Food-derived polyphenols and some alkaloids have reported bioactivities related the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential the interaction with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
{"title":"Functional expression mechanisms of food-derived components based on target proteins.","authors":"Takakazu Mitani","doi":"10.1093/bbb/zbaf003","DOIUrl":"https://doi.org/10.1093/bbb/zbaf003","url":null,"abstract":"<p><p>Food-derived polyphenols and some alkaloids have reported bioactivities related the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential the interaction with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hea Ry Oh, Yong Hyun Park, Hye Ryeong Hong, Hyun Jin Kim, Jinbong Park, Yohan Han, Seong-Gyu Ko, Eui Cheol Shin, Tae Gyun Kim, Hyung Taek Cho, Jeong Hoon Pan, Hyo Ri Shin, Youn Young Shim, Martin J T Reaney, Tae Jin Cho, Ji Youn Hong, Young Jun Kim, Bok Kyung Han, Geung-Joo Lee, Kangwook Lee, Seon Gil Do, Jae Kyeom Kim
Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT). Over eight weeks, TTE supplementation led to significant reductions in obesity-related phenotypes and modulated gene expression altered by HFD. Key genes like Cd180 and MUPs, linked to immune responses and lipid metabolism, were notably influenced by TTE. The study highlighted TTE's effects on lipid metabolism pathways in the liver and immune processes in WAT, underscoring its potential as an anti-obesity agent, while advocating for further research into its bioactive components.
{"title":"Tetragonia tetragonioides extract prevented high-fat diet-induced obesity and changed hepatic and adipose transcriptomic signatures in C57BL/6J male mice.","authors":"Hea Ry Oh, Yong Hyun Park, Hye Ryeong Hong, Hyun Jin Kim, Jinbong Park, Yohan Han, Seong-Gyu Ko, Eui Cheol Shin, Tae Gyun Kim, Hyung Taek Cho, Jeong Hoon Pan, Hyo Ri Shin, Youn Young Shim, Martin J T Reaney, Tae Jin Cho, Ji Youn Hong, Young Jun Kim, Bok Kyung Han, Geung-Joo Lee, Kangwook Lee, Seon Gil Do, Jae Kyeom Kim","doi":"10.1093/bbb/zbaf001","DOIUrl":"https://doi.org/10.1093/bbb/zbaf001","url":null,"abstract":"<p><p>Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT). Over eight weeks, TTE supplementation led to significant reductions in obesity-related phenotypes and modulated gene expression altered by HFD. Key genes like Cd180 and MUPs, linked to immune responses and lipid metabolism, were notably influenced by TTE. The study highlighted TTE's effects on lipid metabolism pathways in the liver and immune processes in WAT, underscoring its potential as an anti-obesity agent, while advocating for further research into its bioactive components.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takashi Iwasaki, Mayu Shimoda, Haru Kanayama, Tsuyoshi Kawano
Plasmodium falciparum is a major cause of severe malaria. This protozoan infects human red blood cells and secretes large quantities of histidine-rich protein 2 (PfHRP2) into the bloodstream, making it a well-known diagnostic marker. Here, however, we identified PfHRP2 as a pathogenic factor produced by P. falciparum. PfHRP2 showed cell penetration and cytotoxicity against various human cells. PfHRP2 also exhibited significant cytotoxicity at concentrations found in P. falciparum-infected patients' blood (90-100 nM). We also showed that PfHRP2 binds to Ca2+ ions, localizes to intracellular lysosomes, increases lysosomal Ca2+ levels, and inhibits the basal level of autophagy by preventing autolysosome formation. Furthermore, the Ca2+-dependent cytotoxicity of PfHRP2 was suppressed by the metal ion chelator ethylenediaminetetraacetic acid. In summary, our findings suggest PfHRP2 as a crucial pathogenic factor produced by P. falciparum and its mode of action. Overall, this study provides preliminary insights into P. falciparum malaria pathogenesis.
