Pub Date : 2023-04-18DOI: 10.1186/s40529-023-00373-0
Mona M Ismail, Gehan A Ismail, Mostafa E Elshobary
Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.
{"title":"Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species.","authors":"Mona M Ismail, Gehan A Ismail, Mostafa E Elshobary","doi":"10.1186/s40529-023-00373-0","DOIUrl":"https://doi.org/10.1186/s40529-023-00373-0","url":null,"abstract":"<p><p>Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"10"},"PeriodicalIF":3.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9331003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1186/s40529-023-00374-z
Jan Šoch, Josef Šonka, Jan Ponert
Background: Vanilla planifolia is the most widely cultivated species of vanilla with high economic importance. However, seed germination under artificial conditions is difficult and yields low germination percentages. The seeds are adapted to endozoochorous dispersal, and we therefore tried to simulate the conditions in the digestive tract by acid scarification of seeds.
Results: Immature seeds lacking dormancy, used as a control, showed the highest germination percentage. Among the treatments tested for mature seeds, the hydrochloric acid treatments were significantly the best in breaking dormancy and inducing germination, irrespective of the acid concentration and the presence of pepsin. Conventional treatment with a hypochlorite solution induced much lower germination percentage. Sulphuric acid at concentration 50% was too strong and caused damage to the seeds. Important factor is also high cultivation temperature 30 °C as there was nearly no germination at 25 °C.
Conclusions: Our protocol significantly improves the efficiency of generative propagation of vanilla and allows for significantly higher germination percentages than previously described. The strongly positive effect of hydrochloric acid may be related to the adaptation of seeds to endozoochorous dispersal.
{"title":"Acid scarification as a potent treatment for an in vitro germination of mature endozoochorous Vanilla planifolia seeds.","authors":"Jan Šoch, Josef Šonka, Jan Ponert","doi":"10.1186/s40529-023-00374-z","DOIUrl":"https://doi.org/10.1186/s40529-023-00374-z","url":null,"abstract":"<p><strong>Background: </strong>Vanilla planifolia is the most widely cultivated species of vanilla with high economic importance. However, seed germination under artificial conditions is difficult and yields low germination percentages. The seeds are adapted to endozoochorous dispersal, and we therefore tried to simulate the conditions in the digestive tract by acid scarification of seeds.</p><p><strong>Results: </strong>Immature seeds lacking dormancy, used as a control, showed the highest germination percentage. Among the treatments tested for mature seeds, the hydrochloric acid treatments were significantly the best in breaking dormancy and inducing germination, irrespective of the acid concentration and the presence of pepsin. Conventional treatment with a hypochlorite solution induced much lower germination percentage. Sulphuric acid at concentration 50% was too strong and caused damage to the seeds. Important factor is also high cultivation temperature 30 °C as there was nearly no germination at 25 °C.</p><p><strong>Conclusions: </strong>Our protocol significantly improves the efficiency of generative propagation of vanilla and allows for significantly higher germination percentages than previously described. The strongly positive effect of hydrochloric acid may be related to the adaptation of seeds to endozoochorous dispersal.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"9"},"PeriodicalIF":3.4,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9331878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-13DOI: 10.1186/s40529-023-00372-1
Marjorie Cedeño-Sanchez, Rahel Schiefelbein, Marc Stadler, Hermann Voglmayr, Konstanze Bensch, Christopher Lambert
Background: The genus Induratia is based on Induratia apiospora, a xylarialean pyrenomycete from New Zealand with clypeate uniperitheciate stromata, hyaline apiospores and a nodulisporium-like anamorph. However, because of the lack of DNA data from the generic type, its phylogenetic affinities have remained unresolved. Recently, two fungal species with teleomorphs strikingly similar to Induratia were discovered in Thailand. However, they did not produce an anamorph and were found to be phylogenetically close to the species classified within the hyphomycete genus Muscodor, which was described after Induratia. Therefore, in 2020 the species of Muscodor were transferred to Induratia, and a new family Induratiaceae was proposed.
Results: We have encountered an unpublished ex-holotype strain of Induratia apiospora among the holdings of the ATCC collection, enabling detailed morphological and molecular phylogenetic investigations. We observed the characteristic nodulisporium-like anamorph described in the original publication. Phylogenetic analyses of multigene sequence data revealed a close relationship of Induratia apiospora to the Barrmaeliaceae, while a close relationship to the Induratia species formerly classified within Muscodor was rejected.
