Pub Date : 2023-10-27DOI: 10.15376/biores.18.4.8515-8527
Victoria Conde-Ávila, Octavio Loera-Corral, Rubén Díaz, Carmen Sánchez
Cutinolytic esterase are enzymes utilized in a wide variety of industrial applications, and they are capable of degrading emerging environmental pollutants. Due to the application and importance of these enzymes, it is crucial to develop an efficient method for cutinase production using a cost-effective inductor and an efficient microbial production system. In this work, the growth and cutinolytic esterase production of Trichoderma harzianum were evaluated in glucose-yeast extract media containing different glyceryl monostearate (GMS) concentrations (1, 3, and 5 g/L). It was used as inducer in solid-state fermentation. A medium lacking GMS was used as control. Biomass production and enzyme productivity were higher in inducer-added (1 g/L) medium than in the control medium. T. harzianum produced constitutive and inducible cutinolytic esterase, in which production was enhanced by GMS. In GMS-added cultures, two bands with cutinolytic esterase activity (60 and 150 kDa approximately) were observed by zymography, which were not observed in control culture. GMS represents a promising inducer for cutinolytic esterase production by fungi. This research represents the first approach for the study of cutinolytic esterase production using a synthetic molecule as an inducer.
{"title":"Cutinolytic esterases are induced by growth of the fungus Trichoderma harzianum on glyceryl monostearate in solid-state fermentation","authors":"Victoria Conde-Ávila, Octavio Loera-Corral, Rubén Díaz, Carmen Sánchez","doi":"10.15376/biores.18.4.8515-8527","DOIUrl":"https://doi.org/10.15376/biores.18.4.8515-8527","url":null,"abstract":"Cutinolytic esterase are enzymes utilized in a wide variety of industrial applications, and they are capable of degrading emerging environmental pollutants. Due to the application and importance of these enzymes, it is crucial to develop an efficient method for cutinase production using a cost-effective inductor and an efficient microbial production system. In this work, the growth and cutinolytic esterase production of Trichoderma harzianum were evaluated in glucose-yeast extract media containing different glyceryl monostearate (GMS) concentrations (1, 3, and 5 g/L). It was used as inducer in solid-state fermentation. A medium lacking GMS was used as control. Biomass production and enzyme productivity were higher in inducer-added (1 g/L) medium than in the control medium. T. harzianum produced constitutive and inducible cutinolytic esterase, in which production was enhanced by GMS. In GMS-added cultures, two bands with cutinolytic esterase activity (60 and 150 kDa approximately) were observed by zymography, which were not observed in control culture. GMS represents a promising inducer for cutinolytic esterase production by fungi. This research represents the first approach for the study of cutinolytic esterase production using a synthetic molecule as an inducer.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"50 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.15376/biores.18.4.8503-8514
Siti Asiyah Kasdi, Seng Hua Lee, Paridah Md. Tahir, Syeed Saifulazry Osman al-Edrus, Sabiha Salim, Muhammad Aizat Abd Ghani, Balkis Fatomer A. Bakar, Wei Chen Lum, Jun Zhang
Thirteen bamboo species are reported to be in commercial use in Malaysia. However, Buluh madu (Gigantochloa albociliata) did not make to the list. As a species, G. albociliata is cultivated for its delicious bamboo shoot and is demonstrated to possess great potential to produce commercialised products such as laminated bamboo panel. Unlike common bamboo, which has hollow cylindrical culms, G. albociliata has thick culms at the base, with smaller hollow cavities at the top portion. Therefore, it can be easily converted into high-thickness strips, thus improving the processing efficiency of laminated bamboo. To validate this theory, the anatomical, chemical, physical, and mechanical properties of G. albociliata were evaluated. The round bamboo and strips from the top and bottom sections of the bamboo stem were tested. It was found that G. albociliata has a vascular bundle type similar to that of the Gigantochloa genus bamboo. The fibre in G. albociliata is long and strong. The top section of bamboo has longer fibres, a higher density, and a higher specific gravity than the bottom section. As a result, bamboo from the top section has greater bending strength than bamboo from the bottom section. The G. albociliata species was discovered to have high mechanical strength, dimensional stability, and good wettability, making it an ideal material for laminated products.
