首页 > 最新文献

BMC Medical Informatics and Decision Making最新文献

英文 中文
Interpretable machine learning based decision-making system for lung adenocarcinoma metastasis: a population-based study with exploration of multi-classification models. 基于可解释机器学习的肺腺癌转移决策系统:基于人群的多分类模型探索研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03341-3
Jian Xu, Shuo Chen, Chang Zhao, Miao He, Feng Luo, Xintian Cai, Jiantao Wang, Zhendong Ding, TieWa Zhang
{"title":"Interpretable machine learning based decision-making system for lung adenocarcinoma metastasis: a population-based study with exploration of multi-classification models.","authors":"Jian Xu, Shuo Chen, Chang Zhao, Miao He, Feng Luo, Xintian Cai, Jiantao Wang, Zhendong Ding, TieWa Zhang","doi":"10.1186/s12911-026-03341-3","DOIUrl":"https://doi.org/10.1186/s12911-026-03341-3","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable AI for critical care: a systematic review of interpretable models for sepsis and ICU mortality prediction. 重症监护可解释的人工智能:败血症和ICU死亡率预测可解释模型的系统综述
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03344-0
V S Athukorala, W M K S Ilmini
{"title":"Explainable AI for critical care: a systematic review of interpretable models for sepsis and ICU mortality prediction.","authors":"V S Athukorala, W M K S Ilmini","doi":"10.1186/s12911-026-03344-0","DOIUrl":"https://doi.org/10.1186/s12911-026-03344-0","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Textbook-level medical knowledge in large language models: comparative evaluation using Japanese National Medical Examination. 教科书水平的医学知识在大语言模型:比较评价使用日本国家医学考试。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-03 DOI: 10.1186/s12911-026-03370-y
Mingxin Liu, Tsuyoshi Okuhara, Zhehao Dai, Minghong Zhao, Wenqiang Yin, Hiroko Okada, Emi Furukawa, Takahiro Kiuchi
{"title":"Textbook-level medical knowledge in large language models: comparative evaluation using Japanese National Medical Examination.","authors":"Mingxin Liu, Tsuyoshi Okuhara, Zhehao Dai, Minghong Zhao, Wenqiang Yin, Hiroko Okada, Emi Furukawa, Takahiro Kiuchi","doi":"10.1186/s12911-026-03370-y","DOIUrl":"https://doi.org/10.1186/s12911-026-03370-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and validation of a predictive model for benefits of tunnel-type mediastinal lymph node dissection in lung cancer patients based on the SEER database. 基于SEER数据库的肺癌患者隧道型纵隔淋巴结清扫获益预测模型的构建与验证
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-02 DOI: 10.1186/s12911-026-03347-x
Weijie Deng, Shili Ding, Zhenxing Cai, Zhimin Zheng
{"title":"Construction and validation of a predictive model for benefits of tunnel-type mediastinal lymph node dissection in lung cancer patients based on the SEER database.","authors":"Weijie Deng, Shili Ding, Zhenxing Cai, Zhimin Zheng","doi":"10.1186/s12911-026-03347-x","DOIUrl":"https://doi.org/10.1186/s12911-026-03347-x","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmark evaluation of deepseek AI models in antibacterial clinical decision-making for infectious diseases. deepseek AI模型在感染性疾病抗菌药物临床决策中的标杆评价
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-02-02 DOI: 10.1186/s12911-026-03364-w
Lijuan Zhang, Yidan Pan, Wenxiu Lai, Zhongping Liang, Haiying Zhong, Xiaochun Lin

Background: Antimicrobial resistance (AMR) poses a global threat to public health, though AI models have shown transformative potential in combating AMR. China's DeepSeek, a novel open-source, low-cost, and locally deployable AI model, is increasingly integrated into clinical workflows for infectious diseases, yet the pharmacological validity and real-world impact of its recommended drugs remain poorly understood.

Objective: This study aimed to compare the antibacterial regimens among DeepSeek(V3,R1,R1 + WS), ChatGPT o1, and infectious disease (ID) specialists, while evaluating the performance, timeliness of the two AI models.

Methods: A retrospective analysis was conducted on 101 cases with effective antibacterial therapy. DeepSeek and ChatGPT o1 were identically prompted using comprehensive case data to generate antibacterial regimens. Then, Five independent clinical pharmacists evaluated all outputs. The benchmark evaluation metrics included the concordance rate between two AI models and the patient's effective antibacterial regimens, as well as the proportion of regimens escalating therapy to higher-tier groups per WHO's AWaRe classification. Furthermore, performance metrics encompassed overlap rate, precision, recall, F1-score, ID specialists endorsement rate, search latency, and search success rate of DeepSeek and ChatGPT o1. Statistical analyses employed Chi-square and Kruskal-Wallis tests.