Conclusions: We here classify Induratia apiospora within the Barrmaeliaceae and consider Induratiaceae to be synonymous with the former. As the holotype specimen of Induratia apiospora is apparently lost, an isotype specimen from WSP is selected as lectotype. We also propose that the genus Muscodor is resurrected within the Xylariaceae, and formally transfer several Induratia species to Muscodor.
{"title":"Redisposition of apiosporous genera Induratia and Muscodor in the Xylariales, following the discovery of an authentic strain of Induratia apiospora.","authors":"Marjorie Cedeño-Sanchez, Rahel Schiefelbein, Marc Stadler, Hermann Voglmayr, Konstanze Bensch, Christopher Lambert","doi":"10.1186/s40529-023-00372-1","DOIUrl":"10.1186/s40529-023-00372-1","url":null,"abstract":"<p><strong>Background: </strong>The genus Induratia is based on Induratia apiospora, a xylarialean pyrenomycete from New Zealand with clypeate uniperitheciate stromata, hyaline apiospores and a nodulisporium-like anamorph. However, because of the lack of DNA data from the generic type, its phylogenetic affinities have remained unresolved. Recently, two fungal species with teleomorphs strikingly similar to Induratia were discovered in Thailand. However, they did not produce an anamorph and were found to be phylogenetically close to the species classified within the hyphomycete genus Muscodor, which was described after Induratia. Therefore, in 2020 the species of Muscodor were transferred to Induratia, and a new family Induratiaceae was proposed.</p><p><strong>Results: </strong>We have encountered an unpublished ex-holotype strain of Induratia apiospora among the holdings of the ATCC collection, enabling detailed morphological and molecular phylogenetic investigations. We observed the characteristic nodulisporium-like anamorph described in the original publication. Phylogenetic analyses of multigene sequence data revealed a close relationship of Induratia apiospora to the Barrmaeliaceae, while a close relationship to the Induratia species formerly classified within Muscodor was rejected.</p><p><strong>Conclusions: </strong>We here classify Induratia apiospora within the Barrmaeliaceae and consider Induratiaceae to be synonymous with the former. As the holotype specimen of Induratia apiospora is apparently lost, an isotype specimen from WSP is selected as lectotype. We also propose that the genus Muscodor is resurrected within the Xylariaceae, and formally transfer several Induratia species to Muscodor.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"8"},"PeriodicalIF":3.4,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9309593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1186/s40529-023-00370-3
Satinderpal Kaur, Neetu Khanal, Robert Dearth, Rupesh Kariyat
Trichomes, the hairlike protuberances in plants, have been well known to act as the first line of defense against herbivores, and abiotic stresses, along with other structural defenses such as spines, thorns, and waxes. We previously reported the tremendous variation in trichome traits among different wild and cultivated Solanum species and demonstrated that trichomes types and density are traditionally miscalculated and often misnamed. However, intraspecific variation in trichome traits is poorly understood, although this has implications for stress tolerance and resistance breeding programs in economically important crop species and can also mediate ecological interactions at multiple trophic levels in their wild congeners. In this study, using tomato as a model, we characterized the trichomes from 10 commonly grown varieties using a minimal sample prep desktop scanning electron microscopy, and followed up with estimating their dimensions across the varieties and trichome types. We hypothesized that although trichome number may vary, the varieties will have similar trichome types, based on current literature. Our results show that there is significant variation for trichome number as well as dimensions of trichome types among these varieties. Furthermore, when we separately analyzed the number and dimensions of commonly found glandular and non-glandular trichomes, the results were consistent with broad assessment of trichomes, showing consistent variation among varieties, suggesting that trichome studies should not be limited to basic classification into glandular and non-glandular, and should accommodate the sub-types and their dimensions.