据报道,在马来西亚有13种竹子被用于商业用途。然而,Buluh madu (Gigantochloa albociliata)没有上榜。作为一个物种,G. albociliata因其美味的竹笋而被种植,并被证明具有生产竹板等商业化产品的巨大潜力。普通竹子的茎是空心的圆柱形,与之不同的是,白竹的根部茎厚,顶部有较小的空心。因此,它可以很容易地转换成高厚度的条,从而提高竹片的加工效率。为了验证这一理论,我们对白桦的解剖、化学、物理和力学性能进行了评估。对圆竹和竹茎上、下段的竹条进行了试验。结果表明,竹的维管束类型与竹的维管束类型相似。白桦的纤维长而结实。竹子的顶部比底部有更长的纤维,更高的密度和更高的比重。因此,顶部的竹子比底部的竹子具有更大的抗弯强度。该材料具有较高的机械强度、尺寸稳定性和良好的润湿性,是层压制品的理想材料。
{"title":"Characterization of the properties of Buluh Madu (Gigantochloa albociliata)","authors":"Siti Asiyah Kasdi, Seng Hua Lee, Paridah Md. Tahir, Syeed Saifulazry Osman al-Edrus, Sabiha Salim, Muhammad Aizat Abd Ghani, Balkis Fatomer A. Bakar, Wei Chen Lum, Jun Zhang","doi":"10.15376/biores.18.4.8503-8514","DOIUrl":"https://doi.org/10.15376/biores.18.4.8503-8514","url":null,"abstract":"Thirteen bamboo species are reported to be in commercial use in Malaysia. However, Buluh madu (Gigantochloa albociliata) did not make to the list. As a species, G. albociliata is cultivated for its delicious bamboo shoot and is demonstrated to possess great potential to produce commercialised products such as laminated bamboo panel. Unlike common bamboo, which has hollow cylindrical culms, G. albociliata has thick culms at the base, with smaller hollow cavities at the top portion. Therefore, it can be easily converted into high-thickness strips, thus improving the processing efficiency of laminated bamboo. To validate this theory, the anatomical, chemical, physical, and mechanical properties of G. albociliata were evaluated. The round bamboo and strips from the top and bottom sections of the bamboo stem were tested. It was found that G. albociliata has a vascular bundle type similar to that of the Gigantochloa genus bamboo. The fibre in G. albociliata is long and strong. The top section of bamboo has longer fibres, a higher density, and a higher specific gravity than the bottom section. As a result, bamboo from the top section has greater bending strength than bamboo from the bottom section. The G. albociliata species was discovered to have high mechanical strength, dimensional stability, and good wettability, making it an ideal material for laminated products.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"10 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.15376/biores.18.4.8458-8472
Seung-Rok Lee, Sae Byul Kang, Gyu-Seong Han
This study analyzed the particulates and gaseous emissions from 2005 to 2022 for power plants in South Korea (Utility scale: 125 MW (B-1) and 200 MW (B-2), respectively), which recently successfully converted from coal to wood pellets. The analysis showed that (1) NOx reduction was 78.9 to 90.0% (with outlet denitrification facility), (2) SOx reduction was 95.0 to 99.6% (without desulfurization facility condition), and (3) total suspended particles (TSP) reduction was 70.3 to 87.2% (with improved filtration and dust collection facility). This research confirmed the capabilities of wood pellets as a baseload power source and demonstrated their superior NOx reduction compared to coal. In the case of SOx, the desulfurization facility was discontinued at the stage of the fuel switch, so the value was affected by exogenous variable factors other than fuel. The TSP appears to be a combination of the ‘fine dust’ contained in the wood pellets and the performance of the filtration dust collector. The results suggest that fuel switching to wood pellets is a viable alternative to fossil fuels as an appropriate climate technology.
