc</sub> and induction chemotherapy demonstrated an AUC of 0.794 and the dosiomics model demonstrated an AUC of 0.903. Features fusion model demonstrated the highest AUC values in both the training (0.988) and validation (0.940) cohorts.</p><p><strong>Conclusions: </strong>The fusion model based on pretreatment ADC map and dose distribution provided a promising way to predict RTLI in NPC patients receiving IMRT, which can support clinicians in making decisions to develop individualized treatment plans and implement preventive measures.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146131272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term outcomes and anorectal functional status of patients with anal squamous cell carcinoma treated with the modern technique of intensity-modulated radiotherapy. 现代调强放疗技术治疗肛门鳞状细胞癌的远期疗效及肛肠功能状况。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s12885-026-15643-w
Tongzhen Xu, Jinming Shi, Huiying Ma, Jiacheng Shuai, Shulian Wang, Yongwen Song, Yueping Liu, Hui Fang, Ningning Lu, Shunan Qi, Bo Chen, Yirui Zhai, Wenwen Zhang, Hao Jing, Yexiong Li, Ning Li, Yuan Tang, Jing Jin
{"title":"Long-term outcomes and anorectal functional status of patients with anal squamous cell carcinoma treated with the modern technique of intensity-modulated radiotherapy.","authors":"Tongzhen Xu, Jinming Shi, Huiying Ma, Jiacheng Shuai, Shulian Wang, Yongwen Song, Yueping Liu, Hui Fang, Ningning Lu, Shunan Qi, Bo Chen, Yirui Zhai, Wenwen Zhang, Hao Jing, Yexiong Li, Ning Li, Yuan Tang, Jing Jin","doi":"10.1186/s12885-026-15643-w","DOIUrl":"https://doi.org/10.1186/s12885-026-15643-w","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and validation of a prediction model for postoperative complications of elderly patients with locally advanced esophageal squamous cell carcinoma based on POSSUM system and inflammatory factors. 基于POSSUM系统和炎症因子的老年局部晚期食管鳞状细胞癌术后并发症预测模型的构建与验证
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s12885-026-15559-5
Ying Zhang, Haifang Zhu, Fujuan Yang, Lei Yang
{"title":"Construction and validation of a prediction model for postoperative complications of elderly patients with locally advanced esophageal squamous cell carcinoma based on POSSUM system and inflammatory factors.","authors":"Ying Zhang, Haifang Zhu, Fujuan Yang, Lei Yang","doi":"10.1186/s12885-026-15559-5","DOIUrl":"https://doi.org/10.1186/s12885-026-15559-5","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Recurrence risk prediction in resected stage I-III melanoma utilizing circulating tumor DNA. 修正:利用循环肿瘤DNA预测切除的I-III期黑色素瘤的复发风险。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s12885-026-15635-w
Mengke Zhao, Lianjun Zhao, Yueling Yang, Fufeng Wang, Jiani Yin, Xiaoying Wu, Yu Ren, Xinyu Su, Yirong Wu, Luqiao Li, Rong Huang, Kelin Zheng, JiaYu Wang, Zhengyun Zou
{"title":"Correction to: Recurrence risk prediction in resected stage I-III melanoma utilizing circulating tumor DNA.","authors":"Mengke Zhao, Lianjun Zhao, Yueling Yang, Fufeng Wang, Jiani Yin, Xiaoying Wu, Yu Ren, Xinyu Su, Yirong Wu, Luqiao Li, Rong Huang, Kelin Zheng, JiaYu Wang, Zhengyun Zou","doi":"10.1186/s12885-026-15635-w","DOIUrl":"10.1186/s12885-026-15635-w","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"26 1","pages":"139"},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12849577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gb3-synthase A4GALT is an epigenetically regulated driver of tumor invasiveness in gastrointestinal cancer. gb3合成酶A4GALT是胃肠道肿瘤侵袭性的表观遗传调控驱动因子。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s12885-026-15600-7