{"title":"Morphological characterization of intraspecific variation for trichome traits in tomato (Solanum lycopersicum).","authors":"Satinderpal Kaur, Neetu Khanal, Robert Dearth, Rupesh Kariyat","doi":"10.1186/s40529-023-00370-3","DOIUrl":"https://doi.org/10.1186/s40529-023-00370-3","url":null,"abstract":"<p><p>Trichomes, the hairlike protuberances in plants, have been well known to act as the first line of defense against herbivores, and abiotic stresses, along with other structural defenses such as spines, thorns, and waxes. We previously reported the tremendous variation in trichome traits among different wild and cultivated Solanum species and demonstrated that trichomes types and density are traditionally miscalculated and often misnamed. However, intraspecific variation in trichome traits is poorly understood, although this has implications for stress tolerance and resistance breeding programs in economically important crop species and can also mediate ecological interactions at multiple trophic levels in their wild congeners. In this study, using tomato as a model, we characterized the trichomes from 10 commonly grown varieties using a minimal sample prep desktop scanning electron microscopy, and followed up with estimating their dimensions across the varieties and trichome types. We hypothesized that although trichome number may vary, the varieties will have similar trichome types, based on current literature. Our results show that there is significant variation for trichome number as well as dimensions of trichome types among these varieties. Furthermore, when we separately analyzed the number and dimensions of commonly found glandular and non-glandular trichomes, the results were consistent with broad assessment of trichomes, showing consistent variation among varieties, suggesting that trichome studies should not be limited to basic classification into glandular and non-glandular, and should accommodate the sub-types and their dimensions.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"7"},"PeriodicalIF":3.4,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9592364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-11DOI: 10.1186/s40529-023-00371-2
Sophie De Respinis, AnnaPaola Caminada, Elisa Pianta, Antoine Buetti-Dinh, Patrizia Riva Scettrini, Liliane Petrini, Mauro Tonolla, Orlando Petrini
Background: The biodiversity of the mycobiota of soft cheese rinds such as Brie or Camembert has been extensively studied, but scant information is available on the fungi colonizing the rinds of cheese produced in the Southern Switzerland Alps. This study aimed at exploring the fungal communities present on rinds of cheese matured in five cellars in Southern Switzerland and to evaluate their composition with regards to temperature, relative humidity, type of cheese, as well as microenvironmental and geographic factors. We used macro- and microscopical morphology, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, and sequencing to characterize the fungal communities of the cheeses, and compared them with metabarcoding targeting the ITS region.
Results: Isolation by serial dilution yielded 201 isolates (39 yeasts and 162 filamentous fungi) belonging to 9 fungal species. Mucor and Penicillium were dominant, with Mucor racemosus, M. lanceolatus, P. biforme, and P. chrysogenum/rubens being the most frequent species. All but two yeast isolates were identified as Debaryomyces hansenii. Metabarcoding detected 80 fungal species. Culture work and metabarcoding produced comparable results in terms of similarity of the fungal cheese rind communities in the five cellars.
Conclusions: Our study has shown that the mycobiota on the rinds of the cheeses studied is a comparatively species-poor community influenced by temperature, relative humidity, type of cheese, and manufacturing steps, as well as microenvironmental and possibly geographic factors.
{"title":"Fungal communities on alpine cheese rinds in Southern Switzerland.","authors":"Sophie De Respinis, AnnaPaola Caminada, Elisa Pianta, Antoine Buetti-Dinh, Patrizia Riva Scettrini, Liliane Petrini, Mauro Tonolla, Orlando Petrini","doi":"10.1186/s40529-023-00371-2","DOIUrl":"10.1186/s40529-023-00371-2","url":null,"abstract":"<p><strong>Background: </strong>The biodiversity of the mycobiota of soft cheese rinds such as Brie or Camembert has been extensively studied, but scant information is available on the fungi colonizing the rinds of cheese produced in the Southern Switzerland Alps. This study aimed at exploring the fungal communities present on rinds of cheese matured in five cellars in Southern Switzerland and to evaluate their composition with regards to temperature, relative humidity, type of cheese, as well as microenvironmental and geographic factors. We used macro- and microscopical morphology, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, and sequencing to characterize the fungal communities of the cheeses, and compared them with metabarcoding targeting the ITS region.</p><p><strong>Results: </strong>Isolation by serial dilution yielded 201 isolates (39 yeasts and 162 filamentous fungi) belonging to 9 fungal species. Mucor and Penicillium were dominant, with Mucor racemosus, M. lanceolatus, P. biforme, and P. chrysogenum/rubens being the most frequent species. All but two yeast isolates were identified as Debaryomyces hansenii. Metabarcoding detected 80 fungal species. Culture work and metabarcoding produced comparable results in terms of similarity of the fungal cheese rind communities in the five cellars.</p><p><strong>Conclusions: </strong>Our study has shown that the mycobiota on the rinds of the cheeses studied is a comparatively species-poor community influenced by temperature, relative humidity, type of cheese, and manufacturing steps, as well as microenvironmental and possibly geographic factors.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"6"},"PeriodicalIF":3.4,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9100583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The aim of this study was to determine the actual state of the photosynthetic apparatus and exhibit distinguishable differences in the chlorophyll fluorescence (ChlF) components in different seedling ages of M. oiwakensis plants subjected to different light intensity (LI). Potted 6-month-old greenhouse seedlings and field collected 2.4-year-old seedlings with 5 cm heights were selected and randomly separated into seven groups for photosynthesis measurements illuminated with 50, 100 (assigned as low LI), 300, 500, 1,000 (as moderate LI), 1,500 and 2,000 (as high LI) μmol m-2 s-1 photosynthetic photon flux density (PPFD) treatments.