{"title":"Reducing particulates and gaseous emissions through fuel switching from coal to wood pellets at power plants in South Korea during 2005 to 2022","authors":"Seung-Rok Lee, Sae Byul Kang, Gyu-Seong Han","doi":"10.15376/biores.18.4.8458-8472","DOIUrl":"https://doi.org/10.15376/biores.18.4.8458-8472","url":null,"abstract":"This study analyzed the particulates and gaseous emissions from 2005 to 2022 for power plants in South Korea (Utility scale: 125 MW (B-1) and 200 MW (B-2), respectively), which recently successfully converted from coal to wood pellets. The analysis showed that (1) NOx reduction was 78.9 to 90.0% (with outlet denitrification facility), (2) SOx reduction was 95.0 to 99.6% (without desulfurization facility condition), and (3) total suspended particles (TSP) reduction was 70.3 to 87.2% (with improved filtration and dust collection facility). This research confirmed the capabilities of wood pellets as a baseload power source and demonstrated their superior NOx reduction compared to coal. In the case of SOx, the desulfurization facility was discontinued at the stage of the fuel switch, so the value was affected by exogenous variable factors other than fuel. The TSP appears to be a combination of the ‘fine dust’ contained in the wood pellets and the performance of the filtration dust collector. The results suggest that fuel switching to wood pellets is a viable alternative to fossil fuels as an appropriate climate technology.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"10 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134905945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.15376/biores.18.4.8409-8431
Nilay Tulukcu Yıldızbaş, Hülya Kılıç Hernández, Hülya Yıldırım, Yusuf Güneş
The current study emphasizes the inherent shortcomings of laws and policy approaches that are based on the premise that by increasing wood production, much more emission credits can be achieved by using wood in alternative uses. The article aims to exploit the financing of emission reductions, discuss how carbon sinks held in forest resources can be activated, traded, and financed, and explain how Turkiye’s forest carbon potential can be exploited. To make a comparative analysis of the situation of Turkiye at global level, Russian’s potential for carbon sequestration and its trade have been dealt with as a comparison by following quantitative research methodology. In this research, the calculation method has been used to determine the number of houses that are likely to be built in rural areas using wood materials, e.g., the construction of 100,000 houses with a construction area of 100 m2 per year. Consequently, the forest carbon generated by alternative scenarios contributes positively to the emission balance sheet, as well as climate change mitigation through carbon emission trade despite all legal and technical constraints. Although both countries have similar shortcomings of obtaining carbon credits and its trade, of course Russia has a promising situation in comparison with Turkiye with respect to the amount of carbon sequestered and the likelihood of its trade potential at global level.
