We previously identified M.ApeKI from Aeropyum pernix K1 as a highly thermostable DNA (cytosine-5)-methyltransferase. M.ApeKI uses the type II restriction-modification system (R-M system), among the best-studied R-M systems. Although endonucleases generally utilize Mg (II) as a cofactor, several reports have shown that MTases exhibit different reactions in the presence of metal ions. This study aim was to evaluate the enzymatic properties of DNA (cytosine-5)-methyltransferase M.ApeKI from archaea in the presence of metal ions. We evaluated the influence of metal ions on the catalytic activity and DNA binding of M.ApeKI. The catalytic activity was inhibited by Cu (II), Mg (II), Mn (II), and Zn (II), each at 5 m m. DNA binding was more strongly inhibited by 5 m m Cu (II) and 10 m m Zn (II). To our knowledge, this is the first report showing that DNA binding of type II MTase is inhibited by metal ions.
此前,我们从Aeropyum pernix K1中发现了M.ApeKI,它是一种高热稳定性DNA(胞嘧啶-5)甲基转移酶。M.ApeKI 使用的是 II 型限制性修饰系统(R-M 系统),是研究得最清楚的 R-M 系统之一。虽然内切酶通常使用镁(II)作为辅助因子,但一些报告显示,MT 酶在金属离子存在的情况下会表现出不同的反应。本研究旨在评估古细菌 DNA(胞嘧啶-5)甲基转移酶 M.ApeKI 在金属离子存在下的酶学特性。我们评估了金属离子对 M.ApeKI 催化活性和 DNA 结合的影响。Cu (II)、Mg (II)、Mn (II)和 Zn (II)(各为 5 mM)抑制了催化活性。5 mM Cu (II) 和 10 mM Zn (II) 对 DNA 结合的抑制作用更强。据我们所知,这是首次报道 II 型 MT 酶的 DNA 结合受到金属离子的抑制。
{"title":"Evaluation of the enzymatic properties of DNA (cytosine-5)-methyltransferase M.ApeKI from archaea in the presence of metal ions.","authors":"Mao Hayashi, Yoshinari Wada, Akira Yamamura, Hideki Inoue, Naoya Yamashita, Shigetoshi Ichimura, Yasuhiro Iida","doi":"10.1093/bbb/zbae106","DOIUrl":"10.1093/bbb/zbae106","url":null,"abstract":"<p><p>We previously identified M.ApeKI from Aeropyum pernix K1 as a highly thermostable DNA (cytosine-5)-methyltransferase. M.ApeKI uses the type II restriction-modification system (R-M system), among the best-studied R-M systems. Although endonucleases generally utilize Mg (II) as a cofactor, several reports have shown that MTases exhibit different reactions in the presence of metal ions. This study aim was to evaluate the enzymatic properties of DNA (cytosine-5)-methyltransferase M.ApeKI from archaea in the presence of metal ions. We evaluated the influence of metal ions on the catalytic activity and DNA binding of M.ApeKI. The catalytic activity was inhibited by Cu (II), Mg (II), Mn (II), and Zn (II), each at 5 m m. DNA binding was more strongly inhibited by 5 m m Cu (II) and 10 m m Zn (II). To our knowledge, this is the first report showing that DNA binding of type II MTase is inhibited by metal ions.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1155-1163"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Strigolactones (SLs), plant-derived apocarotenoids, serve dual roles as phytohormones and rhizosphere signaling molecules. While exogenous administration of SLs to plants aids in studying their functions, the metabolic destiny of these administered SLs remains poorly elucidated. Our previous research demonstrated that among synthetic SL GR24 stereoisomers administered to cowpea (Vigna unguiculata), 2'-epi-GR24 undergoes selective reduction at the C-3',4' double bond in its D-ring. In this investigation, we isolated proteins from cowpea roots based on SL reducing activity and identified 12-oxophytodienoate reductase 3 homologs (VuOPR3s) as contributors to this reduction. Enzymatic assays conducted with recombinant proteins revealed that VuOPR3s exhibited a preference for reducing activity toward 2'S-configured SLs, including 2'-epi-GR24. This specificity for 2'S-configured SLs was congruent with that observed for orobanchol produced by cowpea and its stereoisomers. These findings suggest that exogenously administered SLs undergo enzymatic stereoselective reduction, underscoring the importance of considering stereospecificity when interpreting data obtained from SL usage.
