M. Kamruzzaman, Md. Faruk Hossain, J. Antonio Zapien, A. M. M. Tanveer Karim, H. N. Das, M. A. Helal
MAPbI3 is the most attractive perovskite, but toxicity and instability issues hinder its commercial applications. Stability can be improved by halide mixing; however, Pb-free perovskites are designed to alleviate the toxicity and to enable green photovoltaics (PVs). To this end, MAPbI3-xClx, FASnI3-xClx and CsSbCl4 films are deposited by spay pyrolysis technique in atmospheric conditions. SEM images demonstrated that through this process, high quality film fabrication is possible. Color of the precursor solutions changes with stirring time. High crystallinity and existence of mixed-phases are confirmed by XRD analysis. Compositions greatly impact the morphology and optical properties. Value of α is larger than 105 cm−1 for all films. Band gaps of FASnI3-xClx and CsSbCl4 are 1.46 eV and 1.52 eV, which are more suitable for PVs, optoelectronic applications than MAPbI3-xClx (Eg = 1.59 eV). The efficiency was obtained as 16.34%, 9.90%, and 13.08% for deposited MAPbI3-xClx, FASnI3-xClx, and CsSbCl4 films. The lower efficiency can further be enhanced by optimizing parameters, and in this study it was found as 20.78%, 11.93%, and 18.02%. Theoretical calculations show the films can easily produce O2 by a strong oxidation process. Thus, the favorable characteristics of FASnI3-xClx and CsSbCl4 make alternative Pb-free perovskites for PV, electronic, and optoelectronic applications.
{"title":"From Pb-based MAPbI3−xClx to Pb-free FASnI3−xClx and CsSbCl4 derivatives fabrication in atmospheric conditions for optoelectronic and solar cell applications","authors":"M. Kamruzzaman, Md. Faruk Hossain, J. Antonio Zapien, A. M. M. Tanveer Karim, H. N. Das, M. A. Helal","doi":"10.1002/eom2.12489","DOIUrl":"https://doi.org/10.1002/eom2.12489","url":null,"abstract":"<p>MAPbI<sub>3</sub> is the most attractive perovskite, but toxicity and instability issues hinder its commercial applications. Stability can be improved by halide mixing; however, Pb-free perovskites are designed to alleviate the toxicity and to enable green photovoltaics (PVs). To this end, MAPbI<sub>3-x</sub>Cl<sub>x</sub>, FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> films are deposited by spay pyrolysis technique in atmospheric conditions. SEM images demonstrated that through this process, high quality film fabrication is possible. Color of the precursor solutions changes with stirring time. High crystallinity and existence of mixed-phases are confirmed by XRD analysis. Compositions greatly impact the morphology and optical properties. Value of α is larger than 10<sup>5</sup> cm<sup>−1</sup> for all films. Band gaps of FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> are 1.46 eV and 1.52 eV, which are more suitable for PVs, optoelectronic applications than MAPbI<sub>3-x</sub>Cl<sub>x</sub> (E<sub>g</sub> = 1.59 eV). The efficiency was obtained as 16.34%, 9.90%, and 13.08% for deposited MAPbI<sub>3-x</sub>Cl<sub>x</sub>, FASnI<sub>3-x</sub>Cl<sub>x</sub>, and CsSbCl<sub>4</sub> films. The lower efficiency can further be enhanced by optimizing parameters, and in this study it was found as 20.78%, 11.93%, and 18.02%. Theoretical calculations show the films can easily produce O<sub>2</sub> by a strong oxidation process. Thus, the favorable characteristics of FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> make alternative Pb-free perovskites for PV, electronic, and optoelectronic applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoxuan Liu, Can Li, Zongxu Zhang, Yating Shi, Fei Zhang
Perovskite solar cells' (PSCs) potential lead leakage seriously threatens ecosystems and human health, significantly hindering their commercialization. In this paper, we develope a cost-effective (less than 2$/m2) and long-term stable SSP film by mixing sulfonated SiO2 with polyvinyl alcohol (PVA). Combined with polydimethylsiloxane (PDMS) forming the encapsulation layer, it can effectively prevent over 99% of lead leakage under simulated adverse weather conditions with different structures of devices (p-i-n and n-i-p) and modules. Even after 160 days of air storage, the film maintains excellent lead sequestration efficiency. Additionally, it has no negative impact on the performance and stability. This work offers a practical and economical strategy to mitigate the toxicity of perovskite photovoltaic devices, thereby promoting their commercialization.
