首页 > 最新文献

BMC Medical Informatics and Decision Making最新文献

英文 中文
Development and multicenter external validation of a novel prediction model for inadequate bowel preparation before colonoscopy. 结肠镜检查前肠道准备不足的新型预测模型的开发和多中心外部验证。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-23 DOI: 10.1186/s12911-026-03348-w
Weiyi Wang, Libo Tong, Shiyang Li, Wei He, Jinyuan Huang, Xiaofeng Liu, Cui Wang, Junqi Xia, Xingshun Qi, Caiping Song
{"title":"Development and multicenter external validation of a novel prediction model for inadequate bowel preparation before colonoscopy.","authors":"Weiyi Wang, Libo Tong, Shiyang Li, Wei He, Jinyuan Huang, Xiaofeng Liu, Cui Wang, Junqi Xia, Xingshun Qi, Caiping Song","doi":"10.1186/s12911-026-03348-w","DOIUrl":"https://doi.org/10.1186/s12911-026-03348-w","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146040487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based model for prediction of swallowing recovery in post-stroke patients. 基于机器学习的脑卒中后患者吞咽恢复预测模型。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-23 DOI: 10.1186/s12911-025-03337-5
Huifang Tian, Cong Li, Yingjie Fan, Yijia Yin, Chunya Xia, Siyan Cai, Huian Chen, Huan Du, Miao Jiang, Min Su
{"title":"Machine learning-based model for prediction of swallowing recovery in post-stroke patients.","authors":"Huifang Tian, Cong Li, Yingjie Fan, Yijia Yin, Chunya Xia, Siyan Cai, Huian Chen, Huan Du, Miao Jiang, Min Su","doi":"10.1186/s12911-025-03337-5","DOIUrl":"https://doi.org/10.1186/s12911-025-03337-5","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146040484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated multi-omics and machine learning identify an interaction between SLC39A11 and phosphoinositide metabolism in deep vein thrombosis. 综合多组学和机器学习发现SLC39A11与深静脉血栓形成中磷酸肌苷代谢之间的相互作用。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-22 DOI: 10.1186/s12911-026-03342-2
Bao-Ze Pan, Ming-Jun Jiang, Jie Chen, Dan Ning, Jing Liang, Zhi-He Deng, Dong-Yang Luo, Yang-Yi-Jing Wang, Yao-Yang Zhong, Xian-Peng Dai, Li-Ming Deng, Guo-Zuo Xiong, Guo-Shan Bi
{"title":"Integrated multi-omics and machine learning identify an interaction between SLC39A11 and phosphoinositide metabolism in deep vein thrombosis.","authors":"Bao-Ze Pan, Ming-Jun Jiang, Jie Chen, Dan Ning, Jing Liang, Zhi-He Deng, Dong-Yang Luo, Yang-Yi-Jing Wang, Yao-Yang Zhong, Xian-Peng Dai, Li-Ming Deng, Guo-Zuo Xiong, Guo-Shan Bi","doi":"10.1186/s12911-026-03342-2","DOIUrl":"https://doi.org/10.1186/s12911-026-03342-2","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146017474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of large language models in nutrition risk screening: a comparative analysis across 8 LLMs based on real-world EHR datasets. 评估营养风险筛查中的大型语言模型:基于真实世界EHR数据集的8个llm的比较分析。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-17 DOI: 10.1186/s12911-026-03340-4
Si-Yu Gu, Die Yao, Yao Yao, Xing-Xing Cen, Jun-Yi Yuan
{"title":"Evaluation of large language models in nutrition risk screening: a comparative analysis across 8 LLMs based on real-world EHR datasets.","authors":"Si-Yu Gu, Die Yao, Yao Yao, Xing-Xing Cen, Jun-Yi Yuan","doi":"10.1186/s12911-026-03340-4","DOIUrl":"https://doi.org/10.1186/s12911-026-03340-4","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liver cancer risk stratification using deep learning on nationwide longitudinal health screening data: a retrospective cohort study. 使用深度学习对全国纵向健康筛查数据进行肝癌风险分层:一项回顾性队列研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-17 DOI: 10.1186/s12911-025-03323-x
Yewon Choi, Sungmin Cho, Changdai Gu, Chungho Kim, Bomi Park, Hwiyoung Kim

Background: Current liver cancer screening in Korea focuses on viral hepatitis or cirrhosis, despite rising risks from metabolic and alcohol-related liver disease. We aimed to develop a deep learning model that leverages routinely collected national screening and claims data to predict liver cancer risk without requiring additional diagnostic tests.