{"title":"Stereospecific reduction of 2'S-configured strigolactones by cowpea OPR3 enzymes.","authors":"Shota Suzawa, Misa Yamauchi, Masato Homma, Yasuo Yamauchi, Masaharu Mizutani, Takatoshi Wakabayashi, Yukihiro Sugimoto","doi":"10.1093/bbb/zbae097","DOIUrl":"10.1093/bbb/zbae097","url":null,"abstract":"<p><p>Strigolactones (SLs), plant-derived apocarotenoids, serve dual roles as phytohormones and rhizosphere signaling molecules. While exogenous administration of SLs to plants aids in studying their functions, the metabolic destiny of these administered SLs remains poorly elucidated. Our previous research demonstrated that among synthetic SL GR24 stereoisomers administered to cowpea (Vigna unguiculata), 2'-epi-GR24 undergoes selective reduction at the C-3',4' double bond in its D-ring. In this investigation, we isolated proteins from cowpea roots based on SL reducing activity and identified 12-oxophytodienoate reductase 3 homologs (VuOPR3s) as contributors to this reduction. Enzymatic assays conducted with recombinant proteins revealed that VuOPR3s exhibited a preference for reducing activity toward 2'S-configured SLs, including 2'-epi-GR24. This specificity for 2'S-configured SLs was congruent with that observed for orobanchol produced by cowpea and its stereoisomers. These findings suggest that exogenously administered SLs undergo enzymatic stereoselective reduction, underscoring the importance of considering stereospecificity when interpreting data obtained from SL usage.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1172-1179"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Total syntheses of borolithochromes H1, H2, I1, and I2, the red pigments isolated from fossils of Jurassic putative red alga Solenopora jurassica, have been achieved. The naphthoquinone possessing a chiral sec-butyl side chain has been synthesized from (S)-2-methylbutanol. The Diels-Alder reaction of the chiral naphthoquinone and the previously reported diene was followed by one pot S-methylation/intramolecular Corey-Chaykovsky reaction/epoxide rearrangement to provide the benzo[gh]tetraphene skeleton. Complexation of the resulting ligand with trimethyl borate and the following O-demethylation furnished a 1:1 mixture of borolithochromes I1 and I2, which were separated by HPLC using CHIRALPAK IC® to afford optically pure borolithochromes I1 (6) and I2 (7). On the other hand, borolithochromes H1 and H2 were not separated by HPLC in our laboratory. Fortunately, the mixture of the methyl ethers of borolithochromes H1 and H2 were separated and O-demethylation with magnesium iodide furnished optically pure borolithochromes H1 (4) and H2 (5).
{"title":"Total syntheses of borolithochromes H1, H2, I1, and I2.","authors":"Kanade Kirita, Hirotake Matsumoto, Gaku Endo, Keisuke Inoue, Seijiro Hosokawa","doi":"10.1093/bbb/zbae104","DOIUrl":"10.1093/bbb/zbae104","url":null,"abstract":"<p><p>Total syntheses of borolithochromes H1, H2, I1, and I2, the red pigments isolated from fossils of Jurassic putative red alga Solenopora jurassica, have been achieved. The naphthoquinone possessing a chiral sec-butyl side chain has been synthesized from (S)-2-methylbutanol. The Diels-Alder reaction of the chiral naphthoquinone and the previously reported diene was followed by one pot S-methylation/intramolecular Corey-Chaykovsky reaction/epoxide rearrangement to provide the benzo[gh]tetraphene skeleton. Complexation of the resulting ligand with trimethyl borate and the following O-demethylation furnished a 1:1 mixture of borolithochromes I1 and I2, which were separated by HPLC using CHIRALPAK IC® to afford optically pure borolithochromes I1 (6) and I2 (7). On the other hand, borolithochromes H1 and H2 were not separated by HPLC in our laboratory. Fortunately, the mixture of the methyl ethers of borolithochromes H1 and H2 were separated and O-demethylation with magnesium iodide furnished optically pure borolithochromes H1 (4) and H2 (5).</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1144-1154"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protective effect of quercetin against acetaldehyde was evaluated using the cultured hepatocyte models with aldehyde dehydrogenase (ALDH) isozyme deficiency (aldh2-kd and aldh1a1-kd). The quercetin-induced cytoprotection against acetaldehyde in the ALDH1A1-deficient mutant (aldh1a1-kd) was weaker than that in the wild type. Furthermore, quercetin did not enhance the ALDH activity in aldh1a1-kd cells, suggesting that ALDH1A1 is involved in quercetin-induced cytoprotection.