{"title":"Minimizing perovskite solar cells' lead leakage with a cost-effective and 160 days stable encapsulant","authors":"Haoxuan Liu, Can Li, Zongxu Zhang, Yating Shi, Fei Zhang","doi":"10.1002/eom2.12490","DOIUrl":"https://doi.org/10.1002/eom2.12490","url":null,"abstract":"<p>Perovskite solar cells' (PSCs) potential lead leakage seriously threatens ecosystems and human health, significantly hindering their commercialization. In this paper, we develope a cost-effective (less than 2$/m<sup>2</sup>) and long-term stable SSP film by mixing sulfonated SiO<sub>2</sub> with polyvinyl alcohol (PVA). Combined with polydimethylsiloxane (PDMS) forming the encapsulation layer, it can effectively prevent over 99% of lead leakage under simulated adverse weather conditions with different structures of devices (p-i-n and n-i-p) and modules. Even after 160 days of air storage, the film maintains excellent lead sequestration efficiency. Additionally, it has no negative impact on the performance and stability. This work offers a practical and economical strategy to mitigate the toxicity of perovskite photovoltaic devices, thereby promoting their commercialization.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinu Park, Hyunjin Cho, Joonyun Kim, Yu-Ching Huang, Nakyung Kim, Seoyeon Park, Yunna Kim, Sukki Lee, Jiyoung Kwon, Doh C. Lee, Byungha Shin
Lead halide perovskites exhibit a very wide color gamut due to their extremely narrow emission spectra, typically characterized by a full-width at half-maximum (FWHM) of less than 20 nm. Significant advancements have been made in developing highly efficient and stable green, red, and near-infrared perovskite light-emitting diodes (PeLEDs). However, achieving efficient and stable pure blue-emitting PeLEDs remains a significant challenge. In this work, we successfully synthesized monoanionic octyl-phosphonate capped CsPbBr3 nanoplatelets (OPA-NPLs) using a combination of octyl-phosphonic acid and oleylamine at room temperature, diverging from common approaches that necessitate complex high-temperature methods, such as hot injection, to accommodate short-chain ligands. The OPA-NPLs exhibit pure blue photoluminescence at 462 nm with a FWHM of 14 nm. Compared with CsPbBr3 nanoplatelets synthesized using oleic acid, OPA-NPLs demonstrate significantly improved thermal stability and higher photoluminescence quantum yield (PLQY) of 90%. Additionally, we introduced Poly[(9,9-bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), a conjugated polyelectrolyte material, as a hole transport layer. This facilitated energy transfer between PFN-Br and the CsPbBr3 nanoplatelets. The resulting device demonstrated an electroluminescence peak at 462 nm, an extremely narrow FWHM of 14 nm, and a maximum external quantum efficiency (EQE) of 4%. Notably, the device maintained pure blue emission without spectral peak shift even during degradation caused by excess joule heating.
{"title":"Efficient and spectrally stable pure blue light-emitting diodes enabled by phosphonate passivated CsPbBr3 nanoplatelets with conjugated polyelectrolyte-based energy transfer layer","authors":"Jinu Park, Hyunjin Cho, Joonyun Kim, Yu-Ching Huang, Nakyung Kim, Seoyeon Park, Yunna Kim, Sukki Lee, Jiyoung Kwon, Doh C. Lee, Byungha Shin","doi":"10.1002/eom2.12487","DOIUrl":"https://doi.org/10.1002/eom2.12487","url":null,"abstract":"<p>Lead halide perovskites exhibit a very wide color gamut due to their extremely narrow emission spectra, typically characterized by a full-width at half-maximum (FWHM) of less than 20 nm. Significant advancements have been made in developing highly efficient and stable green, red, and near-infrared perovskite light-emitting diodes (PeLEDs). However, achieving efficient and stable pure blue-emitting PeLEDs remains a significant challenge. In this work, we successfully synthesized monoanionic octyl-phosphonate capped CsPbBr<sub>3</sub> nanoplatelets (OPA-NPLs) using a combination of octyl-phosphonic acid and oleylamine at room temperature, diverging from common approaches that necessitate complex high-temperature methods, such as hot injection, to accommodate short-chain ligands. The OPA-NPLs exhibit pure blue photoluminescence at 462 nm with a FWHM of 14 nm. Compared with CsPbBr<sub>3</sub> nanoplatelets synthesized using oleic acid, OPA-NPLs demonstrate significantly improved thermal stability and higher photoluminescence quantum yield (PLQY) of 90%. Additionally, we introduced Poly[(9,9-bis(3′-((<i>N,N</i>-dimethyl)-<i>N</i>-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), a conjugated polyelectrolyte material, as a hole transport layer. This facilitated energy transfer between PFN-Br and the CsPbBr<sub>3</sub> nanoplatelets. The resulting device demonstrated an electroluminescence peak at 462 nm, an extremely narrow FWHM of 14 nm, and a maximum external quantum efficiency (EQE) of 4%. Notably, the device maintained pure blue emission without spectral peak shift even during degradation caused by excess joule heating.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12487","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongmin An, Wonchul Park, Heejong Shin, Dong Young Chung