{"title":"Plasmodium falciparum histidine-rich protein 2 exhibits cell penetration and cytotoxicity with autophagy dysfunction.","authors":"Takashi Iwasaki, Mayu Shimoda, Haru Kanayama, Tsuyoshi Kawano","doi":"10.1093/bbb/zbae209","DOIUrl":"https://doi.org/10.1093/bbb/zbae209","url":null,"abstract":"<p><p>Plasmodium falciparum is a major cause of severe malaria. This protozoan infects human red blood cells and secretes large quantities of histidine-rich protein 2 (PfHRP2) into the bloodstream, making it a well-known diagnostic marker. Here, however, we identified PfHRP2 as a pathogenic factor produced by P. falciparum. PfHRP2 showed cell penetration and cytotoxicity against various human cells. PfHRP2 also exhibited significant cytotoxicity at concentrations found in P. falciparum-infected patients' blood (90-100 nM). We also showed that PfHRP2 binds to Ca2+ ions, localizes to intracellular lysosomes, increases lysosomal Ca2+ levels, and inhibits the basal level of autophagy by preventing autolysosome formation. Furthermore, the Ca2+-dependent cytotoxicity of PfHRP2 was suppressed by the metal ion chelator ethylenediaminetetraacetic acid. In summary, our findings suggest PfHRP2 as a crucial pathogenic factor produced by P. falciparum and its mode of action. Overall, this study provides preliminary insights into P. falciparum malaria pathogenesis.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shino Suzuki-Nagata, Nobuyuki Mase, Tomoki Kozuka, Jack C Ng, Tetsuya Suzuki
Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions. Our research aimed to address this by investigating the role of nanotechnology in using fine to ultra-fine bubble CO2-ranging from micrometer to nanometer size-as feeding material to promote cell harvest of E. gracilis Z in autotrophic culture conditions. Our findings suggest that feeding E. gracilis Z with fine bubble CO2 (FB-CO2) increased cell growth and chlorophyll content in autotrophic culture conditions. The promotion effect can be attributed to the provision of non-ionized carbon dioxide to the photosynthetic system, which was further enhanced by the dispersion of FB-CO2 in the culture media under acidic conditions.
{"title":"Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content.","authors":"Shino Suzuki-Nagata, Nobuyuki Mase, Tomoki Kozuka, Jack C Ng, Tetsuya Suzuki","doi":"10.1093/bbb/zbae210","DOIUrl":"https://doi.org/10.1093/bbb/zbae210","url":null,"abstract":"<p><p>Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions. Our research aimed to address this by investigating the role of nanotechnology in using fine to ultra-fine bubble CO2-ranging from micrometer to nanometer size-as feeding material to promote cell harvest of E. gracilis Z in autotrophic culture conditions. Our findings suggest that feeding E. gracilis Z with fine bubble CO2 (FB-CO2) increased cell growth and chlorophyll content in autotrophic culture conditions. The promotion effect can be attributed to the provision of non-ionized carbon dioxide to the photosynthetic system, which was further enhanced by the dispersion of FB-CO2 in the culture media under acidic conditions.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most actinomycetes and fungi have a multitude of silent biosynthetic genes whose activation could lead to the production of new natural products. Our group recently designed and used a co-culture method to isolate new natural products, based on the idea that pathogens might produce immune suppressors to avoid attack by immune cells. Here, we searched for compounds produced by the co-culture of immune cells with pathogenic fungi isolated from clinical specimens. The production of dimeric naphtho-γ-pyrone aurasperone A (1) was enhanced by the co-culture of pathogenic fungus Aspergillus niger IFM 59706 and RAW264 mouse macrophage-like cells. The absolute configuration of 1 was confirmed by comparison with the reported electronic circular dichroism (ECD) spectrum. This is the first report of the inhibitory activity of 1 on nitric oxide (NO) production, an inflammatory mediator.
{"title":"Co-culture of Aspergillus niger IFM 59706 and RAW264 cells enhances the production of aurasperone A with NO inhibitory activity.","authors":"Yukiko Ujie, Shun Saito, Tomoya Banno, Takashi Yaguchi, Midori A Arai","doi":"10.1093/bbb/zbae211","DOIUrl":"https://doi.org/10.1093/bbb/zbae211","url":null,"abstract":"<p><p>Most actinomycetes and fungi have a multitude of silent biosynthetic genes whose activation could lead to the production of new natural products. Our group recently designed and used a co-culture method to isolate new natural products, based on the idea that pathogens might produce immune suppressors to avoid attack by immune cells. Here, we searched for compounds produced by the co-culture of immune cells with pathogenic fungi isolated from clinical specimens. The production of dimeric naphtho-γ-pyrone aurasperone A (1) was enhanced by the co-culture of pathogenic fungus Aspergillus niger IFM 59706 and RAW264 mouse macrophage-like cells. The absolute configuration of 1 was confirmed by comparison with the reported electronic circular dichroism (ECD) spectrum. This is the first report of the inhibitory activity of 1 on nitric oxide (NO) production, an inflammatory mediator.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, we examined the immunomodulating effects of Heyndrickxia coagulans SANK70258 (SANK70258). Mouse splenocytes treated with γ-ray-irradiated SANK70258 produced higher levels of IFN-γ than those with 7 types of lactic acid bacteria. IFN-γ was mainly produced by NK cells, involving IL-12/IL-23, dendritic cells (DCs), and NFκB signaling. SANK70258 induced the release of IL-6, IL-10, and IL-12p40 from mouse DCs and the expression of cytokine genes in the human monocyte. Cytokine release from SANK70258-treated DCs was partially reduced by the knockdown of Tlr2 or Nod2, and was abolished by Myd88 knockout. DC-stimulating components of SANK70258 were enriched in ether- and butanol-insoluble peptidoglycan-related fractions. SANK70258 component induced high levels of IgA production in Peyer's patch cells, and its oral intake significantly increased intestinal IgA and IgA-expressing B cells in Peyer's patches in mice. We conclude that SANK70258 component exhibits high activity as an immunostimulant that induces the production of IFN-γ and IgA.