Noah-David Hirsch, Markus Perl, Simon Holzinger, Christoph Barz, Stefan Enßle, Widya Johannes, Anja Conrad, Jonas J Unterholzner, Viktoria Obermeier, Markus Tschurtschenthaler, Ludger Johannes, Klaus-Peter Janssen
{"title":"The Gb3-synthase A4GALT is an epigenetically regulated driver of tumor invasiveness in gastrointestinal cancer.","authors":"Noah-David Hirsch, Markus Perl, Simon Holzinger, Christoph Barz, Stefan Enßle, Widya Johannes, Anja Conrad, Jonas J Unterholzner, Viktoria Obermeier, Markus Tschurtschenthaler, Ludger Johannes, Klaus-Peter Janssen","doi":"10.1186/s12885-026-15600-7","DOIUrl":"https://doi.org/10.1186/s12885-026-15600-7","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations between whole blood donation and cancer incidence: a systematic review. 全血捐献与癌症发病率之间的关系:一项系统综述。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-27 DOI: 10.1186/s12885-025-15515-9
Yasaman Moghaddasi, Abbas Dehghanian, Armaghan Vafafar, Mirza Ali Mofazzal Jahromi, Vahid Rahmanian
{"title":"Associations between whole blood donation and cancer incidence: a systematic review.","authors":"Yasaman Moghaddasi, Abbas Dehghanian, Armaghan Vafafar, Mirza Ali Mofazzal Jahromi, Vahid Rahmanian","doi":"10.1186/s12885-025-15515-9","DOIUrl":"https://doi.org/10.1186/s12885-025-15515-9","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased incidence of diabetes mellitus in hematological malignancies: a systematic review and meta-analysis. 血液学恶性肿瘤中糖尿病发病率增加:一项系统回顾和荟萃分析。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-26 DOI: 10.1186/s12885-026-15644-9
Zahra Moradi, Samaneh Toutounchian, Anahita Akhiani, Hannaneh Razaghi, Mohammad Ali Mamdooh, Parmida Bagheri, Maryam Barkhordar, Zahra Salehi
{"title":"Increased incidence of diabetes mellitus in hematological malignancies: a systematic review and meta-analysis.","authors":"Zahra Moradi, Samaneh Toutounchian, Anahita Akhiani, Hannaneh Razaghi, Mohammad Ali Mamdooh, Parmida Bagheri, Maryam Barkhordar, Zahra Salehi","doi":"10.1186/s12885-026-15644-9","DOIUrl":"https://doi.org/10.1186/s12885-026-15644-9","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between serum transferrin and overall survival in cancer patients: a multi-center cohort study. 癌症患者血清转铁蛋白与总生存率的关系:一项多中心队列研究。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-26 DOI: 10.1186/s12885-026-15608-z
Qianqian Zhao, Kai Sun, Xiaoxiao Wu, Fangqi Shen, Xi Chen, Chunhua Song, Xiaolin Wang, Hongxia Xu, Minghua Cong, Hanping Shi, Pingping Jia
{"title":"Association between serum transferrin and overall survival in cancer patients: a multi-center cohort study.","authors":"Qianqian Zhao, Kai Sun, Xiaoxiao Wu, Fangqi Shen, Xi Chen, Chunhua Song, Xiaolin Wang, Hongxia Xu, Minghua Cong, Hanping Shi, Pingping Jia","doi":"10.1186/s12885-026-15608-z","DOIUrl":"https://doi.org/10.1186/s12885-026-15608-z","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146046107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of certification of head and neck cancer centers on the survival of patients with a head and neck cancer. 头颈癌认证的影响主要集中在头颈癌患者的生存上。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-26 DOI: 10.1186/s12885-026-15624-z
Olaf Schoffer, Max Kemper, Michael Gerken, Veronika Bierbaum, Christoph Bobeth, Martin Rößler, Patrik Dröge, Thomas Ruhnke, Christian Günster, Kees Kleihues-van Tol, Chia-Jung Busch, Monika Klinkhammer-Schalke, Jochen Schmitt