Results: DeepSeek-V3 demonstrated the highest overall concordance rate with ID specialists, exceeding those of DeepSeek-R1 and ChatGPT o1. The proportion of antibacterial regimens escalated to higher-tier groups was significantly greater in DeepSeek-R1, DeepSeek-R1 + WS and ChatGPT o1 compared to that of ID specialists(P < 0.005). Regarding the performance metrics, ChatGPT o1 achieved the highest level of overlap rate, while DeepSeek-R1 led in recall. Furthermore, DeepSeek-V3 achieved the optimal F1-score and the highest overall ID specialists' endorsed rate, reflecting optimal balance. Likewise, Search latency varied substantially (H = 305.53, P < 0.005), with DeepSeek-V3 and ChatGPT o1 exhibiting the fastest response times.

Conclusions: While moderate agreement exists between DeepSeek and ID specialists in antibiotic selection, DeepSeek models exhibit a marked tendency toward recommending higher-tier, broader-spectrum antibacterials. Moreover, DeepSeek's antibacterial clinical decision-making is comparable to that of ChatGPT o1, with DeepSeek-V3 surpassing it in certain performance metrics. These findings highlight the need for AI refinement to align with stewardship principles and contextual clinical judgment.

Trial registration: Chinese Clinical Trial Registry(ChiCTR2500100661), Registration date: April 14,2025,https://www.chictr.org.cn.