{"title":"Carbon emissions trading potential of Turkiye's forest","authors":"Nilay Tulukcu Yıldızbaş, Hülya Kılıç Hernández, Hülya Yıldırım, Yusuf Güneş","doi":"10.15376/biores.18.4.8409-8431","DOIUrl":"https://doi.org/10.15376/biores.18.4.8409-8431","url":null,"abstract":"The current study emphasizes the inherent shortcomings of laws and policy approaches that are based on the premise that by increasing wood production, much more emission credits can be achieved by using wood in alternative uses. The article aims to exploit the financing of emission reductions, discuss how carbon sinks held in forest resources can be activated, traded, and financed, and explain how Turkiye’s forest carbon potential can be exploited. To make a comparative analysis of the situation of Turkiye at global level, Russian’s potential for carbon sequestration and its trade have been dealt with as a comparison by following quantitative research methodology. In this research, the calculation method has been used to determine the number of houses that are likely to be built in rural areas using wood materials, e.g., the construction of 100,000 houses with a construction area of 100 m2 per year. Consequently, the forest carbon generated by alternative scenarios contributes positively to the emission balance sheet, as well as climate change mitigation through carbon emission trade despite all legal and technical constraints. Although both countries have similar shortcomings of obtaining carbon credits and its trade, of course Russia has a promising situation in comparison with Turkiye with respect to the amount of carbon sequestered and the likelihood of its trade potential at global level.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"31 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134905947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.15376/biores.18.4.8444-8457
Mingtao Wang, Mingxi Li, Wenyan Cui, Xiaoyang Xiang, Huaqiong Duo
The goal of this work was to better meet the demand for rapid detection of surface defects in sawn timber in forestry production. This paper introduces a two-way feature fusion network based on the YOLO-v8 algorithm and proposes a feature fusion network model that combines the attention mechanism and loss function optimization. In this way it increases the tiny target detection head in order to more effectively detect small defective targets in the wood, thus realizing the model’s high-efficiency and low-consumption functional design. The results show that the improved TSW-YOLO-v8n model realized the identification of eight kinds of defects in sawn timber with a high efficiency of 91.10% mAP50 and an average detection 6 ms, which is 5.1% higher than the original model’s mAP50 and 1 ms shorter than the original model’s average detection time. The comparison of the original model and its mainstream algorithms shows that the model of this paper had better performance and better detection capability. Thus, the improved model achieved better overall performance and stronger detection ability, which provides a new idea for the development of detection technology in the forestry industry.
{"title":"TSW-YOLO-v8n: Optimization of detection algorithms for surface defects on sawn timber","authors":"Mingtao Wang, Mingxi Li, Wenyan Cui, Xiaoyang Xiang, Huaqiong Duo","doi":"10.15376/biores.18.4.8444-8457","DOIUrl":"https://doi.org/10.15376/biores.18.4.8444-8457","url":null,"abstract":"The goal of this work was to better meet the demand for rapid detection of surface defects in sawn timber in forestry production. This paper introduces a two-way feature fusion network based on the YOLO-v8 algorithm and proposes a feature fusion network model that combines the attention mechanism and loss function optimization. In this way it increases the tiny target detection head in order to more effectively detect small defective targets in the wood, thus realizing the model’s high-efficiency and low-consumption functional design. The results show that the improved TSW-YOLO-v8n model realized the identification of eight kinds of defects in sawn timber with a high efficiency of 91.10% mAP50 and an average detection 6 ms, which is 5.1% higher than the original model’s mAP50 and 1 ms shorter than the original model’s average detection time. The comparison of the original model and its mainstream algorithms shows that the model of this paper had better performance and better detection capability. Thus, the improved model achieved better overall performance and stronger detection ability, which provides a new idea for the development of detection technology in the forestry industry.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"146 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134905950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A hydrophobic and ultralight cellulose aerogel (CA) was reinforced by polyethyleneimine (PEI) and functionalized by methyltrimethoxysilane (MTMS). Adding PEI improved the mechanical strength and the elastic resilience of the resulting material due to the flexibility enhancement of the cellulose chains, which prevented the collapse of the pore structure and contributed to the uniform pore size distribution. The hydrophobic property of the aerogels with the functionalization of MTMS was improved, which can prevent the pore structure from collapsing due to the absorption of water. The maximum compression modulus of aerogel reached 1.1 MPa at the strain of 80%, and its hydrophobic water contact angle was up to 112°. The hydrophobic composite aerogels exhibited ultrahigh efficiency in sound absorption across a wide frequency range from 500 to 6300 Hz, and their average absorption coefficient was greater than 0.74. The light weight, high porosity, and environmentally friendly aerogels presented in this work are promising for efficient sound absorption. They have potential applications in noise pollution treatment.