The Oxygen evolution reaction (OER) is a pivotal technology driving next-generation sustainable energy conversion and storage devices. Establishing a robust analytical methodology is paramount to fostering innovation in this field. This review offers a comprehensive discussion on measurement and interpretation, advocating for standardized protocols and best practices to mitigate the myriad factors that complicate analysis. The initial focus is directed toward substrate electrodes and gas bubbles, both significant contributors to reduced reliability and reproducibility. Subsequently, the review focuses on intrinsic activity assessment, identification of electrochemical active sites, and the disentanglement of competing process contributions. These careful methodologies ensure the systematic delivery of insights crucial for assessing OER performance. In conclusion, the review highlights the critical role played by precise measurement techniques and unbiased activity comparison methodologies in propelling advancements in OER catalyst development.
氧进化反应(OER)是推动下一代可持续能源转换和储存设备的关键技术。建立健全的分析方法对于促进该领域的创新至关重要。本综述对测量和解释进行了全面讨论,提倡采用标准化协议和最佳实践,以减少导致分析复杂化的各种因素。最初的重点是基底电极和气泡,它们都是降低可靠性和可重复性的重要因素。随后,评述将重点放在内在活性评估、电化学活性位点的识别以及竞争过程贡献的分离上。这些细致的方法可确保系统性地提供对评估开放式辐射计性能至关重要的见解。总之,综述强调了精确测量技术和无偏见的活性比较方法在推动 OER 催化剂开发方面所发挥的关键作用。
{"title":"Recommended practice for measurement and evaluation of oxygen evolution reaction electrocatalysis","authors":"Hongmin An, Wonchul Park, Heejong Shin, Dong Young Chung","doi":"10.1002/eom2.12486","DOIUrl":"10.1002/eom2.12486","url":null,"abstract":"<p>The Oxygen evolution reaction (OER) is a pivotal technology driving next-generation sustainable energy conversion and storage devices. Establishing a robust analytical methodology is paramount to fostering innovation in this field. This review offers a comprehensive discussion on measurement and interpretation, advocating for standardized protocols and best practices to mitigate the myriad factors that complicate analysis. The initial focus is directed toward substrate electrodes and gas bubbles, both significant contributors to reduced reliability and reproducibility. Subsequently, the review focuses on intrinsic activity assessment, identification of electrochemical active sites, and the disentanglement of competing process contributions. These careful methodologies ensure the systematic delivery of insights crucial for assessing OER performance. In conclusion, the review highlights the critical role played by precise measurement techniques and unbiased activity comparison methodologies in propelling advancements in OER catalyst development.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashish Gaur, Jatin Sharma, Enkhtuvshin Enkhbayar, Min Su Cho, Jeong Ho Ryu, HyukSu Han
The most feasible technique for producing green hydrogen is water electrolysis. In recent years, there has been significant study conducted on the use of transition metal compounds as electrocatalysts for both anodes and cathodes. Peoples have attempted several strategies to improve the electrocatalytic activity of their original structure. One such technique involves introducing rare earth metals or creating heterostructures with compounds based on rare earth metals. The incorporation of rare earth metals significantly enhances the activity by many folds, while their compounds offer structural stability and the ability to manipulate the electronic properties of the original system. These factors have led to a recent boom in investigations on rare earth metal-based electrocatalysts. There is currently a pressing demand for a review article that can provide a comprehensive overview of the scientific advancements and elucidate the mechanistic aspects of the impact of lanthanide doping. This review begins by explaining the electronic structure of the lanthanides. We next examine the mechanistic aspects, followed by recent advancements in lanthanide doping and heterostructure formation for water electrolysis applications. It is expected that this particular effort will benefit a broad audience and stimulate more research in this area of interest.