{"title":"Immunostimulatory effects of Heyndrickxia coagulans SANK70258.","authors":"Yuki Ikeda, Niya Yamashita, Naoto Ito, Natsuki Minamikawa, Hotaka Okamura, Takuya Yashiro, Masakazu Hachisu, Masanori Aida, Ryouichi Yamada, Kazuki Nagata, Chiharu Nishiyama","doi":"10.1093/bbb/zbae203","DOIUrl":"https://doi.org/10.1093/bbb/zbae203","url":null,"abstract":"<p><p>Here, we examined the immunomodulating effects of Heyndrickxia coagulans SANK70258 (SANK70258). Mouse splenocytes treated with γ-ray-irradiated SANK70258 produced higher levels of IFN-γ than those with 7 types of lactic acid bacteria. IFN-γ was mainly produced by NK cells, involving IL-12/IL-23, dendritic cells (DCs), and NFκB signaling. SANK70258 induced the release of IL-6, IL-10, and IL-12p40 from mouse DCs and the expression of cytokine genes in the human monocyte. Cytokine release from SANK70258-treated DCs was partially reduced by the knockdown of Tlr2 or Nod2, and was abolished by Myd88 knockout. DC-stimulating components of SANK70258 were enriched in ether- and butanol-insoluble peptidoglycan-related fractions. SANK70258 component induced high levels of IgA production in Peyer's patch cells, and its oral intake significantly increased intestinal IgA and IgA-expressing B cells in Peyer's patches in mice. We conclude that SANK70258 component exhibits high activity as an immunostimulant that induces the production of IFN-γ and IgA.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intrinsic skin aging is a chronological decline in skin texture and function influenced largely by genetic factors. Aged skin exhibits morphological alterations, including wrinkling, dryness, and roughness, along with dysfunctional changes in the skin barrier. In this study, the in vivo anti-intrinsic aging efficacy of dietary astaxanthin extracted from Haematococcus pluvialis on the skin was evaluated using aged C57BL/6 J mice. As a result, dietary supplementation of 0.1% astaxanthin significantly alleviated the defects in skin's water retention capacity, viscoelasticity, and reduced wrinkle formation induced by intrinsic aging. Furthermore, gene expression analysis revealed that dietary astaxanthin was capable of mediating genes related to the proliferation and differentiation of skin cells, degradation of proteins in the extracellular matrix and dermal-epidermal junction, synthesis of natural moisturizing factors, and maintenance of skin barrier function. Together, our data indicate that dietary astaxanthin has potential applications as a novel ingredient in nutricosmetics against chronological skin aging.
{"title":"Oral administration of astaxanthin mitigates chronological skin aging in mice.","authors":"Shuyu Liu, Yuki Manabe, Tatsuya Sugawara","doi":"10.1093/bbb/zbae205","DOIUrl":"https://doi.org/10.1093/bbb/zbae205","url":null,"abstract":"<p><p>Intrinsic skin aging is a chronological decline in skin texture and function influenced largely by genetic factors. Aged skin exhibits morphological alterations, including wrinkling, dryness, and roughness, along with dysfunctional changes in the skin barrier. In this study, the in vivo anti-intrinsic aging efficacy of dietary astaxanthin extracted from Haematococcus pluvialis on the skin was evaluated using aged C57BL/6 J mice. As a result, dietary supplementation of 0.1% astaxanthin significantly alleviated the defects in skin's water retention capacity, viscoelasticity, and reduced wrinkle formation induced by intrinsic aging. Furthermore, gene expression analysis revealed that dietary astaxanthin was capable of mediating genes related to the proliferation and differentiation of skin cells, degradation of proteins in the extracellular matrix and dermal-epidermal junction, synthesis of natural moisturizing factors, and maintenance of skin barrier function. Together, our data indicate that dietary astaxanthin has potential applications as a novel ingredient in nutricosmetics against chronological skin aging.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naoki Yoshii, Keita Higuchi, Tomoko Onodera, Naoki Abe, Jun Kaneko
Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.