Results: n 6-month-old seedlings, as LI increased from 50 to 2,000 PPFD, the values of non-photochemical quenching and photo-inhibitory quenching (qI) increased but potential quantum efficiency of PSII (Fv/Fm) and photochemical efficiency of photosystem II (ΦPSII) values decreased. High electron transport rate and percentage of actual PSII efficiency by Fv/Fm values were observed in 2.4-year-old seedlings at high LI conditions. Furthermore, higher ΦPSII was detected under low LI conditions, with lower energy-dependent quenching (qE) and qI values and photo-inhibition % decreased as well. However, qE and qI increased as ΦPSII decreased and photo-inhibition% increased under high LI treatments.
Conclusions: These results could be useful for predicting the changes in growth and distribution of Mahonia species grown in controlled environments and open fields with various combinations of varying light illuminations, and ecological monitoring of their restoration and habitat creation is important for provenance conservation and helps to formulate better conservation strategies for the seedlings.
{"title":"Responses of photosynthesis and chlorophyll fluorescence during light induction in different seedling ages of Mahonia oiwakensis.","authors":"Chung-I Chen, Kuan-Hung Lin, Tzu-Chao Lin, Meng-Yuan Huang, Yung-Chih Chen, Chau-Ching Huang, Ching-Wen Wang","doi":"10.1186/s40529-023-00369-w","DOIUrl":"https://doi.org/10.1186/s40529-023-00369-w","url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to determine the actual state of the photosynthetic apparatus and exhibit distinguishable differences in the chlorophyll fluorescence (ChlF) components in different seedling ages of M. oiwakensis plants subjected to different light intensity (LI). Potted 6-month-old greenhouse seedlings and field collected 2.4-year-old seedlings with 5 cm heights were selected and randomly separated into seven groups for photosynthesis measurements illuminated with 50, 100 (assigned as low LI), 300, 500, 1,000 (as moderate LI), 1,500 and 2,000 (as high LI) μmol m<sup>-2</sup> s<sup>-1</sup> photosynthetic photon flux density (PPFD) treatments.</p><p><strong>Results: </strong>n 6-month-old seedlings, as LI increased from 50 to 2,000 PPFD, the values of non-photochemical quenching and photo-inhibitory quenching (qI) increased but potential quantum efficiency of PSII (Fv/Fm) and photochemical efficiency of photosystem II (ΦPSII) values decreased. High electron transport rate and percentage of actual PSII efficiency by Fv/Fm values were observed in 2.4-year-old seedlings at high LI conditions. Furthermore, higher ΦPSII was detected under low LI conditions, with lower energy-dependent quenching (qE) and qI values and photo-inhibition % decreased as well. However, qE and qI increased as ΦPSII decreased and photo-inhibition% increased under high LI treatments.</p><p><strong>Conclusions: </strong>These results could be useful for predicting the changes in growth and distribution of Mahonia species grown in controlled environments and open fields with various combinations of varying light illuminations, and ecological monitoring of their restoration and habitat creation is important for provenance conservation and helps to formulate better conservation strategies for the seedlings.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"5"},"PeriodicalIF":3.4,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9087038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-09DOI: 10.1186/s40529-023-00368-x
Rabab A Metwally, Shereen A Soliman
Background: Trichoderma viride are well known for their biocontrol capabilities, but little is known about how they stimulate plant development and increase their resistance to salt stress. One of the main abiotic factors limiting crop development and yield is salt stress. Therefore, the purpose of this work was to ascertain how NaCl effects on T. viride growth as well as on the seedlings morphological and physio-biochemical parameters of tomato (Solanum lycopersicum L.) under plate culture conditions. Additionally, a pot experiment was conducted to determine how T. viride affected the development characteristics of tomato plants subjected to various salt concentrations (50 and 100 mM NaCl). T. viride's contribution to tomato seedling stress tolerance was also closely examined.