{"title":"Evaluation of quercetin as a potential cytoprotector against acetaldehyde using the cultured hepatocyte model with aldehyde dehydrogenase isozyme deficiency.","authors":"Yuhang Xu, Takeshi Sawamoto, Ruitong Sun, Aki Ishikura, Shintaro Munemasa, Yoshiyuki Murata, Ayano Satoh, Akiko Matsumoto, Toshiyuki Nakamura, Yoshimasa Nakamura","doi":"10.1093/bbb/zbae100","DOIUrl":"10.1093/bbb/zbae100","url":null,"abstract":"<p><p>Protective effect of quercetin against acetaldehyde was evaluated using the cultured hepatocyte models with aldehyde dehydrogenase (ALDH) isozyme deficiency (aldh2-kd and aldh1a1-kd). The quercetin-induced cytoprotection against acetaldehyde in the ALDH1A1-deficient mutant (aldh1a1-kd) was weaker than that in the wild type. Furthermore, quercetin did not enhance the ALDH activity in aldh1a1-kd cells, suggesting that ALDH1A1 is involved in quercetin-induced cytoprotection.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1199-1202"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methanol reportedly stimulates citric acid (CA) production by Aspergillus niger and A. tubingensis; however, the underlying mechanisms remain unclear. Here, we elucidated the molecular functions of the citrate exporter gene cexA in relation to CA production by A. tubingensis WU-2223L. Methanol addition to the medium containing glucose as a carbon source markedly increased CA production by strain WU-2223L by 3.38-fold, resulting in a maximum yield of 65.5 g/L, with enhanced cexA expression. Conversely, the cexA-complementing strain with the constitutive expression promoter Ptef1 (strain LhC-1) produced 68.3 or 66.7 g/L of CA when cultivated without or with methanol, respectively. Additionally, strain LhC-2 harboring two copies of the cexA expression cassette produced 80.7 g/L of CA without methanol addition. Overall, we showed that cexA is a target gene for methanol in CA hyperproduction by A. tubingensis WU-2223L. Based on these findings, methanol-independent CA-hyperproducing strains, LhC-1 and LhC-2, were successfully generated.
{"title":"Generation of citric acid-hyperproducers independent of methanol effect by high-level expression of cexA encoding citrate exporter in Aspergillus tubingensis.","authors":"Isato Yoshioka, Kohtaro Kirimura","doi":"10.1093/bbb/zbae099","DOIUrl":"10.1093/bbb/zbae099","url":null,"abstract":"<p><p>Methanol reportedly stimulates citric acid (CA) production by Aspergillus niger and A. tubingensis; however, the underlying mechanisms remain unclear. Here, we elucidated the molecular functions of the citrate exporter gene cexA in relation to CA production by A. tubingensis WU-2223L. Methanol addition to the medium containing glucose as a carbon source markedly increased CA production by strain WU-2223L by 3.38-fold, resulting in a maximum yield of 65.5 g/L, with enhanced cexA expression. Conversely, the cexA-complementing strain with the constitutive expression promoter Ptef1 (strain LhC-1) produced 68.3 or 66.7 g/L of CA when cultivated without or with methanol, respectively. Additionally, strain LhC-2 harboring two copies of the cexA expression cassette produced 80.7 g/L of CA without methanol addition. Overall, we showed that cexA is a target gene for methanol in CA hyperproduction by A. tubingensis WU-2223L. Based on these findings, methanol-independent CA-hyperproducing strains, LhC-1 and LhC-2, were successfully generated.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1203-1211"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerium oxide (CeO2) nanoparticles, as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.
{"title":"Evaluation of antifungal activity of cerium oxide nanoparticles and associated cellular responses.","authors":"Shunsuke Nishino, Sayoko Oiki, Yoshimasa Yamana, Daisuke Hagiwara","doi":"10.1093/bbb/zbae101","DOIUrl":"10.1093/bbb/zbae101","url":null,"abstract":"<p><p>Cerium oxide (CeO2) nanoparticles, as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1225-1232"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L-Proline (Pro) is an essential amino acid additive in livestock and aquaculture feeds. Previously, we created a Pro overproducing Halomonas elongata HN6 by introducing an engineered salt-inducible Pro biosynthetic mCherry-proBm1AC operon and deleting a putA gene that encoded a Pro catabolic enzyme in the genome of H. elongata OUT30018. Here, we report a generation of a novel Pro overproducing H. elongata HN10 strain with improved salt tolerance and higher Pro yield by expressing the mCherry-proBm1AC operon and deleting the putA gene in the genome of a spontaneous mutant H. elongata Glutamic acid Over-Producing, which overproduces glutamic acid (Glu) that is a precursor for Pro biosynthesis. The optimal salt concentration for growth of H. elongata HN10 was found to be 7% to 8% w/v NaCl, and the average Pro yield of 166 mg/L was achieved when H. elongata HN10 was cultivated in M63 minimal medium containing 4% w/v glucose and 8% w/v NaCl.