{"title":"Lanthanides in the water electrolysis","authors":"Ashish Gaur, Jatin Sharma, Enkhtuvshin Enkhbayar, Min Su Cho, Jeong Ho Ryu, HyukSu Han","doi":"10.1002/eom2.12484","DOIUrl":"https://doi.org/10.1002/eom2.12484","url":null,"abstract":"<p>The most feasible technique for producing green hydrogen is water electrolysis. In recent years, there has been significant study conducted on the use of transition metal compounds as electrocatalysts for both anodes and cathodes. Peoples have attempted several strategies to improve the electrocatalytic activity of their original structure. One such technique involves introducing rare earth metals or creating heterostructures with compounds based on rare earth metals. The incorporation of rare earth metals significantly enhances the activity by many folds, while their compounds offer structural stability and the ability to manipulate the electronic properties of the original system. These factors have led to a recent boom in investigations on rare earth metal-based electrocatalysts. There is currently a pressing demand for a review article that can provide a comprehensive overview of the scientific advancements and elucidate the mechanistic aspects of the impact of lanthanide doping. This review begins by explaining the electronic structure of the lanthanides. We next examine the mechanistic aspects, followed by recent advancements in lanthanide doping and heterostructure formation for water electrolysis applications. It is expected that this particular effort will benefit a broad audience and stimulate more research in this area of interest.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 9","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faiza Bibi, Abdul Hanan, Irfan Ali Soomro, Arshid Numan, Mohammad Khalid
Double transition metal (DTM) MXenes are a recently discovered class of two-dimensional composite nanomaterials with excellent potential in energy storage applications. Since their emergence in 2015, DTM MXenes have expanded their composition boundary beyond traditional single-metal carbide and nitride MXenes. DTM MXenes offer tunable structures and properties through variations in the constituent transition metals and positioning within the layered lattice. These MXenes can exist in two primary forms: ordered DTMs and solid solutions. The compositional versatility of DTM MXenes offers opportunities to enhance their performance in electrochemical energy storage applications. However, the quality, stability, and surface chemistry of DTM MXenes are influenced by several factors, including the etching process, etchant type, and synthesis route. Currently, limited literature is available on experimentally synthesized DTM MXenes, with most studies focusing on carbide-based MXenes. Most of the articles have dedicated their efforts only to generalized synthesis strategies. Although extensive theoretical studies have explored the suitability of etchants, synthesis parameters, and methods for producing high-quality MXene with selective terminal functional groups, their stability issues have not been thoroughly examined. This review addresses various types of DTM MXenes, their synthesis techniques, and the impact of these methods on their physicochemical properties and electrochemical performance. Additionally, it provides a critical analysis of the causes of instability in MXenes, particularly DTMs, from synthesis to application. The challenges associated with these materials are discussed, along with opportunities and prospects for enhancing synthesis, structural tuning, surface modification, and applications in electrochemical energy storage.
