Pub Date : 2021-07-31DOI: 10.5121/ijaia.2021.12404
J. Kontos
Research on explanation is currently of intense interest as documented in the DARPA 2021 investments reported by the USA Department of Defense. An emerging theme for explanation techniques research is their application to the improvement of human-system interfaces for autonomous anti-drone or C-UAV defense systems. In the present paper a novel proposal based on natural language processing technology concerning explanatory discourse using relations is briefly described. The proposal is based on the use of relations pertaining to the possible malicious actions of an intruding alien drone swarm and the defense decisions proposed by an autonomous anti-drone system. The aim of such an interface is to facilitate the supervision that a user must exercise on an autonomous defense system in order to minimize the risk of wrong mitigation actions and unnecessary spending of ammunition.
{"title":"Human-System Interface with Explanation of Actions for Autonomous Anti-UAV Systems","authors":"J. Kontos","doi":"10.5121/ijaia.2021.12404","DOIUrl":"https://doi.org/10.5121/ijaia.2021.12404","url":null,"abstract":"Research on explanation is currently of intense interest as documented in the DARPA 2021 investments reported by the USA Department of Defense. An emerging theme for explanation techniques research is their application to the improvement of human-system interfaces for autonomous anti-drone or C-UAV defense systems. In the present paper a novel proposal based on natural language processing technology concerning explanatory discourse using relations is briefly described. The proposal is based on the use of relations pertaining to the possible malicious actions of an intruding alien drone swarm and the defense decisions proposed by an autonomous anti-drone system. The aim of such an interface is to facilitate the supervision that a user must exercise on an autonomous defense system in order to minimize the risk of wrong mitigation actions and unnecessary spending of ammunition.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45540219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-31DOI: 10.5121/ijaia.2021.12403
Ezeofor J. Chukwunazo, Akpado Kenneth, Ulasi Afamefuna
This paper presents Predictive Model for Stem Borers’ classification in Precision Farming. The recent announcement of the aggressive attack of stem borers (Spodoptera species) to maize crops in Africa is alarming. These species migrate in large numbers and feed on maize leaf, stem, and ear of corn. The male of these species are the target because after mating with their female counterpart, thousands of eggs are laid which produces larvae that create the havoc. Currently, Nigerian farmers find it difficult to distinguish between these targeted species (Fall Armyworm-FAW, African Armyworm-AAW and Egyptian cotton leaf worm-ECLW only) because they look alike in appearance. For these reasons, the network model that would predict the presence of these species in the maize farm to farmers is proposed. The maize species were captured using delta pheromone traps and laboratory breeding for each category. The captured images were pre-processed and stored in an online Google drive image dataset folder created. The convolutional neural network (CNN) model for classifying these targeted maize moths was designed from the scratch. The Google Colab platform with Python libraries was used to train the model called MothNet. The images of the FAW, AAW, and ECLW were inputted to the designed MothNet model during learning process. Dropout and data augmentation were added to the architecture of the model for an efficient prediction. After training the MothNet model, the validation accuracy achieved was 90.37% with validation loss of 24.72%, and training accuracy 90.8% with loss of 23.25%, and the training occurred within 5minutes 33seconds. Due to the small amount of images gathered (1674), the model prediction on each image was of low confident. Because of this, transfer learning was deployed and Resnet 50 pretrained model selected and modified. The modified ResNet-50 model was fine-tuned and tested. The model validation accuracy achieved was 99.21%, loss of 3.79%, and training accuracy of 99.75% with loss of 2.55% within 10mins 5 seconds. Hence, MothNet model can be improved on by gathering more images and retraining the system for optimum performance while modified ResNet 50 is recommended to be integrated in Internet of Things device for maize moths’ classification on-site.