{"title":"Hydrophobic microcrystalline cellulose/polyethyleneimine composite aerogel for effective sound absorption","authors":"Xin Jia, Guijiang Tang, Jinming Gao, Yangmiao Liao, Yu Zhang, Xueliang Jiang, Huan Yang, Dan Wu, Feng You, Peng Yu, Chu Yao","doi":"10.15376/biores.18.4.8432-8443","DOIUrl":"https://doi.org/10.15376/biores.18.4.8432-8443","url":null,"abstract":"A hydrophobic and ultralight cellulose aerogel (CA) was reinforced by polyethyleneimine (PEI) and functionalized by methyltrimethoxysilane (MTMS). Adding PEI improved the mechanical strength and the elastic resilience of the resulting material due to the flexibility enhancement of the cellulose chains, which prevented the collapse of the pore structure and contributed to the uniform pore size distribution. The hydrophobic property of the aerogels with the functionalization of MTMS was improved, which can prevent the pore structure from collapsing due to the absorption of water. The maximum compression modulus of aerogel reached 1.1 MPa at the strain of 80%, and its hydrophobic water contact angle was up to 112°. The hydrophobic composite aerogels exhibited ultrahigh efficiency in sound absorption across a wide frequency range from 500 to 6300 Hz, and their average absorption coefficient was greater than 0.74. The light weight, high porosity, and environmentally friendly aerogels presented in this work are promising for efficient sound absorption. They have potential applications in noise pollution treatment.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"37 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134906100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an important oil crop in China and the world, the harvesting problem of Camellia oleifera has attracted much attention. Research is needed on mechanical characteristics of harvesting equipment. Explicit dynamics was used to establish a finite element model under a simulated load response to the branch-pedicel-fruit system of C. oleifera to predict the fracture process at the pedicel junction. The separation mechanism of C. oleifera fruit was determined by measuring the constitutive parameters of fruit branches and pedicels and conducting separation experiments and explicit dynamics simulations on different hanging fruits. The maximum stress at the fruit pedicel was 1.14 MPa, and the goodness of fit between the simulation and experiment was approximately 89.5%, indicating that the branch-pedicel-fruit finite element model could accurately reflect the fruit shedding process and that the pedicel diameter was correlated positively with the separation force. This study provides technical parameters for the optimized design of existing C. oleifera harvesting equipment.
{"title":"Simulation and experimental analysis of Camellia oleifera fruit shedding based on finite element explicit dynamics","authors":"Fanyu Wang, Jianbo Zhou, Zhengkun Miao, Yanhe Liu, Haiyun Feng, Yongjie Lei, Tianyu Wang, Chenkun Xiong","doi":"10.15376/biores.18.4.8394-8408","DOIUrl":"https://doi.org/10.15376/biores.18.4.8394-8408","url":null,"abstract":"As an important oil crop in China and the world, the harvesting problem of Camellia oleifera has attracted much attention. Research is needed on mechanical characteristics of harvesting equipment. Explicit dynamics was used to establish a finite element model under a simulated load response to the branch-pedicel-fruit system of C. oleifera to predict the fracture process at the pedicel junction. The separation mechanism of C. oleifera fruit was determined by measuring the constitutive parameters of fruit branches and pedicels and conducting separation experiments and explicit dynamics simulations on different hanging fruits. The maximum stress at the fruit pedicel was 1.14 MPa, and the goodness of fit between the simulation and experiment was approximately 89.5%, indicating that the branch-pedicel-fruit finite element model could accurately reflect the fruit shedding process and that the pedicel diameter was correlated positively with the separation force. This study provides technical parameters for the optimized design of existing C. oleifera harvesting equipment.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"3 1-2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135463184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The standard values of mechanical properties are important performance indexes of original bamboo as a sustainable building material. Such values should be determined by combining the requirement of confidence level and the number of samples. In this paper, systematic tests of longitudinal compression, bending, longitudinal tensile, longitudinal shear, transverse compression, and transverse tensile of bamboo were performed. Based on parametric and non-parametric methods, the influencing factors of the standard values of mechanical properties of bamboo were analyzed. A calculation method and prediction formulas were proposed and the standard values of mechanical properties of bamboo were determined. The results show that the choice of parametric method to calculate the standard value of bamboo strength in the case of a small number of samples may lead to distortion of the results, and the use of non-parametric analysis can effectively reduce the error.