Results: Results showed that 100 mM NaCl decreased the colony diameter of T. viride by 13.4% compared to the control. Under plate and greenhouse conditions, tomato seedlings exposed to salt exposure exhibited an overall decline in growth. Also, a reduction in relative water content (RWC) and protein contents occurred under salt stress. At the same time, increases were found in proline, total phenolics, flavonoids, H2O2 content, malondialdehyde, likewise the activities of peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) enzymes. Even though, with T. viride application, the salt negative effects on both morphological and physio-biochemical parameters were mitigated to a greater extent. T. viride increased proline and total antioxidant capacity (TAC) in tomato seedlings at 100 mM NaCl by an average of 20.66 and 43.82% compared to their comparable control. T. viride increased the activities of CAT, PPO, and APX enzymes by 74.6, 58.48, and 61.61% at 50 mM NaCl compared to non-saline control seedlings. As well, T. viride decreased MDA and H2O2 contents by an average of 14 and 24.8% in tomato seedlings at 50 mM NaCl compared to their comparable control. Also, under 100 mM NaCl, the T. viride-treated tomato seedlings showed increased total phenolics (17.85%) and flavonoids (33.17%) compared to non- treated one.
Conclusion: Hence, our research sheds new insight on the pathways by which T. viride can boost tomato seedling tolerance to salt stress at morphological and physio-biochemical levels by activating both enzymatic and non-enzymatic antioxidant defense systems.
背景:毛霉菌因其生物防治能力而闻名,但人们对其如何刺激植物生长发育并提高植物对盐胁迫的抗性却知之甚少。盐胁迫是限制作物生长和产量的主要非生物因素之一。因此,本研究的目的是确定在平板培养条件下,氯化钠对 T. viride 的生长以及番茄(Solanum lycopersicum L.)幼苗形态和生理生化参数的影响。此外,还进行了盆栽实验,以确定在不同盐浓度(50 和 100 mM NaCl)条件下,病毒对番茄植株生长特性的影响。还仔细研究了病毒对番茄幼苗抗逆性的贡献:结果表明,与对照组相比,100 mM NaCl 使毒毛蚓的菌落直径减少了 13.4%。在平板和温室条件下,暴露于盐暴露的番茄幼苗表现出整体生长下降。在盐胁迫下,相对含水量(RWC)和蛋白质含量也有所下降。同时,脯氨酸、总酚类、类黄酮、H2O2 含量、丙二醛以及过氧化物酶(POD)、过氧化氢酶(CAT)、多酚氧化酶(PPO)和抗坏血酸过氧化物酶(APX)的活性都有所增加。即使施用了毒死蜱,盐对形态和生理生化参数的负面影响也得到了较大程度的缓解。在 100 mM NaCl 条件下,与同类对照相比,毒死蜱提高了番茄幼苗的脯氨酸和总抗氧化能力(TAC),平均提高了 20.66% 和 43.82%。在 50 mM NaCl 条件下,与非碱性对照幼苗相比,毒死蜱使 CAT、PPO 和 APX 酶的活性分别提高了 74.6%、58.48% 和 61.61%。此外,在 50 mM NaCl 条件下,与同类对照相比,T. viride 能使番茄幼苗的 MDA 和 H2O2 含量平均降低 14% 和 24.8%。此外,在 100 mM NaCl 条件下,与未处理的番茄幼苗相比,经毒死蜱处理的番茄幼苗的总酚(17.85%)和类黄酮(33.17%)含量有所增加:因此,我们的研究揭示了 T. viride 通过激活酶和非酶抗氧化防御系统,在形态和生理生化水平上提高番茄幼苗对盐胁迫耐受性的新途径。
{"title":"Alleviation of the adverse effects of NaCl stress on tomato seedlings (Solanum lycopersicum L.) by Trichoderma viride through the antioxidative defense system.","authors":"Rabab A Metwally, Shereen A Soliman","doi":"10.1186/s40529-023-00368-x","DOIUrl":"10.1186/s40529-023-00368-x","url":null,"abstract":"<p><strong>Background: </strong>Trichoderma viride are well known for their biocontrol capabilities, but little is known about how they stimulate plant development and increase their resistance to salt stress. One of the main abiotic factors limiting crop development and yield is salt stress. Therefore, the purpose of this work was to ascertain how NaCl effects on T. viride growth as well as on the seedlings morphological and physio-biochemical parameters of tomato (Solanum lycopersicum L.) under plate culture conditions. Additionally, a pot experiment was conducted to determine how T. viride affected the development characteristics of tomato plants subjected to various salt concentrations (50 and 100 mM NaCl). T. viride's contribution to tomato seedling stress tolerance was also closely examined.</p><p><strong>Results: </strong>Results showed that 100 mM NaCl decreased the colony diameter of T. viride by 13.4% compared to the control. Under plate and greenhouse conditions, tomato seedlings exposed to salt exposure exhibited an overall decline in growth. Also, a reduction in relative water content (RWC) and protein contents occurred under salt stress. At the same time, increases were found in proline, total phenolics, flavonoids, H<sub>2</sub>O<sub>2</sub> content, malondialdehyde, likewise the activities of peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) enzymes. Even though, with T. viride application, the salt negative effects on both morphological and physio-biochemical parameters were mitigated to a greater extent. T. viride increased proline and total antioxidant capacity (TAC) in tomato seedlings at 100 mM NaCl by an average of 20.66 and 43.82% compared to their comparable control. T. viride increased the activities of CAT, PPO, and APX enzymes by 74.6, 58.48, and 61.61% at 50 mM NaCl compared to non-saline control seedlings. As well, T. viride decreased MDA and H<sub>2</sub>O<sub>2</sub> contents by an average of 14 and 24.8% in tomato seedlings at 50 mM NaCl compared to their comparable control. Also, under 100 mM NaCl, the T. viride-treated tomato seedlings showed increased total phenolics (17.85%) and flavonoids (33.17%) compared to non- treated one.