{"title":"Double transition metal MXenes for enhanced electrochemical applications: Challenges and opportunities","authors":"Faiza Bibi, Abdul Hanan, Irfan Ali Soomro, Arshid Numan, Mohammad Khalid","doi":"10.1002/eom2.12485","DOIUrl":"10.1002/eom2.12485","url":null,"abstract":"<p>Double transition metal (DTM) MXenes are a recently discovered class of two-dimensional composite nanomaterials with excellent potential in energy storage applications. Since their emergence in 2015, DTM MXenes have expanded their composition boundary beyond traditional single-metal carbide and nitride MXenes. DTM MXenes offer tunable structures and properties through variations in the constituent transition metals and positioning within the layered lattice. These MXenes can exist in two primary forms: ordered DTMs and solid solutions. The compositional versatility of DTM MXenes offers opportunities to enhance their performance in electrochemical energy storage applications. However, the quality, stability, and surface chemistry of DTM MXenes are influenced by several factors, including the etching process, etchant type, and synthesis route. Currently, limited literature is available on experimentally synthesized DTM MXenes, with most studies focusing on carbide-based MXenes. Most of the articles have dedicated their efforts only to generalized synthesis strategies. Although extensive theoretical studies have explored the suitability of etchants, synthesis parameters, and methods for producing high-quality MXene with selective terminal functional groups, their stability issues have not been thoroughly examined. This review addresses various types of DTM MXenes, their synthesis techniques, and the impact of these methods on their physicochemical properties and electrochemical performance. Additionally, it provides a critical analysis of the causes of instability in MXenes, particularly DTMs, from synthesis to application. The challenges associated with these materials are discussed, along with opportunities and prospects for enhancing synthesis, structural tuning, surface modification, and applications in electrochemical energy storage.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 9","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilju Kim, Jinkwan Jung, Sejin Kim, Hannah Cho, Hyunwon Chu, Wonhee Jo, Dongjae Shin, Hyeokjin Kwon, Hee-Tak Kim
The sulfur utilization efficiency of lithium–sulfur batteries is often limited by the uncontrolled electrodeposition of the insulating Li2S and the resulting electrode passivation. Herein, purposeful electrode and electrolyte design is used to realize site-selective three-dimensional (3D) Li2S electrodeposition and thus mitigate the above problem. Site-selective Li2S nucleation is induced at the tips of CoP nanoneedles grown on a carbon cloth electrode, and the 3D growth of Li2S at these tips without the passivation of the inner part is achieved using a LiBr-containing high-donor-number electrolyte. The controlled Li2S morphology is rationalized by considering the tip effect, the energy of Li2S binding on the electrode surface, and the solubility of Li2S in the electrolyte. Owing to the suppressed electrode passivation, CoP nanoneedle–decorated carbon cloth electrode and LiBr-containing electrolyte deliver a capacity of >1400 mAh gs−1 at a current density of 0.33 A gs−1. Thus, this work paves the way for the active control of Li2S morphology for high-performance lithium–sulfur batteries.
{"title":"Addressing electrode passivation in lithium–sulfur batteries by site-selective morphology-controlled Li2S formation","authors":"Ilju Kim, Jinkwan Jung, Sejin Kim, Hannah Cho, Hyunwon Chu, Wonhee Jo, Dongjae Shin, Hyeokjin Kwon, Hee-Tak Kim","doi":"10.1002/eom2.12483","DOIUrl":"10.1002/eom2.12483","url":null,"abstract":"<p>The sulfur utilization efficiency of lithium–sulfur batteries is often limited by the uncontrolled electrodeposition of the insulating Li<sub>2</sub>S and the resulting electrode passivation. Herein, purposeful electrode and electrolyte design is used to realize site-selective three-dimensional (3D) Li<sub>2</sub>S electrodeposition and thus mitigate the above problem. Site-selective Li<sub>2</sub>S nucleation is induced at the tips of CoP nanoneedles grown on a carbon cloth electrode, and the 3D growth of Li<sub>2</sub>S at these tips without the passivation of the inner part is achieved using a LiBr-containing high-donor-number electrolyte. The controlled Li<sub>2</sub>S morphology is rationalized by considering the tip effect, the energy of Li<sub>2</sub>S binding on the electrode surface, and the solubility of Li<sub>2</sub>S in the electrolyte. Owing to the suppressed electrode passivation, CoP nanoneedle–decorated carbon cloth electrode and LiBr-containing electrolyte deliver a capacity of >1400 mAh g<sub>s</sub><sup>−1</sup> at a current density of 0.33 A g<sub>s</sub><sup>−1</sup>. Thus, this work paves the way for the active control of Li<sub>2</sub>S morphology for high-performance lithium–sulfur batteries.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 9","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12483","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunhee Ahn, Jueun Baek, Seulgi Kim, Ingyu Choi, Jungjoon Yoo, Segi Byun, Dongju Lee
Rechargeable aqueous zinc (Zn) ion batteries (AZIBs) are gaining popularity in large-scale energy storage due to their low cost, high safety, and environmental friendliness; however, dendrite growth and side reactions in Zn metal anodes limit their practical applications. Additionally, the difficulty of developing successful passivation of Zn anodes, combined with large-area coating of protective layers, remains a major limitation to the commercialization of AZIBs. Here, we introduce two-dimensional (2D) nanomaterials including MoS2, h-BN, and Ti3C2Tx MXene as protective layers for Zn anodes, created on a Zn surface using a scalable, large-area spray-coating process. Examinations of electrochemical performance-related material characterizations revealed that a specific type of 2D material with an optimal thickness prevents vertical growth of Zn dendrites, as well as side reactions including hydrogen evolution and corrosion, resulting in stable device operation with minimal overpotential and extended life, even under harsh measurement conditions. The highly stable MoS2@Zn anode allowed the MoS2@Zn//MnO2 full cell to achieve significantly more stable capacity retention, compared with the bare Zn//MnO2 cell. Our versatile and scalable solution-based coating technique for easily forming large-area 2D protective layers on Zn anodes offers new insights concerning improvements to AZIB reliability and performance.