{"title":"Improved method to determine standard values of mechanical properties of original bamboo","authors":"Jianwei Li, Pengcheng Liu, Haodi Chen, Fangjie Cheng","doi":"10.15376/biores.18.4.8374-8393","DOIUrl":"https://doi.org/10.15376/biores.18.4.8374-8393","url":null,"abstract":"The standard values of mechanical properties are important performance indexes of original bamboo as a sustainable building material. Such values should be determined by combining the requirement of confidence level and the number of samples. In this paper, systematic tests of longitudinal compression, bending, longitudinal tensile, longitudinal shear, transverse compression, and transverse tensile of bamboo were performed. Based on parametric and non-parametric methods, the influencing factors of the standard values of mechanical properties of bamboo were analyzed. A calculation method and prediction formulas were proposed and the standard values of mechanical properties of bamboo were determined. The results show that the choice of parametric method to calculate the standard value of bamboo strength in the case of a small number of samples may lead to distortion of the results, and the use of non-parametric analysis can effectively reduce the error.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"26 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135462160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-22DOI: 10.15376/biores.18.4.8362-8373
Ali Hassanpoor Tichi, Meysam Razavi
The effect of nanocellulose on mechanical, physical, and morphological properties of composites made of walnut shell and cement was investigated. The mixing ratio of walnut shell as a lignocellulosic material with cement at three levels (10:90, 20:80, and 30:70) and nanocellulose at three levels (0%, 1%, and 3%, based on dry weight of cement) were considered as the variables. Boards were prepared according to the ISO 11925-2 (2020) specifications for the fire resistance properties and according to the DIN EN 634-1 (1995) specifications for the mechanical and physical properties. Morphological properties of composites and nano distribute were evaluated by scanning electron microscopic (SEM) imaging. The results showed that boards containing nanocellulose increased the mechanical properties compared with cement board without nanoreinforcement. The modulus of rupture, modulus of elasticity, and internal bonding of the boards decreased with increased walnut shell amount, and its maximum value was obtained when using 10% walnut shell. Nanocellulose remarkably reduced the fire resistance of the boards. The results from SEM showed that nanocellulose can fill the pores of the composite and create a uniform structure, and thus improved the strength of the boards.
研究了纳米纤维素对核桃壳-水泥复合材料力学、物理和形态性能的影响。作为木质纤维素材料的核桃壳与水泥在三个水平(10:90,20:80和30:70)和纳米纤维素在三个水平(0%,1%和3%,基于水泥的干重)的混合比例被认为是变量。根据ISO 11925-2(2020)耐火性能规范和DIN EN 634-1(1995)机械和物理性能规范制备板材。利用扫描电镜(SEM)对复合材料的形貌和纳米分布进行了表征。结果表明,与未添加纳米增强剂的水泥板相比,添加纳米纤维素的水泥板的力学性能有所提高。随着核桃壳用量的增加,板材的断裂模量、弹性模量和内粘接量均呈下降趋势,当核桃壳用量为10%时达到最大值。纳米纤维素显著降低了板材的耐火性。SEM结果表明,纳米纤维素可以填充复合材料的孔隙,形成均匀的结构,从而提高了复合材料的强度。
{"title":"Construction of cement composite using walnut shell reinforced with bacterial nanocellulose gel","authors":"Ali Hassanpoor Tichi, Meysam Razavi","doi":"10.15376/biores.18.4.8362-8373","DOIUrl":"https://doi.org/10.15376/biores.18.4.8362-8373","url":null,"abstract":"The effect of nanocellulose on mechanical, physical, and morphological properties of composites made of walnut shell and cement was investigated. The mixing ratio of walnut shell as a lignocellulosic material with cement at three levels (10:90, 20:80, and 30:70) and nanocellulose at three levels (0%, 1%, and 3%, based on dry weight of cement) were considered as the variables. Boards were prepared according to the ISO 11925-2 (2020) specifications for the fire resistance properties and according to the DIN EN 634-1 (1995) specifications for the mechanical and physical