{"title":"Anaerobic plasmalogen production in recombinant Escherichia coli carrying plasmalogen synthase gene from Selenomonas ruminantium.","authors":"Naoki Yoshii, Keita Higuchi, Tomoko Onodera, Naoki Abe, Jun Kaneko","doi":"10.1093/bbb/zbae208","DOIUrl":"https://doi.org/10.1093/bbb/zbae208","url":null,"abstract":"<p><p>Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purple yam (Dioscorea alata L.) is a tuber widely distributed in the tropics and subtropics. We previously isolated several acylated anthocyanins from purple yam. In this study, purple yam extract was orally administered to rats and the absorption of the constituent anthocyanins was investigated. Acylated anthocyanins were detected in the plasma, confirming that they were absorbed into the body as their intact forms. The time required to reach the maximum anthocyanin concentration was 15 min, indicating rapid absorption into the blood. In addition, more than half of the total amount of anthocyanins excreted into the urine was excreted within the first 6 h after administration. To the best of our knowledge, this is the first report of the detection of characteristic acylated anthocyanins from purple yam in rat plasma and urine after oral administration.
{"title":"Absorption of acylated anthocyanins from purple yam extract in rats.","authors":"Chiemi Moriya, Takahiro Hosoya, Hiroyuki Sakakibara, Kayoko Shimoi, Shigenori Kumazawa","doi":"10.1093/bbb/zbae206","DOIUrl":"https://doi.org/10.1093/bbb/zbae206","url":null,"abstract":"<p><p>Purple yam (Dioscorea alata L.) is a tuber widely distributed in the tropics and subtropics. We previously isolated several acylated anthocyanins from purple yam. In this study, purple yam extract was orally administered to rats and the absorption of the constituent anthocyanins was investigated. Acylated anthocyanins were detected in the plasma, confirming that they were absorbed into the body as their intact forms. The time required to reach the maximum anthocyanin concentration was 15 min, indicating rapid absorption into the blood. In addition, more than half of the total amount of anthocyanins excreted into the urine was excreted within the first 6 h after administration. To the best of our knowledge, this is the first report of the detection of characteristic acylated anthocyanins from purple yam in rat plasma and urine after oral administration.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is essential to remove cholesterol from the body to suppress atherosclerosis progression. ABCA1 and ABCG1 transport cholesterol in peripheral cells including macrophages and function in the formation of high-density lipoprotein (HDL). ABCG5/ABCG8 functions in the efflux of cholesterol from the body. In this study, we investigated the effects of Camembert cheese extracts and ingredients on cholesterol transport via ABC transporters. Camembert cheese extracts were added to BHK cells expressing ABCA1, ABCG1, or ABCG5/ABCG8, and THP-1 cells expressing ABCA1 and ABCG1. Organic solvent extracts of Camembert cheese increased cholesterol efflux in THP-1 and BHK cells expressing ABCA1 or ABCG5/ABCG8. After fractionation of the extracts, palmitoleic acid was found to increase cholesterol efflux by ABCA1 and ABCG5/ABCG8, whereas 10-hydroxypalmitic acid increased it by ABCA1 and ABCG1. It is suggested that palmitoleic acid and 10-hydroxypalmitic acid in Camembert cheese may prevent the accumulation of excess cholesterol in cells by stimulating ABC transporters.
{"title":"Fatty acids from cheese stimulate cholesterol efflux by ABC transporters.","authors":"Michinori Matsuo, Shiho Takaoka, Kai Nakayama, Akika Nagira, Hirofumi Goto, Akihiro Nakajima","doi":"10.1093/bbb/zbae207","DOIUrl":"https://doi.org/10.1093/bbb/zbae207","url":null,"abstract":"<p><p>It is essential to remove cholesterol from the body to suppress atherosclerosis progression. ABCA1 and ABCG1 transport cholesterol in peripheral cells including macrophages and function in the formation of high-density lipoprotein (HDL). ABCG5/ABCG8 functions in the efflux of cholesterol from the body. In this study, we investigated the effects of Camembert cheese extracts and ingredients on cholesterol transport via ABC transporters. Camembert cheese extracts were added to BHK cells expressing ABCA1, ABCG1, or ABCG5/ABCG8, and THP-1 cells expressing ABCA1 and ABCG1. Organic solvent extracts of Camembert cheese increased cholesterol efflux in THP-1 and BHK cells expressing ABCA1 or ABCG5/ABCG8. After fractionation of the extracts, palmitoleic acid was found to increase cholesterol efflux by ABCA1 and ABCG5/ABCG8, whereas 10-hydroxypalmitic acid increased it by ABCA1 and ABCG1. It is suggested that palmitoleic acid and 10-hydroxypalmitic acid in Camembert cheese may prevent the accumulation of excess cholesterol in cells by stimulating ABC transporters.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}