背景:抗菌素耐药性(AMR)对公共卫生构成全球性威胁,尽管人工智能模型在对抗AMR方面显示出变革性潜力。中国的DeepSeek是一种新颖的开源、低成本、可在本地部署的人工智能模型,它正越来越多地融入传染病的临床工作流程,但人们对其推荐药物的药理学有效性和实际影响仍知之甚少。目的:本研究旨在比较DeepSeek(V3,R1,R1 + WS), ChatGPT o1和传染病(ID)专家的抗菌方案,同时评估两种人工智能模型的性能和及时性。方法:对101例经有效抗菌治疗的患者进行回顾性分析。使用综合病例数据提示DeepSeek和ChatGPT 01产生抗菌方案。然后,5名独立临床药师对所有输出进行评估。基准评估指标包括两种人工智能模型与患者有效抗菌方案之间的一致性,以及根据世卫组织AWaRe分类将治疗方案升级到更高级别组的比例。此外,性能指标还包括DeepSeek和ChatGPT 01的重叠率、准确率、召回率、f1分数、ID专家认可率、搜索延迟和搜索成功率。统计分析采用卡方检验和Kruskal-Wallis检验。结果:DeepSeek-V3与ID专家的总体一致性率最高,超过了DeepSeek-R1和ChatGPT 01。与ID专家相比,DeepSeek- r1、DeepSeek- r1 + WS和ChatGPT 01中升级到更高级别组的抗菌方案比例显著更高(P结论:虽然DeepSeek和ID专家在抗生素选择方面存在适度一致,但DeepSeek模型显示出推荐更高级别、更广谱的抗菌药物的明显趋势。此外,DeepSeek的抗菌临床决策与ChatGPT 01相当,DeepSeek- v3在某些性能指标上超过了ChatGPT 01。这些发现强调了人工智能改进的必要性,以使其与管理原则和临床判断相一致。试验注册:中国临床试验注册中心(ChiCTR2500100661),注册日期:2025年4月14日,https://www.chictr.org.cn。
{"title":"Benchmark evaluation of deepseek AI models in antibacterial clinical decision-making for infectious diseases.","authors":"Lijuan Zhang, Yidan Pan, Wenxiu Lai, Zhongping Liang, Haiying Zhong, Xiaochun Lin","doi":"10.1186/s12911-026-03364-w","DOIUrl":"https://doi.org/10.1186/s12911-026-03364-w","url":null,"abstract":"<p><strong>Background: </strong>Antimicrobial resistance (AMR) poses a global threat to public health, though AI models have shown transformative potential in combating AMR. China's DeepSeek, a novel open-source, low-cost, and locally deployable AI model, is increasingly integrated into clinical workflows for infectious diseases, yet the pharmacological validity and real-world impact of its recommended drugs remain poorly understood.</p><p><strong>Objective: </strong>This study aimed to compare the antibacterial regimens among DeepSeek(V3,R1,R1 + WS), ChatGPT o1, and infectious disease (ID) specialists, while evaluating the performance, timeliness of the two AI models.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 101 cases with effective antibacterial therapy. DeepSeek and ChatGPT o1 were identically prompted using comprehensive case data to generate antibacterial regimens. Then, Five independent clinical pharmacists evaluated all outputs. The benchmark evaluation metrics included the concordance rate between two AI models and the patient's effective antibacterial regimens, as well as the proportion of regimens escalating therapy to higher-tier groups per WHO's AWaRe classification. Furthermore, performance metrics encompassed overlap rate, precision, recall, F1-score, ID specialists endorsement rate, search latency, and search success rate of DeepSeek and ChatGPT o1. Statistical analyses employed Chi-square and Kruskal-Wallis tests.</p><p><strong>Results: </strong>DeepSeek-V3 demonstrated the highest overall concordance rate with ID specialists, exceeding those of DeepSeek-R1 and ChatGPT o1. The proportion of antibacterial regimens escalated to higher-tier groups was significantly greater in DeepSeek-R1, DeepSeek-R1 + WS and ChatGPT o1 compared to that of ID specialists(P < 0.005). Regarding the performance metrics, ChatGPT o1 achieved the highest level of overlap rate, while DeepSeek-R1 led in recall. Furthermore, DeepSeek-V3 achieved the optimal F1-score and the highest overall ID specialists' endorsed rate, reflecting optimal balance. Likewise, Search latency varied substantially (H = 305.53, P < 0.005), with DeepSeek-V3 and ChatGPT o1 exhibiting the fastest response times.</p><p><strong>Conclusions: </strong>While moderate agreement exists between DeepSeek and ID specialists in antibiotic selection, DeepSeek models exhibit a marked tendency toward recommending higher-tier, broader-spectrum antibacterials. Moreover, DeepSeek's antibacterial clinical decision-making is comparable to that of ChatGPT o1, with DeepSeek-V3 surpassing it in certain performance metrics. These findings highlight the need for AI refinement to align with stewardship principles and contextual clinical judgment.</p><p><strong>Trial registration: </strong>Chinese Clinical Trial Registry(ChiCTR2500100661), Registration date: April 14,2025,https://www.chictr.org.cn.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146104125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning model for the early prediction of Gram-negative bloodstream infection in ICU patients. ICU患者革兰氏阴性血流感染早期预测的机器学习模型。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-31 DOI: 10.1186/s12911-026-03361-z
Ya-Ling Zhou, Hong-Ting Da, Ting-Ting Wang, Zhong-Xin Wang, Zhong-Le Cheng
{"title":"A machine learning model for the early prediction of Gram-negative bloodstream infection in ICU patients.","authors":"Ya-Ling Zhou, Hong-Ting Da, Ting-Ting Wang, Zhong-Xin Wang, Zhong-Le Cheng","doi":"10.1186/s12911-026-03361-z","DOIUrl":"https://doi.org/10.1186/s12911-026-03361-z","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing matters: a machine learning-driven comparison of community and hospital-onset sepsis. 时机很重要:由机器学习驱动的社区和医院发病败血症的比较。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-31 DOI: 10.1186/s12911-026-03353-z
Ritchie Verma, Ajit Elhance, Trisha J Marsh, Robin L Baudier, Scott P Sherry, Raju Reddy, Nehan Sher, Mohammad Adibuzzaman, Vishnu Mohan, Akram Khan
{"title":"Timing matters: a machine learning-driven comparison of community and hospital-onset sepsis.","authors":"Ritchie Verma, Ajit Elhance, Trisha J Marsh, Robin L Baudier, Scott P Sherry, Raju Reddy, Nehan Sher, Mohammad Adibuzzaman, Vishnu Mohan, Akram Khan","doi":"10.1186/s12911-026-03353-z","DOIUrl":"https://doi.org/10.1186/s12911-026-03353-z","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based screening of sarcopenia in elderly women using non-invasive physiological signals. 基于机器学习的无创生理信号筛查老年女性肌肉减少症。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-30 DOI: 10.1186/s12911-026-03354-y
Juhee Yoon, Dong-Keun Kim
{"title":"Machine learning-based screening of sarcopenia in elderly women using non-invasive physiological signals.","authors":"Juhee Yoon, Dong-Keun Kim","doi":"10.1186/s12911-026-03354-y","DOIUrl":"https://doi.org/10.1186/s12911-026-03354-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intention to use smartphone medical applications among patients with chronic disease in southwest Ethiopia: an extended UTAUT2 model approach. 在埃塞俄比亚西南部慢性病患者中使用智能手机医疗应用程序的意图:扩展的UTAUT2模型方法
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-30 DOI: 10.1186/s12911-026-03357-9
Fikadu Wake Butta, Alex Ayenew Chereka, Shuma Gosha Kanfe, Abiy Tasew Dubale, Adamu Ambachew Shibabaw, Gemeda Wakgari Kitil, Zakir Abdu Adem, Geleta Nenko Dube, Ayenew Sisay Gebeyew, Agmasie Damtew Walle, Feyisa Shasho Bayisa, Teshome Demis Nimani
{"title":"Intention to use smartphone medical applications among patients with chronic disease in southwest Ethiopia: an extended UTAUT2 model approach.","authors":"Fikadu Wake Butta, Alex Ayenew Chereka, Shuma Gosha Kanfe, Abiy Tasew Dubale, Adamu Ambachew Shibabaw, Gemeda Wakgari Kitil, Zakir Abdu Adem, Geleta Nenko Dube, Ayenew Sisay Gebeyew, Agmasie Damtew Walle, Feyisa Shasho Bayisa, Teshome Demis Nimani","doi":"10.1186/s12911-026-03357-9","DOIUrl":"https://doi.org/10.1186/s12911-026-03357-9","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-preserving data quality assessment for federated health data networks. 联邦医疗数据网络中保护隐私的数据质量评估。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-27 DOI: 10.1186/s12911-025-03328-6
Radovan Tomášik, Tobias Kussel, Zdenka Dudová, Radoslava Kacová, Roman Hrstka, Martin Lablans, Petr Holub