</p><p><strong>Conclusion: </strong>Hence, our research sheds new insight on the pathways by which T. viride can boost tomato seedling tolerance to salt stress at morphological and physio-biochemical levels by activating both enzymatic and non-enzymatic antioxidant defense systems.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"4"},"PeriodicalIF":3.4,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10678335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The genus Veronicastrum Heist. ex Fabr. are mainly distributed in East Asia, and only Veronicastrum virginicum (L.) Farw. is disjunctively distributed in eastern North America. The south area of China (extending to Taiwan Island) is the richest in Veronicastrum species. It is of medicinal importance in China as traditional herbs used to treat ascites diseases that caused by schistosomiasis. During field investigation of plant resources in Pingbaying National Forest Park, Southwestern Hubei, China, an unknown flowering population of Veronicastrum was discovered from thick humus layers adjacent to rocks under broad-leaved forests by walkways. They were collected and morphological characters assesed for further taxonomic treatment. Molecular analysis was also conducted to ascertain its phylogenetic position in the genus Veronicastrum.
Results: This species is similar to Veronicastrum liukiuense (Ohwi) T.Yamaz. from the Ryukyu Islands, but can be distinctly differed by its axillary inflorescences (versus terminal on short leafy branches), pedicels up to 2.5 mm (versus sessile), corollas purple to purple-red (versus white tinged with pale purple) and florescence June to July (versus September to October). Also, phylogenetic studies showed the species was an independent clade in the genus Veronicastrum based on the maximum likelihood (ML) analyses using two different matrix sequences of concatenated molecular markers. The plastid genome of this new species is also reported in this study for the first time.
Conclusion: The morphological and molecular evidences support the recognition of Veronicastrum wulingense as a new species.
{"title":"Veronicastrum wulingense (Plantaginaceae), a new species from Southwestern Hubei, China.","authors":"Shi-Xiong Ding, Hui Jiang, Jing Tian, Jing Ren, Fredrick Munyao Mutie, Emmanuel Nyongesa Waswa, Guang-Wan Hu, Qing-Feng Wang","doi":"10.1186/s40529-023-00367-y","DOIUrl":"https://doi.org/10.1186/s40529-023-00367-y","url":null,"abstract":"<p><strong>Background: </strong>The genus Veronicastrum Heist. ex Fabr. are mainly distributed in East Asia, and only Veronicastrum virginicum (L.) Farw. is disjunctively distributed in eastern North America. The south area of China (extending to Taiwan Island) is the richest in Veronicastrum species. It is of medicinal importance in China as traditional herbs used to treat ascites diseases that caused by schistosomiasis. During field investigation of plant resources in Pingbaying National Forest Park, Southwestern Hubei, China, an unknown flowering population of Veronicastrum was discovered from thick humus layers adjacent to rocks under broad-leaved forests by walkways. They were collected and morphological characters assesed for further taxonomic treatment. Molecular analysis was also conducted to ascertain its phylogenetic position in the genus Veronicastrum.</p><p><strong>Results: </strong>This species is similar to Veronicastrum liukiuense (Ohwi) T.Yamaz. from the Ryukyu Islands, but can be distinctly differed by its axillary inflorescences (versus terminal on short leafy branches), pedicels up to 2.5 mm (versus sessile), corollas purple to purple-red (versus white tinged with pale purple) and florescence June to July (versus September to October). Also, phylogenetic studies showed the species was an independent clade in the genus Veronicastrum based on the maximum likelihood (ML) analyses using two different matrix sequences of concatenated molecular markers. The plastid genome of this new species is also reported in this study for the first time.</p><p><strong>Conclusion: </strong>The morphological and molecular evidences support the recognition of Veronicastrum wulingense as a new species.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"3"},"PeriodicalIF":3.4,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10646716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-24DOI: 10.1186/s40529-022-00365-6
Zsófia Kovács, Jelena Mlinarec, Mária Höhn
