How effective is naturally ventilated internal thermal mass for obviating air-conditioning, mitigating heatwaves and storing carbon in buildings? This study combines detailed climate model outputs with scaling rules for optimizing internal thermal mass coupled with buoyancy ventilation. It identifies regions where this passive design strategy is most effective during future heatwaves and determines how much internal thermal mass each person needs to stay comfortable in these regions, with a special focus on Canada. Results suggest that naturally ventilated internal thermal mass is likely to become less effective due to future global heating. Regions where internal thermal mass will no longer be sufficient to obviate air-conditioning and where it can still play a significant role in hybrid cooling are identified. By comparing the ideal per capita thermal mass quantities in different regions, it is found that biomass-based materials require approximately 3.5 times the volume of cementitious materials to perform equivalently, if thermal proportions for surface area and thickness are respected. Finally, an analysis of the per capita embodied carbon of these ideal internal thermal mass quantities is undertaken, suggesting a fair functional unit to compare thermal mass materials. reasonable and similar to dimensions used in construction (≈ 6.3 cm-thick thermal mass with an interior surface area of 26.6 m 2 for concrete, 13.6 cm thick and 47.0 m 2 for mass timber, and 8.8 cm thick and 41.1 m 2 for oriented straw structural boards—OSSB). Based on these findings, concrete substitution factors are developed for biomass-based materials. Finally, an analysis of the embodied carbon emissions of per capita optimal thermal mass quantities is performed, suggesting that the latter could be used as a fair functional unit for inter-material comparative lifecycle assessments (LCAs) in low-carbon building design to allow a comparison of the environmental impact of equivalently performing, rather than equivalent volumes of materials.
{"title":"Internal thermal mass for passive cooling and ventilation: adaptive comfort limits, ideal quantities, embodied carbon","authors":"Timothée de Toldi, S. Craig, L. Sushama","doi":"10.5334/bc.156","DOIUrl":"https://doi.org/10.5334/bc.156","url":null,"abstract":"How effective is naturally ventilated internal thermal mass for obviating air-conditioning, mitigating heatwaves and storing carbon in buildings? This study combines detailed climate model outputs with scaling rules for optimizing internal thermal mass coupled with buoyancy ventilation. It identifies regions where this passive design strategy is most effective during future heatwaves and determines how much internal thermal mass each person needs to stay comfortable in these regions, with a special focus on Canada. Results suggest that naturally ventilated internal thermal mass is likely to become less effective due to future global heating. Regions where internal thermal mass will no longer be sufficient to obviate air-conditioning and where it can still play a significant role in hybrid cooling are identified. By comparing the ideal per capita thermal mass quantities in different regions, it is found that biomass-based materials require approximately 3.5 times the volume of cementitious materials to perform equivalently, if thermal proportions for surface area and thickness are respected. Finally, an analysis of the per capita embodied carbon of these ideal internal thermal mass quantities is undertaken, suggesting a fair functional unit to compare thermal mass materials. reasonable and similar to dimensions used in construction (≈ 6.3 cm-thick thermal mass with an interior surface area of 26.6 m 2 for concrete, 13.6 cm thick and 47.0 m 2 for mass timber, and 8.8 cm thick and 41.1 m 2 for oriented straw structural boards—OSSB). Based on these findings, concrete substitution factors are developed for biomass-based materials. Finally, an analysis of the embodied carbon emissions of per capita optimal thermal mass quantities is performed, suggesting that the latter could be used as a fair functional unit for inter-material comparative lifecycle assessments (LCAs) in low-carbon building design to allow a comparison of the environmental impact of equivalently performing, rather than equivalent volumes of materials.","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47126945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Short, A. Woods, L. Drumright, Rabiya Zia, N. Mingotti
Outcomes are reported from an antimicrobial-resistance research initiative into the infection control offered by downward laminar-flow ventilation in hospital operating theatres. Pre-cooled air is forced down onto the patient with the intention of diverting airborne pathogens from the surgical wound. The concept was commercialised in the early 1970s as the Ultra Clean Ventilation (UCV) system, a commonly applied contemporary solution. Data collected by the authors in unoccupied UCV theatres in a recently completed acute hospital indicate that as the warming air descends into the occupied zone, it may be subject to recirculation within the suite of spaces. This phenomenon is confirmed by the authors’ experimental modelling. Increasing the residence time of microorganisms will increase the probability of surgical site infection (SSI). An alternative is proposed: an upflow displacement ventilation scheme in combination with a localised source of filtered air to ventilate the wound as required. Likely ventilation flows are modelled experimentally and compared with those of the downdraught-ventilated UCV type. The alternative arrangement appears to provide comparable risk of SSI, while requiring less energy to drive the ventilation system. The concept is developed into a novel surgical theatre proposal in which background airflows are driven