{"title":"Predictive Model for Maize Stem Borers’ Classification in Precision Farming","authors":"Ezeofor J. Chukwunazo, Akpado Kenneth, Ulasi Afamefuna","doi":"10.5121/ijaia.2021.12403","DOIUrl":"https://doi.org/10.5121/ijaia.2021.12403","url":null,"abstract":"This paper presents Predictive Model for Stem Borers’ classification in Precision Farming. The recent announcement of the aggressive attack of stem borers (Spodoptera species) to maize crops in Africa is alarming. These species migrate in large numbers and feed on maize leaf, stem, and ear of corn. The male of these species are the target because after mating with their female counterpart, thousands of eggs are laid which produces larvae that create the havoc. Currently, Nigerian farmers find it difficult to distinguish between these targeted species (Fall Armyworm-FAW, African Armyworm-AAW and Egyptian cotton leaf worm-ECLW only) because they look alike in appearance. For these reasons, the network model that would predict the presence of these species in the maize farm to farmers is proposed. The maize species were captured using delta pheromone traps and laboratory breeding for each category. The captured images were pre-processed and stored in an online Google drive image dataset folder created. The convolutional neural network (CNN) model for classifying these targeted maize moths was designed from the scratch. The Google Colab platform with Python libraries was used to train the model called MothNet. The images of the FAW, AAW, and ECLW were inputted to the designed MothNet model during learning process. Dropout and data augmentation were added to the architecture of the model for an efficient prediction. After training the MothNet model, the validation accuracy achieved was 90.37% with validation loss of 24.72%, and training accuracy 90.8% with loss of 23.25%, and the training occurred within 5minutes 33seconds. Due to the small amount of images gathered (1674), the model prediction on each image was of low confident. Because of this, transfer learning was deployed and Resnet 50 pretrained model selected and modified. The modified ResNet-50 model was fine-tuned and tested. The model validation accuracy achieved was 99.21%, loss of 3.79%, and training accuracy of 99.75% with loss of 2.55% within 10mins 5 seconds. Hence, MothNet model can be improved on by gathering more images and retraining the system for optimum performance while modified ResNet 50 is recommended to be integrated in Internet of Things device for maize moths’ classification on-site.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47690916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-31DOI: 10.5121/ijaia.2021.12401
Felipe Cujar-Rosero, David Santiago Pinchao Ortiz, Silvio Ricardo Timarán Pereira, J. Restrepo
This paper presents the final results of the research project that aimed for the construction of a tool which is aided by Artificial Intelligence through an Ontology with a model trained with Machine Learning, and is aided by Natural Language Processing to support the semantic search of research projects of the Research System of the University of Nariño. For the construction of NATURE, as this tool is called, a methodology was used that includes the following stages: appropriation of knowledge, installation and configuration of tools, libraries and technologies, collection, extraction and preparation of research projects, design and development of the tool. The main results of the work were three: a) the complete construction of the Ontology with classes, object properties (predicates), data properties (attributes) and individuals (instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the successful training of the model for which Machine Learning algorithms were used and specifically Natural Language Processing algorithms such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also performed in Jupyter Notebook with Python within the virtual environment of anaconda and with Elasticsearch; and c) the creation of NATURE by managing and unifying the queries for the Ontology and for the Machine Learning model. The tests showed that NATURE was successful in all the searches that were performed as its results were satisfactory.
{"title":"Nature: A Tool Resulting from the Union of Artificial Intelligence and Natural Language Processing for Searching Research Projects in Colombia","authors":"Felipe Cujar-Rosero, David Santiago Pinchao Ortiz, Silvio Ricardo Timarán Pereira, J. Restrepo","doi":"10.5121/ijaia.2021.12401","DOIUrl":"https://doi.org/10.5121/ijaia.2021.12401","url":null,"abstract":"This paper presents the final results of the research project that aimed for the construction of a tool which is aided by Artificial Intelligence through an Ontology with a model trained with Machine Learning, and is aided by Natural Language Processing to support the semantic search of research projects of the Research System of the University of Nariño. For the construction of NATURE, as this tool is called, a methodology was used that includes the following stages: appropriation of knowledge, installation and configuration of tools, libraries and technologies, collection, extraction and preparation of research projects, design and development of the tool. The main results of the work were three: a) the complete construction of the Ontology with classes, object properties (predicates), data properties (attributes) and individuals (instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the successful training of the model for which Machine Learning algorithms were used and specifically Natural Language Processing algorithms such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also performed in Jupyter Notebook with Python within the virtual environment of anaconda and with Elasticsearch; and c) the creation of NATURE by managing and unifying the queries for the Ontology and for the Machine Learning model. The tests showed that NATURE was successful in all the searches that were performed as its results were satisfactory.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45584743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-31DOI: 10.5121/ijaia.2021.12402
Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay
In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.