{"title":"The effects of certification of head and neck cancer centers on the survival of patients with a head and neck cancer.","authors":"Olaf Schoffer, Max Kemper, Michael Gerken, Veronika Bierbaum, Christoph Bobeth, Martin Rößler, Patrik Dröge, Thomas Ruhnke, Christian Günster, Kees Kleihues-van Tol, Chia-Jung Busch, Monika Klinkhammer-Schalke, Jochen Schmitt","doi":"10.1186/s12885-026-15624-z","DOIUrl":"10.1186/s12885-026-15624-z","url":null,"abstract":"","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":"132"},"PeriodicalIF":3.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12837409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted paclitaxel delivery in ovarian cancer via AP1-functionalized elastin-like polypeptide nanocarriers: development and characterization. 通过ap1功能化弹性蛋白样多肽纳米载体靶向紫杉醇在卵巢癌中的传递:发展和表征。
IF 3.4 2区 医学 Q2 ONCOLOGY Pub Date : 2026-01-26 DOI: 10.1186/s12885-026-15615-0
Ridhima Goel, Shakeel Alvi, Rashid Ali, Pradeep Sharma, Jayanta Bhattacharyya, Vijaya Sarangthem, Thoudam Debraj Singh

Paclitaxel has been a cornerstone of ovarian cancer chemotherapy for over two decades. However, its clinical application is constrained by poor solubility and non-specific delivery, resulting in systemic toxicity and inconsistent therapeutic outcomes. Nanotechnology-based drug delivery systems have emerged as a promising strategy to address these limitations. In this study, we employed elastin-like polypeptide (ELP) nanocarriers, precisely modified with the tumor-targeting AP1 peptide, to deliver paclitaxel in ovarian cancer. ELPs are biologically inspired, genetically engineered polymers that can form nano-sized structures with controlled physicochemical properties, facilitating passive tumor targeting. The integration of the AP1 peptide, which specifically binds to the IL-4 receptor overexpressed in numerous cancers, enables active targeting of these nanocarriers, complementing the passive delivery approach. This investigation focused on the synthesis and characterization of paclitaxel delivery vehicles based on modified (A60) and unmodified (E60) ELPs. Paclitaxel (PTX) was conjugated to ELPs via a thiol-maleimide Michael-addition strategy. Both ELP-PTX formulations formed stable, monodisperse micelles, with A60-PTX nanoparticles measuring 28 ± 2.8 nm and E60-PTX nanoparticles measuring 46.8 ± 6.6 nm, as determined by TEM. DLS analysis further confirmed the narrow size distribution, evidenced by a single, narrow peak in the size distribution profile, indicating near homogeneity of the micellar population. In vitro binding analysis in SKOV-3 and OVCAR-3 ovarian cancer cells demonstrated significantly enhanced targeting capability with A60, exhibiting ~ 8.6-fold and ~ 2.7-fold higher cell binding than E60, respectively. Consistently, A60-PTX demonstrated superior cytotoxicity, with ~ 2.6-fold and ~ 1.4-fold lower IC50 values than E60-PTX in SKOV-3 (47 nM vs. 120 nM) and OVCAR-3 (45 nM vs. 62 nM), respectively. The relevance of the active targeting was further validated in agarose-based 3D spheroid models of the two cell lines with A60-PTX demonstrating approximately ~ 3-fold (SKOV-3) and ~ 2.5-fold (OVCAR-3) higher cytotoxicity compared to E60-PTX. Overall, this study highlights the potential of AP1-functionalized ELP nanocarriers to enhance the precision and therapeutic efficacy of paclitaxel delivery, offering a promising strategy for targeted ovarian cancer therapy.