L-脯氨酸(Pro)是家畜和水产养殖饲料中的一种必需氨基酸添加剂。在此之前,我们通过引入盐诱导的 Pro 生物合成 mCherry-proBm1AC 操作子,并删除 H. elongata OUT30018 基因组中编码 Pro 分解酶的 putA 基因,培育出了高产 Pro 的 Halomonas elongata HN6。在此,我们报告了通过表达 mCherry-proBm1AC 操作子和删除自发突变体 H. elongata GOP 基因组中的 putA 基因,生成了一种新型的过量生产 Pro 的 H. elongata HN10 菌株,该菌株具有更好的耐盐性和更高的 Pro 产量。研究发现,H. elongata HN10 生长的最佳盐浓度为 7% 至 8% w/v NaCl,在含有 4% w/v 葡萄糖和 8% w/v NaCl 的 M63 最小培养基中培养 H. elongata HN10 时,Pro 的平均产量为 166 mg/L。
{"title":"Expression of an engineered salt-inducible proline biosynthetic operon in a glutamic acid over-producing mutant, Halomonas elongata GOP, confers increased proline yield due to enhanced growth under high-salinity conditions.","authors":"Huynh Cong Khanh, Pulla Kaothien-Nakayama, Ziyan Zou, Hideki Nakayama","doi":"10.1093/bbb/zbae102","DOIUrl":"10.1093/bbb/zbae102","url":null,"abstract":"<p><p>L-Proline (Pro) is an essential amino acid additive in livestock and aquaculture feeds. Previously, we created a Pro overproducing Halomonas elongata HN6 by introducing an engineered salt-inducible Pro biosynthetic mCherry-proBm1AC operon and deleting a putA gene that encoded a Pro catabolic enzyme in the genome of H. elongata OUT30018. Here, we report a generation of a novel Pro overproducing H. elongata HN10 strain with improved salt tolerance and higher Pro yield by expressing the mCherry-proBm1AC operon and deleting the putA gene in the genome of a spontaneous mutant H. elongata Glutamic acid Over-Producing, which overproduces glutamic acid (Glu) that is a precursor for Pro biosynthesis. The optimal salt concentration for growth of H. elongata HN10 was found to be 7% to 8% w/v NaCl, and the average Pro yield of 166 mg/L was achieved when H. elongata HN10 was cultivated in M63 minimal medium containing 4% w/v glucose and 8% w/v NaCl.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1233-1241"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear receptor superfamily and is involved in the inflammatory process. Previously, we synthesized the ligands of PPARγ that possess the hybrid structure of a food-derived cinnamic acid derivative (CA) and GW9662, an irreversible PPARγ antagonist. These ligands activate the transcription of PPARγ through the covalent bond formation with the Cys285 residue of PPARγ, whereas their anti-inflammatory effect has not been examined yet. Here, we show the anti-inflammatory effect of the covalent PPARγ ligands in RAW264 cells, murine macrophage-like cells. GW9662 suppressed the production of nitric oxide (NO) stimulated by lipopolysaccharide and exerted a synergistic effect in combination with CA. The compounds bearing their hybrid structure dramatically inhibited NO production and transcription of proinflammatory cytokines. A comparison study suggested that the 2-chloro-5-nitrobenzoyl group of the ligands is important for anti-inflammation. Furthermore, we synthesized an alkyne-tagged analogue that becomes an activity-based probe for future mechanistic study.