{"title":"Fabric Defect Detection based on Improved Faster RCNN","authors":"Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay","doi":"10.5121/ijaia.2021.12402","DOIUrl":"https://doi.org/10.5121/ijaia.2021.12402","url":null,"abstract":"In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46748417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.5121/IJAIA.2021.12303
M. Aoun
We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.
{"title":"A STDP Rule that Favours Chaotic Spiking over Regular Spiking of Neurons","authors":"M. Aoun","doi":"10.5121/IJAIA.2021.12303","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12303","url":null,"abstract":"We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"25-33"},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44357505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.5121/IJAIA.2021.12302
Swetha Sree Cheeti, Yanyan Li, A. Hadaegh
Education system has been gravely affected due to widespread of Covid-19 across the globe. In this paper we present a thorough sentiment analysis of tweets related to education available on twitter platform and deduce conclusions about its impact on people’s emotions as the pandemic advanced over the months. Through twitter over ninety thousand tweets have been gathered related to the circumstances involving the change in education system over the world. Using Natural language tool kit (NLTK) functionalities and Naive Bayes Classifier a sentiment analysis has been performed on the gathered dataset. Based on the results of this analysis we infer to exhibit the impact of covid-19 on education and how people’s sentiment altered due to the changes with regard to the education system. Thus, we would like to present a better understanding of people’s sentiment on education while trying to cope with the pandemic in such unprecedented times.
{"title":"Twitter based Sentiment Analysis of Impact of Covid-19 on Education Globaly","authors":"Swetha Sree Cheeti, Yanyan Li, A. Hadaegh","doi":"10.5121/IJAIA.2021.12302","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12302","url":null,"abstract":"Education system has been gravely affected due to widespread of Covid-19 across the globe. In this paper we present a thorough sentiment analysis of tweets related to education available on twitter platform and deduce conclusions about its impact on people’s emotions as the pandemic advanced over the months. Through twitter over ninety thousand tweets have been gathered related to the circumstances involving the change in education system over the world. Using Natural language tool kit (NLTK) functionalities and Naive Bayes Classifier a sentiment analysis has been performed on the gathered dataset. Based on the results of this analysis we infer to exhibit the impact of covid-19 on education and how people’s sentiment altered due to the changes with regard to the education system. Thus, we would like to present a better understanding of people’s sentiment on education while trying to cope with the pandemic in such unprecedented times.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42285585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-31DOI: 10.5121/IJAIA.2021.12301
A. Massaro, A. Panarese, M. Gargaro, Costantino Vitale, A. Galiano
Data processing is crucial in the insurance industry, due to the important information that is contained in the data. Business Intelligence (BI) allows to better manage the various activities as for companies working in the insurance sector. Business Intelligence based on the Decision Support System (DSS), makes it possible to improve the efficiency of decisions and processes, by improving them to the individual characteristics of the agents. In this direction, Key Performance Indicators (KPIs) are valid tools that help insurance companies to understand the current market and to anticipate future trends. The purpose of the present paper is to discuss a case study, which was developed within the research project "DSS / BI HUMAN RESOURCES", related to the implementation of an intelligent platform for the automated management of agents' activities. The platform includes BI, DSS, and KPIs. Specifically, the platform integrates Data Mining (DM) algorithms for agent scoring, K-means algorithms for customer clustering, and a Long Short-Term Memory (LSTM) artificial neural network for the prediction of agents KPIs. The LSTM model is validated by the Artificial Records (AR) approach, which allows to feed the training dataset in data-poor situations as in many practical cases using Artificial Intelligence (AI) algorithms. Using the LSTM-AR method, an analysis of the performance of the artificial neural network is carried out by changing the number of records in the dataset. More precisely, as the number of records increases, the accuracy increases up to a value equal to 0.9987.