{"title":"Unveiled mechanism of prolonged stability of Zn anode coated with two-dimensional nanomaterial protective layers toward high-performance aqueous Zn ion batteries","authors":"Yunhee Ahn, Jueun Baek, Seulgi Kim, Ingyu Choi, Jungjoon Yoo, Segi Byun, Dongju Lee","doi":"10.1002/eom2.12482","DOIUrl":"10.1002/eom2.12482","url":null,"abstract":"<p>Rechargeable aqueous zinc (Zn) ion batteries (AZIBs) are gaining popularity in large-scale energy storage due to their low cost, high safety, and environmental friendliness; however, dendrite growth and side reactions in Zn metal anodes limit their practical applications. Additionally, the difficulty of developing successful passivation of Zn anodes, combined with large-area coating of protective layers, remains a major limitation to the commercialization of AZIBs. Here, we introduce two-dimensional (2D) nanomaterials including MoS<sub>2</sub>, h-BN, and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as protective layers for Zn anodes, created on a Zn surface using a scalable, large-area spray-coating process. Examinations of electrochemical performance-related material characterizations revealed that a specific type of 2D material with an optimal thickness prevents vertical growth of Zn dendrites, as well as side reactions including hydrogen evolution and corrosion, resulting in stable device operation with minimal overpotential and extended life, even under harsh measurement conditions. The highly stable MoS<sub>2</sub>@Zn anode allowed the MoS<sub>2</sub>@Zn//MnO<sub>2</sub> full cell to achieve significantly more stable capacity retention, compared with the bare Zn//MnO<sub>2</sub> cell. Our versatile and scalable solution-based coating technique for easily forming large-area 2D protective layers on Zn anodes offers new insights concerning improvements to AZIB reliability and performance.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 9","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12482","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caizheng Ou, Hao Zhang, Dan Ma, Hailiang Mu, Xiangqun Zhuge, Yurong Ren, Maryam Bayati, Ben Bin Xu, Xiaoteng Liu, Xiaoqin Zou, Kun Luo
Lithium-ion composite solid electrolyte membranes embedded with Li1.3Al0.3Ti1.7P3O12 and poly(vinylidene fluoride) are prepared using a facile casting method. Furthermore, we added LiI as an active agent for decomposing the anode product. The synergy resulted in a high conductivity of 7.4 mS·cm−1 and lithium-ion mobility of 0.59 and a reduction of the overpotential to 0.86 V for lithium–oxygen batteries (LOBs). The membrane has enhanced Young's modulus of 6.6 GPa that effectively blocked the lithium dendrite growth during the battery operation and puncturing to the membrane led to a significant LOB cycle life of 542 cycles. Meanwhile, Li|Li symmetrical battery overpotential maintained at 42 mV after 470 h of operation.