Background: The analysis of genetic diversity of protected plant species can greatly support conservation efforts. Plantago maxima Juss. ex Jacq. is a perennial species distributed along the Eurasian steppe. The westernmost range edge of the species' distribution is located in the Pannonian basin, in Hungary where it is represented by a few, fragmented and highly endangered populations. We studied population diversity of all Hungarian range edge, natural populations, and one established ex situ population. One population from the centre of distribution (Kazakhstan) was implemented in the cpDNA haplotype study to compare the peripheral vs. central populations. We performed morphometric trait-based analysis, chromosome studies (morphometric analyses and FISH) and genetic diversity evaluations using inter simple sequence repeats (ISSR) and cpDNA trnL-trnF to evaluate differences between the in situ and ex situ populations as well as central vs. peripheral populations.
Results: Our results showed no obvious morphological differences among the in situ and ex situ populations in the period between 2018 and 2020. One ex situ subpopulation develops flowers three years in a row from 2019, which is a favourable indicator of the introduction success. Hungarian populations are exclusively diploids (2n = 2x = 12). The karyogram consists of 5 metacentric and 1 acrocentric chromosome pair. Plantago maxima has one 35S and two 5S rDNA loci, located on the acrocentric chromosome pair. Eight variable ISSR primers yielded 100 fragments, of which 74.6% were polymorphic (mean He = 0.220). A high level of genetic variation within population was observed (92%) while the genetic differentiation among the populations was only 8%. STRUCTURE analysis revealed that the largest Kunpeszér population separated from the rest of the Hungarian populations, indicating a high rate of admixture among the other ones. Based on the trnL-trnF sequence analysis the Hungarian populations represent a single haplotype, which can indicate a reduced diversity due to isolation and recent population decline. By contrast, Kazakh population represents a distinct haplotype compared to the Hungarian samples.
Conclusions: The present study draws the attention to the high conservation value of the Plantago maxima populations from the westernmost range edge of the species' distribution.
{"title":"Living on the edge: morphological, karyological and genetic diversity studies of the Hungarian Plantago maxima populations and established ex situ collection.","authors":"Zsófia Kovács, Jelena Mlinarec, Mária Höhn","doi":"10.1186/s40529-022-00365-6","DOIUrl":"https://doi.org/10.1186/s40529-022-00365-6","url":null,"abstract":"<p><strong>Background: </strong>The analysis of genetic diversity of protected plant species can greatly support conservation efforts. Plantago maxima Juss. ex Jacq. is a perennial species distributed along the Eurasian steppe. The westernmost range edge of the species' distribution is located in the Pannonian basin, in Hungary where it is represented by a few, fragmented and highly endangered populations. We studied population diversity of all Hungarian range edge, natural populations, and one established ex situ population. One population from the centre of distribution (Kazakhstan) was implemented in the cpDNA haplotype study to compare the peripheral vs. central populations. We performed morphometric trait-based analysis, chromosome studies (morphometric analyses and FISH) and genetic diversity evaluations using inter simple sequence repeats (ISSR) and cpDNA trnL-trnF to evaluate differences between the in situ and ex situ populations as well as central vs. peripheral populations.</p><p><strong>Results: </strong>Our results showed no obvious morphological differences among the in situ and ex situ populations in the period between 2018 and 2020. One ex situ subpopulation develops flowers three years in a row from 2019, which is a favourable indicator of the introduction success. Hungarian populations are exclusively diploids (2n = 2x = 12). The karyogram consists of 5 metacentric and 1 acrocentric chromosome pair. Plantago maxima has one 35S and two 5S rDNA loci, located on the acrocentric chromosome pair. Eight variable ISSR primers yielded 100 fragments, of which 74.6% were polymorphic (mean H<sub>e</sub> = 0.220). A high level of genetic variation within population was observed (92%) while the genetic differentiation among the populations was only 8%. STRUCTURE analysis revealed that the largest Kunpeszér population separated from the rest of the Hungarian populations, indicating a high rate of admixture among the other ones. Based on the trnL-trnF sequence analysis the Hungarian populations represent a single haplotype, which can indicate a reduced diversity due to isolation and recent population decline. By contrast, Kazakh population represents a distinct haplotype compared to the Hungarian samples.</p><p><strong>Conclusions: </strong>The present study draws the attention to the high conservation value of the Plantago maxima populations from the westernmost range edge of the species' distribution.