{"title":"Implementation of a Decision Support System and Business Intelligence Algorithms for the Automated Management of Insurance Agents Activities","authors":"A. Massaro, A. Panarese, M. Gargaro, Costantino Vitale, A. Galiano","doi":"10.5121/IJAIA.2021.12301","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12301","url":null,"abstract":"Data processing is crucial in the insurance industry, due to the important information that is contained in the data. Business Intelligence (BI) allows to better manage the various activities as for companies working in the insurance sector. Business Intelligence based on the Decision Support System (DSS), makes it possible to improve the efficiency of decisions and processes, by improving them to the individual characteristics of the agents. In this direction, Key Performance Indicators (KPIs) are valid tools that help insurance companies to understand the current market and to anticipate future trends. The purpose of the present paper is to discuss a case study, which was developed within the research project \"DSS / BI HUMAN RESOURCES\", related to the implementation of an intelligent platform for the automated management of agents' activities. The platform includes BI, DSS, and KPIs. Specifically, the platform integrates Data Mining (DM) algorithms for agent scoring, K-means algorithms for customer clustering, and a Long Short-Term Memory (LSTM) artificial neural network for the prediction of agents KPIs. The LSTM model is validated by the Artificial Records (AR) approach, which allows to feed the training dataset in data-poor situations as in many practical cases using Artificial Intelligence (AI) algorithms. Using the LSTM-AR method, an analysis of the performance of the artificial neural network is carried out by changing the number of records in the dataset. More precisely, as the number of records increases, the accuracy increases up to a value equal to 0.9987.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"01-13"},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49098210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-31DOI: 10.5121/IJAIA.2021.12201
Jayanthi Raghavan, M. Ahmadi
In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%
{"title":"A Modified CNN-Based Face Recognition System","authors":"Jayanthi Raghavan, M. Ahmadi","doi":"10.5121/IJAIA.2021.12201","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12201","url":null,"abstract":"In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45559179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-31DOI: 10.5121/IJAIA.2021.12101
D. Sardana, R. Bhatnagar
Core periphery structures exist naturally in many complex networks in the real-world like social, economic, biological and metabolic networks. Most of the existing research efforts focus on the identification of a meso scale structure called community structure. Core periphery structures are another equally important meso scale property in a graph that can help to gain deeper insights about the relationships between different nodes. In this paper, we provide a definition of core periphery structures suitable for weighted graphs. We further score and categorize these relationships into different types based upon the density difference between the core and periphery nodes. Next, we propose an algorithm called CP-MKNN (Core Periphery-Mutual K Nearest Neighbors) to extract core periphery structures from weighted graphs using a heuristic node affinity measure called Mutual K-nearest neighbors (MKNN). Using synthetic and real-world social and biological networks, we illustrate the effectiveness of developed core periphery structures.
{"title":"Graph Algorithm to Find Core Periphery Structures using Mutual K-nearest Neighbors","authors":"D. Sardana, R. Bhatnagar","doi":"10.5121/IJAIA.2021.12101","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12101","url":null,"abstract":"Core periphery structures exist naturally in many complex networks in the real-world like social, economic, biological and metabolic networks. Most of the existing research efforts focus on the identification of a meso scale structure called community structure. Core periphery structures are another equally important meso scale property in a graph that can help to gain deeper insights about the relationships between different nodes. In this paper, we provide a definition of core periphery structures suitable for weighted graphs. We further score and categorize these relationships into different types based upon the density difference between the core and periphery nodes. Next, we propose an algorithm called CP-MKNN (Core Periphery-Mutual K Nearest Neighbors) to extract core periphery structures from weighted graphs using a heuristic node affinity measure called Mutual K-nearest neighbors (MKNN). Using synthetic and real-world social and biological networks, we illustrate the effectiveness of developed core periphery structures.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41345462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-31DOI: 10.5121/IJAIA.2021.12107
Kishore Sugali, Christine D. Sprunger, Venkata N. Inukollu
The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.
{"title":"Software Testing: Issues and Challenges of Artificial Intelligence & Machine Learning","authors":"Kishore Sugali, Christine D. Sprunger, Venkata N. Inukollu","doi":"10.5121/IJAIA.2021.12107","DOIUrl":"https://doi.org/10.5121/IJAIA.2021.12107","url":null,"abstract":"The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"101-112"},"PeriodicalIF":0.0,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49218113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}