{"title":"Li1.3Al0.3Ti1.7P3O12 activated PVDF solid electrolyte for advanced lithium–oxygen batteries","authors":"Caizheng Ou, Hao Zhang, Dan Ma, Hailiang Mu, Xiangqun Zhuge, Yurong Ren, Maryam Bayati, Ben Bin Xu, Xiaoteng Liu, Xiaoqin Zou, Kun Luo","doi":"10.1002/eom2.12481","DOIUrl":"10.1002/eom2.12481","url":null,"abstract":"<p>Lithium-ion composite solid electrolyte membranes embedded with Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>P<sub>3</sub>O<sub>12</sub> and poly(vinylidene fluoride) are prepared using a facile casting method. Furthermore, we added LiI as an active agent for decomposing the anode product. The synergy resulted in a high conductivity of 7.4 mS·cm<sup>−1</sup> and lithium-ion mobility of 0.59 and a reduction of the overpotential to 0.86 V for lithium–oxygen batteries (LOBs). The membrane has enhanced Young's modulus of 6.6 GPa that effectively blocked the lithium dendrite growth during the battery operation and puncturing to the membrane led to a significant LOB cycle life of 542 cycles. Meanwhile, Li|Li symmetrical battery overpotential maintained at 42 mV after 470 h of operation.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 8","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Liu, Zengqi Guo, Zhiwei Xu, Cong Wang, Wai-Yeung Wong
In order to cope with the increasingly serious problem of energy shortage, supercapacitors have been developed as a clean and renewable energy source, and the supercapacitors with excellent energy density and long cycle life are imperative. Here, by employing a facile liquid–liquid (L-L) interfacial method at room temperature (RT), a set of two-dimensional (2D) metal complex nanosheets N1-N3 have been synthesized by the facile coordination between Co2+ ion and 2,3,6,7,10,11-hexaiminotriphenylene (HITP). Given the layered superstructure with well-ordered nanopores, the N1-N3 electrodes displayed excellent capacities of 4751.9, 5770.9 and 6075.2 F g−1 at 1 A g−1, and a good cyclic stability with 92.1% capacity retention after 1000 cycles for the N3 electrode. The asymmetric supercapacitor device with N3 as the positive electrode delivers a maximum energy density of 238.2 Wh kg−1 at a power density of 1610.1 W kg−1 and an excellent cycling stability with a capacitance retention of 109.1% after 5000 cycles. This is the best electroactive bottom-up metal complex nanosheet reported so far for use in supercapacitor, which greatly expands the applicability of this 2D nanomaterial in energy device applications.
为了应对日益严重的能源短缺问题,超级电容器作为一种清洁的可再生能源被开发出来,具有优异能量密度和长循环寿命的超级电容器势在必行。本文采用液-液(L-L)界面法,在室温(RT)下通过Co2+离子与2,3,6,7,10,11-六亚氨基三亚苯(HITP)的简单配位合成了一组二维(2D)金属复合物纳米片N1-N3。由于 N1-N3 电极具有层状上层结构和有序的纳米孔,因此在 1 A g-1 的条件下,N1-N3 电极的容量分别为 4751.9、5770.9 和 6075.2 F g-1,并且具有良好的循环稳定性,N3 电极在 1000 次循环后的容量保持率为 92.1%。以 N3 为正极的非对称超级电容器装置在功率密度为 1610.1 W kg-1 时的最大能量密度为 238.2 Wh kg-1,循环稳定性极佳,5000 次循环后电容保持率为 109.1%。这是迄今为止报道的用于超级电容器的最佳电活性自下而上金属复合物纳米片,极大地扩展了这种二维纳米材料在能源设备应用中的适用性。
{"title":"Conjugated cobalt-based metal complex nanosheet for fabricating high-performance supercapacitor electrode","authors":"Qian Liu, Zengqi Guo, Zhiwei Xu, Cong Wang, Wai-Yeung Wong","doi":"10.1002/eom2.12480","DOIUrl":"10.1002/eom2.12480","url":null,"abstract":"<p>In order to cope with the increasingly serious problem of energy shortage, supercapacitors have been developed as a clean and renewable energy source, and the supercapacitors with excellent energy density and long cycle life are imperative. Here, by employing a facile liquid–liquid (L-L) interfacial method at room temperature (RT), a set of two-dimensional (2D) metal complex nanosheets N1-N3 have been synthesized by the facile coordination between Co<sup>2+</sup> ion and 2,3,6,7,10,11-hexaiminotriphenylene (HITP). Given the layered superstructure with well-ordered nanopores, the N1-N3 electrodes displayed excellent capacities of 4751.9, 5770.9 and 6075.2 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, and a good cyclic stability with 92.1% capacity retention after 1000 cycles for the N3 electrode. The asymmetric supercapacitor device with N3 as the positive electrode delivers a maximum energy density of 238.2 Wh kg<sup>−1</sup> at a power density of 1610.1 W kg<sup>−1</sup> and an excellent cycling stability with a capacitance retention of 109.1% after 5000 cycles. This is the best electroactive bottom-up metal complex nanosheet reported so far for use in supercapacitor, which greatly expands the applicability of this 2D nanomaterial in energy device applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 8","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141721910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}