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"2"},"PeriodicalIF":3.4,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9176473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA methylation is a crucial epigenetic modification involved in multiple biological processes and diseases. Current approaches for measuring genome-wide DNA methylation via bisulfite sequencing (BS-seq) include whole-genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and enzymatic methyl-seq (EM-seq). The computational analysis tools available for BS-seq data include customized aligners for mapping bisulfite-converted reads and computational pipelines for downstream data analysis. Current post-alignment methylation tools are specialized for the interpretation of CG methylation, which is known to dominate mammalian genomes, however, non-CG methylation (CHG and CHH, where H refers to A, C, or T) is commonly observed in plants and fungi and is closely associated with gene regulation, transposon silencing, and plant development. Thus, we have developed a MethylC-analyzer to analyze and visualize post-alignment WGBS, RRBS, and EM-seq data focusing on CG. The tool is able to also analyze non-CG sites to enhance deciphering genomes of plants and fungi. By processing aligned data and gene location files, MethylC-analyzer generates a genome-wide view of methylation levels and methylation in user-specified genomic regions. The meta-plot, for example, allows the investigation of DNA methylation within specific genomic elements. Moreover, our tool identifies differentially methylated regions (DMRs) and investigates the enrichment of genomic features associated with variable methylation. MethylC-analyzer functionality is not limited to specific genomes, and we demonstrated its performance on both plant and human BS-seq data. MethylC-analyzer is a Python- and R-based program designed to perform comprehensive downstream analyses of methylation data, providing an intuitive analysis platform for scientists unfamiliar with DNA methylation analysis. It is available as either a standalone version for command-line uses or a graphical user interface (GUI) and is publicly accessible at https://github.com/RitataLU/MethylC-analyzer .
{"title":"MethylC-analyzer: a comprehensive downstream pipeline for the analysis of genome-wide DNA methylation.","authors":"Rita Jui-Hsien Lu, Pei-Yu Lin, Ming-Ren Yen, Bing-Heng Wu, Pao-Yang Chen","doi":"10.1186/s40529-022-00366-5","DOIUrl":"https://doi.org/10.1186/s40529-022-00366-5","url":null,"abstract":"<p><p>DNA methylation is a crucial epigenetic modification involved in multiple biological processes and diseases. Current approaches for measuring genome-wide DNA methylation via bisulfite sequencing (BS-seq) include whole-genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and enzymatic methyl-seq (EM-seq). The computational analysis tools available for BS-seq data include customized aligners for mapping bisulfite-converted reads and computational pipelines for downstream data analysis. Current post-alignment methylation tools are specialized for the interpretation of CG methylation, which is known to dominate mammalian genomes, however, non-CG methylation (CHG and CHH, where H refers to A, C, or T) is commonly observed in plants and fungi and is closely associated with gene regulation, transposon silencing, and plant development. Thus, we have developed a MethylC-analyzer to analyze and visualize post-alignment WGBS, RRBS, and EM-seq data focusing on CG. The tool is able to also analyze non-CG sites to enhance deciphering genomes of plants and fungi. By processing aligned data and gene location files, MethylC-analyzer generates a genome-wide view of methylation levels and methylation in user-specified genomic regions. The meta-plot, for example, allows the investigation of DNA methylation within specific genomic elements. Moreover, our tool identifies differentially methylated regions (DMRs) and investigates the enrichment of genomic features associated with variable methylation. MethylC-analyzer functionality is not limited to specific genomes, and we demonstrated its performance on both plant and human BS-seq data. MethylC-analyzer is a Python- and R-based program designed to perform comprehensive downstream analyses of methylation data, providing an intuitive analysis platform for scientists unfamiliar with DNA methylation analysis. It is available as either a standalone version for command-line uses or a graphical user interface (GUI) and is publicly accessible at https://github.com/RitataLU/MethylC-analyzer .</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":"64 1","pages":"1"},"PeriodicalIF":3.4,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9527595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}