二十多年来,紫杉醇一直是卵巢癌化疗的基石。然而,其临床应用受到溶解度差和非特异性递送的限制,导致全身毒性和治疗结果不一致。基于纳米技术的药物输送系统已经成为解决这些限制的一种有希望的策略。在这项研究中,我们使用弹性蛋白样多肽(ELP)纳米载体,精确修饰肿瘤靶向AP1肽,在卵巢癌中递送紫杉醇。elp是一种受生物学启发的基因工程聚合物,可以形成具有可控物理化学性质的纳米级结构,促进被动靶向肿瘤。在许多癌症中特异性结合IL-4受体的AP1肽的整合,使这些纳米载体能够主动靶向,补充了被动递送方法。本文主要研究了改性(A60)和未改性(E60) elp载体紫杉醇的合成与表征。紫杉醇(PTX)通过巯基-马来酰亚胺迈克尔加成策略与elp偶联。两种ELP-PTX配方均形成稳定的单分散胶束,通过透射电镜测定,A60-PTX纳米颗粒的粒径为28±2.8 nm, E60-PTX纳米颗粒的粒径为46.8±6.6 nm。DLS分析进一步证实了粒径分布的窄性,在粒径分布曲线上有一个单一的窄峰,表明胶束群体的均匀性。体外结合分析表明,A60对SKOV-3和OVCAR-3卵巢癌细胞的靶向能力显著增强,分别比E60的细胞结合能力高约8.6倍和约2.7倍。与此同时,A60-PTX在SKOV-3 (47 nM vs. 120 nM)和OVCAR-3 (45 nM vs. 62 nM)中的IC50值分别比E60-PTX低2.6倍和1.4倍,表现出更强的细胞毒性。在琼脂糖为基础的两种细胞系的三维球体模型中进一步验证了活性靶向的相关性,A60-PTX显示出比E60-PTX高约3倍(SKOV-3)和2.5倍(OVCAR-3)的细胞毒性。总之,本研究强调了ap1功能化ELP纳米载体在提高紫杉醇给药精度和治疗效果方面的潜力,为卵巢癌靶向治疗提供了一种有前景的策略。
{"title":"Targeted paclitaxel delivery in ovarian cancer via AP1-functionalized elastin-like polypeptide nanocarriers: development and characterization.","authors":"Ridhima Goel, Shakeel Alvi, Rashid Ali, Pradeep Sharma, Jayanta Bhattacharyya, Vijaya Sarangthem, Thoudam Debraj Singh","doi":"10.1186/s12885-026-15615-0","DOIUrl":"https://doi.org/10.1186/s12885-026-15615-0","url":null,"abstract":"<p><p>Paclitaxel has been a cornerstone of ovarian cancer chemotherapy for over two decades. However, its clinical application is constrained by poor solubility and non-specific delivery, resulting in systemic toxicity and inconsistent therapeutic outcomes. Nanotechnology-based drug delivery systems have emerged as a promising strategy to address these limitations. In this study, we employed elastin-like polypeptide (ELP) nanocarriers, precisely modified with the tumor-targeting AP1 peptide, to deliver paclitaxel in ovarian cancer. ELPs are biologically inspired, genetically engineered polymers that can form nano-sized structures with controlled physicochemical properties, facilitating passive tumor targeting. The integration of the AP1 peptide, which specifically binds to the IL-4 receptor overexpressed in numerous cancers, enables active targeting of these nanocarriers, complementing the passive delivery approach. This investigation focused on the synthesis and characterization of paclitaxel delivery vehicles based on modified (A60) and unmodified (E60) ELPs. Paclitaxel (PTX) was conjugated to ELPs via a thiol-maleimide Michael-addition strategy. Both ELP-PTX formulations formed stable, monodisperse micelles, with A60-PTX nanoparticles measuring 28 ± 2.8 nm and E60-PTX nanoparticles measuring 46.8 ± 6.6 nm, as determined by TEM. DLS analysis further confirmed the narrow size distribution, evidenced by a single, narrow peak in the size distribution profile, indicating near homogeneity of the micellar population. In vitro binding analysis in SKOV-3 and OVCAR-3 ovarian cancer cells demonstrated significantly enhanced targeting capability with A60, exhibiting ~ 8.6-fold and ~ 2.7-fold higher cell binding than E60, respectively. Consistently, A60-PTX demonstrated superior cytotoxicity, with ~ 2.6-fold and ~ 1.4-fold lower IC50 values than E60-PTX in SKOV-3 (47 nM vs. 120 nM) and OVCAR-3 (45 nM vs. 62 nM), respectively. The relevance of the active targeting was further validated in agarose-based 3D spheroid models of the two cell lines with A60-PTX demonstrating approximately ~ 3-fold (SKOV-3) and ~ 2.5-fold (OVCAR-3) higher cytotoxicity compared to E60-PTX. Overall, this study highlights the potential of AP1-functionalized ELP nanocarriers to enhance the precision and therapeutic efficacy of paclitaxel delivery, offering a promising strategy for targeted ovarian cancer therapy.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1