{"title":"Anti-inflammatory effect of covalent PPARγ ligands that have a hybrid structure of GW9662 and a food-derived cinnamic acid derivative.","authors":"Shinano Miyazawa, Misa Sakai, Yuma Omae, Yusuke Ogawa, Hideyuki Shigemori, Yusaku Miyamae","doi":"10.1093/bbb/zbae094","DOIUrl":"10.1093/bbb/zbae094","url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear receptor superfamily and is involved in the inflammatory process. Previously, we synthesized the ligands of PPARγ that possess the hybrid structure of a food-derived cinnamic acid derivative (CA) and GW9662, an irreversible PPARγ antagonist. These ligands activate the transcription of PPARγ through the covalent bond formation with the Cys285 residue of PPARγ, whereas their anti-inflammatory effect has not been examined yet. Here, we show the anti-inflammatory effect of the covalent PPARγ ligands in RAW264 cells, murine macrophage-like cells. GW9662 suppressed the production of nitric oxide (NO) stimulated by lipopolysaccharide and exerted a synergistic effect in combination with CA. The compounds bearing their hybrid structure dramatically inhibited NO production and transcription of proinflammatory cytokines. A comparison study suggested that the 2-chloro-5-nitrobenzoyl group of the ligands is important for anti-inflammation. Furthermore, we synthesized an alkyne-tagged analogue that becomes an activity-based probe for future mechanistic study.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1136-1143"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we describe our discovery of burnettiene A (1) as an antimalarial compound from the culture broth of Lecanicillium primulinum (current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated as an antifungal active compound from Aspergillus burnettii. However, the antifungal activity of 1 has been revealed in only one fungal species, and the mechanism of action of 1 remains unknown. After the validation of mitochondrial function inhibitory of 1, we envisioned a new antimalarial drug discovery platform based on mitochondrial function inhibitory activity. We evaluated antimalarial activity and 1 showed antimalarial activity against Plasmodium falciparum FCR3 (chloroquine sensitive) and the K1 strain (chloroquine resistant). Our study revealed the utility of our original screening system based on a multidrug-sensitive yeast and mitochondrial function inhibitory activity for the discovery of new antimalarial drug candidates.
{"title":"Discovery of an antimalarial compound, burnettiene A, with a multidrug-sensitive Saccharomyces cerevisiae screening system based on mitochondrial function inhibitory activity.","authors":"Aoi Kimishima, Atsuka Nishitomi, Iori Tsuruoka, Katsuyuki Sakai, Rei Hokari, Masako Honsho, Sota Honma, Yuki Ono, Naozumi Kondo, Hayama Tsutsumi, Yuta Kikuchi, Toshiyuki Tokiwa, Hiroki Kojima, Mayuka Higo, Kenichi Nonaka, Yuki Inahashi, Masato Iwatsuki, Shin-Ichi Fuji, Jun-Pil Jang, Jae-Hyuk Jang, Takumi Chinen, Takeo Usui, Yukihiro Asami","doi":"10.1093/bbb/zbae098","DOIUrl":"10.1093/bbb/zbae098","url":null,"abstract":"<p><p>In this paper, we describe our discovery of burnettiene A (1) as an antimalarial compound from the culture broth of Lecanicillium primulinum (current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated as an antifungal active compound from Aspergillus burnettii. However, the antifungal activity of 1 has been revealed in only one fungal species, and the mechanism of action of 1 remains unknown. After the validation of mitochondrial function inhibitory of 1, we envisioned a new antimalarial drug discovery platform based on mitochondrial function inhibitory activity. We evaluated antimalarial activity and 1 showed antimalarial activity against Plasmodium falciparum FCR3 (chloroquine sensitive) and the K1 strain (chloroquine resistant). Our study revealed the utility of our original screening system based on a multidrug-sensitive yeast and mitochondrial function inhibitory activity for the discovery of new antimalarial drug candidates.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1212-1216"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.
可可提取物(CE)具有多种健康益处,如抗肥胖和改善葡萄糖耐受性。然而,其中的机理仍不清楚。脂肪组织包括白色脂肪组织(WAT)和棕色脂肪组织。棕色脂肪组织通过解偶联蛋白 1(UCP1)将脂质代谢为热量,从而减少体内脂肪。白色脂肪细胞转化为棕色样脂肪细胞(米色脂肪细胞)被称为棕色化,它有助于抗肥胖效果和改善葡萄糖耐量。本研究旨在从棕色化的角度评估 CE 对葡萄糖耐量的影响。我们发现,膳食补充 CE 能改善高脂饮食小鼠的葡萄糖耐受性,并能提高腹股沟脂肪细胞中 Ucp1 和棕色化相关基因的表达水平。此外,在小鼠的原发性脂肪细胞中,CE 通过β3-肾上腺素能受体刺激诱导 Ucp1 的表达。这些结果表明,膳食纤维素可通过诱导腹股沟脂肪褐变改善葡萄糖不耐受。
{"title":"Cocoa extract induces browning of white adipocytes and improves glucose intolerance in mice fed a high-fat diet.","authors":"Eito Yonemoto, Risa Ihara, Emi Tanaka, Takakazu Mitani","doi":"10.1093/bbb/zbae105","DOIUrl":"10.1093/bbb/zbae105","url":null,"abstract":"<p><p>Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"1188-1198"},"PeriodicalIF":1.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}