Background: Assessing data quality in federated health data systems presents unique challenges, particularly when data custodians cannot expose raw data due to privacy regulations. Traditional quality assessment approaches often require centralised access, which conflicts with the principles of data sovereignty and confidentiality.

Methods: In this study, we evaluate the utility of federated data quality assessment with differential privacy techniques to safeguard sensitive health data. The aim is to develop tooling and demonstrate a proof-of-concept implementation over a synthetic dataset of observational medical data.

Results: We present a privacy-preserving framework for evaluating data quality in federated environments using differential privacy. Our approach enables individual data providers to compute local quality metrics and share only aggregated, privacy-protected results. We implement a proof-of-concept that supports predefined quality checks across different data models and demonstrate how meaningful insights into data quality can be obtained without compromising sensitive information.

Conclusion: This work demonstrates that differential privacy can be effectively applied to enable federated quality assessment in health data networks without compromising individual privacy. By implementing a proof-of-concept system over synthetic health data, we show that it is possible to obtain meaningful quality metrics in a decentralised setting.

背景:评估联邦医疗数据系统中的数据质量提出了独特的挑战,特别是当数据保管人由于隐私法规而无法公开原始数据时。传统的质量评估方法通常需要集中访问,这与数据主权和保密原则相冲突。方法:在本研究中,我们评估了联邦数据质量评估与差分隐私技术的效用,以保护敏感的健康数据。其目的是开发工具,并在观察性医疗数据的合成数据集上演示概念验证实现。结果:我们提出了一个隐私保护框架,用于使用差分隐私来评估联邦环境中的数据质量。我们的方法使单个数据提供商能够计算本地质量指标,并仅共享汇总的、受隐私保护的结果。我们实现了一个概念验证,它支持跨不同数据模型的预定义质量检查,并演示了如何在不损害敏感信息的情况下获得对数据质量的有意义的见解。结论:这项工作表明,差异隐私可以有效地应用于健康数据网络中的联邦质量评估,而不会损害个人隐私。通过在综合健康数据上实施概念验证系统,我们表明有可能在分散的环境中获得有意义的质量指标。
{"title":"Privacy-preserving data quality assessment for federated health data networks.","authors":"Radovan Tomášik, Tobias Kussel, Zdenka Dudová, Radoslava Kacová, Roman Hrstka, Martin Lablans, Petr Holub","doi":"10.1186/s12911-025-03328-6","DOIUrl":"https://doi.org/10.1186/s12911-025-03328-6","url":null,"abstract":"<p><strong>Background: </strong>Assessing data quality in federated health data systems presents unique challenges, particularly when data custodians cannot expose raw data due to privacy regulations. Traditional quality assessment approaches often require centralised access, which conflicts with the principles of data sovereignty and confidentiality.</p><p><strong>Methods: </strong>In this study, we evaluate the utility of federated data quality assessment with differential privacy techniques to safeguard sensitive health data. The aim is to develop tooling and demonstrate a proof-of-concept implementation over a synthetic dataset of observational medical data.</p><p><strong>Results: </strong>We present a privacy-preserving framework for evaluating data quality in federated environments using differential privacy. Our approach enables individual data providers to compute local quality metrics and share only aggregated, privacy-protected results. We implement a proof-of-concept that supports predefined quality checks across different data models and demonstrate how meaningful insights into data quality can be obtained without compromising sensitive information.</p><p><strong>Conclusion: </strong>This work demonstrates that differential privacy can be effectively applied to enable federated quality assessment in health data networks without compromising individual privacy. By implementing a proof-of-concept system over synthetic health data, we show that it is possible to obtain meaningful quality metrics in a decentralised setting.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146060233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Informatics and Decision Making
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1