properties. Morphological properties of composites and nano distribute were evaluated by scanning electron microscopic (SEM) imaging. The results showed that boards containing nanocellulose increased the mechanical properties compared with cement board without nanoreinforcement. The modulus of rupture, modulus of elasticity, and internal bonding of the boards decreased with increased walnut shell amount, and its maximum value was obtained when using 10% walnut shell. Nanocellulose remarkably reduced the fire resistance of the boards. The results from SEM showed that nanocellulose can fill the pores of the composite and create a uniform structure, and thus improved the strength of the boards.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"55 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135462161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-22DOI: 10.15376/biores.18.4.8341-8361
Dodyk Pranowo, Tsamara Dhany Savira, None Sukardi
This research aimed to stabilize rice bran to reduce enzymatic reactions and optimize rice bran oil extraction using ultrasound-assisted extraction (UAE). The optimization was performed using response surface methodology (RSM). The results showed that rice bran oil has three primary fatty acids (oleic, linoleic, palmitic). Stabilization of rice bran using an autoclave (121 °C) for 10 min was recommended, with oil yield (14.2%), free fatty acid/FFA (0.41%), and gamma oryzanol (16.1 ppm). The storage significantly affected oil yield and gamma oryzanol but not FFA (p>0.05). The untreated and stabilized rice bran FFA during 18-day storage ranged from 1.33 to 5.73% and 0.41 to 1.12%. This confirmed that stabilization could inactivate lipase enzymes by reducing FFA. The optimization showed that the linear model best explained oil yield, total phenol content (TPC), and antioxidant activity (IC50), while the 2FI model was best fitted for gamma oryzanol. The optimal condition was found for UAE extraction at an amplitude of 90% and a time of 30 min. Verifying optimal conditions resulted in oil yield (13.6%), TPC (44.8 mg GAE/g), IC50 (207.2 ppm), and gamma oryzanol (15.8 ppm). Further in-depth studies are required to investigate using green solvents in the UAE and gamma oryzanol purification.
{"title":"Rice bran stabilization using autoclave and optimization of crude rice bran oil recovery using ultrasound-assisted extraction","authors":"Dodyk Pranowo, Tsamara Dhany Savira, None Sukardi","doi":"10.15376/biores.18.4.8341-8361","DOIUrl":"https://doi.org/10.15376/biores.18.4.8341-8361","url":null,"abstract":"This research aimed to stabilize rice bran to reduce enzymatic reactions and optimize rice bran oil extraction using ultrasound-assisted extraction (UAE). The optimization was performed using response surface methodology (RSM). The results showed that rice bran oil has three primary fatty acids (oleic, linoleic, palmitic). Stabilization of rice bran using an autoclave (121 °C) for 10 min was recommended, with oil yield (14.2%), free fatty acid/FFA (0.41%), and gamma oryzanol (16.1 ppm). The storage significantly affected oil yield and gamma oryzanol but not FFA (p>0.05). The untreated and stabilized rice bran FFA during 18-day storage ranged from 1.33 to 5.73% and 0.41 to 1.12%. This confirmed that stabilization could inactivate lipase enzymes by reducing FFA. The optimization showed that the linear model best explained oil yield, total phenol content (TPC), and antioxidant activity (IC50), while the 2FI model was best fitted for gamma oryzanol. The optimal condition was found for UAE extraction at an amplitude of 90% and a time of 30 min. Verifying optimal conditions resulted in oil yield (13.6%), TPC (44.8 mg GAE/g), IC50 (207.2 ppm), and gamma oryzanol (15.8 ppm). Further in-depth studies are required to investigate using green solvents in the UAE and gamma oryzanol purification.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135463183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}