{"title":"An alternative approach to delivering safe, sustainable surgical theatre environments","authors":"C. Short, A. Woods, L. Drumright, Rabiya Zia, N. Mingotti","doi":"10.5334/bc.154","DOIUrl":"https://doi.org/10.5334/bc.154","url":null,"abstract":"Outcomes are reported from an antimicrobial-resistance research initiative into the infection control offered by downward laminar-flow ventilation in hospital operating theatres. Pre-cooled air is forced down onto the patient with the intention of diverting airborne pathogens from the surgical wound. The concept was commercialised in the early 1970s as the Ultra Clean Ventilation (UCV) system, a commonly applied contemporary solution. Data collected by the authors in unoccupied UCV theatres in a recently completed acute hospital indicate that as the warming air descends into the occupied zone, it may be subject to recirculation within the suite of spaces. This phenomenon is confirmed by the authors’ experimental modelling. Increasing the residence time of microorganisms will increase the probability of surgical site infection (SSI). An alternative is proposed: an upflow displacement ventilation scheme in combination with a localised source of filtered air to ventilate the wound as required. Likely ventilation flows are modelled experimentally and compared with those of the downdraught-ventilated UCV type. The alternative arrangement appears to provide comparable risk of SSI, while requiring less energy to drive the ventilation system. The concept is developed into a novel surgical theatre proposal in which background airflows are driven","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71049877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy housekeeping: intersections of gender, domestic labour and technologies","authors":"Rex Martin","doi":"10.5334/bc.218","DOIUrl":"https://doi.org/10.5334/bc.218","url":null,"abstract":"","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71050264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. S. van der Bent, H. Visscher, A. Meijer, N. Mouter
{"title":"Benchmarking energy performance: indicators and models for Dutch housing associations","authors":"H. S. van der Bent, H. Visscher, A. Meijer, N. Mouter","doi":"10.5334/bc.207","DOIUrl":"https://doi.org/10.5334/bc.207","url":null,"abstract":"","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71050394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masculine roles and practices in homes with photovoltaic systems","authors":"Mette Mechlenborg, K. Gram-hanssen","doi":"10.5334/bc.211","DOIUrl":"https://doi.org/10.5334/bc.211","url":null,"abstract":"","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71050571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
flow (AFN) and stock. Key indoor temperatures, heating demand, of CO 2 , NO 2 and PM 2.5 , and terrain, orientation pollutants). The identifies the range of retrofit and passive cooling measures. these measures, future level some occur, and filtration likely adaptive comfort limits, ideal quantities of thermal mass and embodied carbon. This paper argues that the internal thermal mass of a building coupled with buoyancy ventilation can significantly reduce the need for active AC and in turn mitigate climate change. The results of the paper conclude that thermal mass would provide comfort considering adaptive thermal comfort theory against heatwaves in Canada without mechanical cooling. It also quantified per person quantities of thermal mass required. The paper discusses the life-cycle carbon emissions associated with building materials that will provide thermal mass. Thermal mass for passive cooling can play a significant role within the design of hybrid cooling approaches and can contribute to a reduction of the operating hours of active systems.
流量(AFN)和库存关键室内温度,供暖需求,CO 2, NO 2和PM 2.5,以及地形,朝向污染物)。确定改造和被动冷却措施的范围。这些措施,未来水平的一些发生,和过滤可能的适应性舒适限制,理想的热质量和含碳量。本文认为,建筑物的内部热质量与浮力通风相结合,可以显著减少对主动式空调的需求,从而缓解气候变化。本文的研究结果表明,考虑到加拿大在没有机械冷却的情况下对热浪的适应性热舒适理论,热质量可以提供舒适。它还量化了每人所需的热质量。本文讨论了与提供热质量的建筑材料相关的生命周期碳排放。被动冷却的热质量可以在混合冷却方法的设计中发挥重要作用,并有助于减少主动系统的运行时间。
{"title":"Alternatives to air-conditioning: policies, design, technologies, behaviours","authors":"B. Ford, D. Mumovic, Rajan Rawal","doi":"10.5334/bc.256","DOIUrl":"https://doi.org/10.5334/bc.256","url":null,"abstract":"flow (AFN) and stock. Key indoor temperatures, heating demand, of CO 2 , NO 2 and PM 2.5 , and terrain, orientation pollutants). The identifies the range of retrofit and passive cooling measures. these measures, future level some occur, and filtration likely adaptive comfort limits, ideal quantities of thermal mass and embodied carbon. This paper argues that the internal thermal mass of a building coupled with buoyancy ventilation can significantly reduce the need for active AC and in turn mitigate climate change. The results of the paper conclude that thermal mass would provide comfort considering adaptive thermal comfort theory against heatwaves in Canada without mechanical cooling. It also quantified per person quantities of thermal mass required. The paper discusses the life-cycle carbon emissions associated with building materials that will provide thermal mass. Thermal mass for passive cooling can play a significant role within the design of hybrid cooling approaches and can contribute to a reduction of the operating hours of active systems.","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71051044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Schiffer, M. Greene, Rihab Khalid, C. Foulds, Cecilia Alda Vidal, Monolita Chatterjee, Sunrita Dhar Bhattacharjee, Norbert Edomah, Obehi Sule, D. Palit, Amos Nkpeebo Yesutanbul
{"title":"Brokering Gender Empowerment in Energy Access in the Global South","authors":"Anne Schiffer, M. Greene, Rihab Khalid, C. Foulds, Cecilia Alda Vidal, Monolita Chatterjee, Sunrita Dhar Bhattacharjee, Norbert Edomah, Obehi Sule, D. Palit, Amos Nkpeebo Yesutanbul","doi":"10.5334/bc.236","DOIUrl":"https://doi.org/10.5334/bc.236","url":null,"abstract":"","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71051132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}