Methods: We conducted a retrospective cohort study of 3,962,209 adults aged 50-69 years who participated in the Korean National Health Screening program between 2010 and 2015, with follow-up until December 31, 2021. A total of 12,401 liver cancer cases were identified. Using data from three biennial screenings over 6 years, we developed a one-dimensional convolutional neural network model to predict 5-year liver cancer risk. The cohort was randomly divided at the patient level into training (80%) and testing (20%) sets. Predictors included demographic, clinical, behavioral, anthropometric, and laboratory features. Model performance was compared with logistic regression, extreme gradient boosting, multilayer perceptron, and current national surveillance criteria, assessed by the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. Interpretability was examined using SHapley values and Cox regression, and sensitivity analyses evaluated the impact of screening timing.

Results: Our model achieved an AUROC of 0.810 (95% CI, 0.802-0.818) and an AUPRC of 0.029 (95% CI, 0.026-0.034), with a sensitivity of 0.736 (95% CI, 0.720-0.753), clearly outperforming the current national criteria which showed an AUROC of 0.552 (95% CI, 0.546-0.558), an AUPRC of 0.007 (95% CI, 0.006-0.008), and a sensitivity of only 0.112 (95% CI, 0.100-0.125). The top-risk quintile accounted for 65% of incident liver cancer cases and had a 27-fold higher hazard compared to the lowest-risk group. Major predictors included age, viral hepatitis, family history of liver cancer, cholesterol levels, alcohol consumption, and metabolic factors. Sensitivity analyses demonstrated that incorporating all three screening time points yielded the highest overall performance.

Conclusions: Applying a deep learning model to routinely collected national screening data improved liver cancer risk stratification and enabled early identification of high-risk individuals, including those without prior liver disease. This approach supports scalable, policy-relevant screening strategies within existing public health infrastructure.

Trial registration: Not applicable.

背景:目前韩国的肝癌筛查主要集中在病毒性肝炎或肝硬化,尽管代谢性和酒精相关肝病的风险不断上升。我们的目标是开发一种深度学习模型,利用常规收集的国家筛查和索赔数据来预测肝癌风险,而无需额外的诊断测试。方法:我们对2010年至2015年间参加韩国国家健康筛查计划的3,962,209名年龄在50-69岁的成年人进行了回顾性队列研究,随访至2021年12月31日。总共发现了12401例肝癌病例。利用6年来3次两年一次的筛查数据,我们开发了一个一维卷积神经网络模型来预测5年肝癌风险。该队列按患者水平随机分为训练组(80%)和测试组(20%)。预测因素包括人口统计学、临床、行为学、人体测量学和实验室特征。将模型性能与逻辑回归、极端梯度增强、多层感知器和当前的国家监测标准进行比较,并通过接受者工作特征曲线下的面积(AUROC)、灵敏度和特异性进行评估。使用SHapley值和Cox回归检验可解释性,敏感性分析评估筛查时间的影响。结果:我们的模型AUROC为0.810 (95% CI, 0.802-0.818), AUPRC为0.029 (95% CI, 0.026-0.034),灵敏度为0.736 (95% CI, 0.720-0.753),明显优于目前的国家标准AUROC为0.552 (95% CI, 0.546-0.558), AUPRC为0.007 (95% CI, 0.006-0.008),灵敏度仅为0.112 (95% CI, 0.100-0.125)。风险最高的五分之一占肝癌病例的65%,与风险最低的一组相比,风险高27倍。主要预测因素包括年龄、病毒性肝炎、肝癌家族史、胆固醇水平、饮酒和代谢因素。敏感性分析表明,结合所有三个筛查时间点产生最高的整体性能。结论:将深度学习模型应用于常规收集的国家筛查数据可以改善肝癌风险分层,并能够早期识别高风险个体,包括那些先前没有肝脏疾病的个体。这种方法支持现有公共卫生基础设施内可扩展的、与政策相关的筛查战略。试验注册:不适用。
{"title":"Liver cancer risk stratification using deep learning on nationwide longitudinal health screening data: a retrospective cohort study.","authors":"Yewon Choi, Sungmin Cho, Changdai Gu, Chungho Kim, Bomi Park, Hwiyoung Kim","doi":"10.1186/s12911-025-03323-x","DOIUrl":"https://doi.org/10.1186/s12911-025-03323-x","url":null,"abstract":"<p><strong>Background: </strong>Current liver cancer screening in Korea focuses on viral hepatitis or cirrhosis, despite rising risks from metabolic and alcohol-related liver disease. We aimed to develop a deep learning model that leverages routinely collected national screening and claims data to predict liver cancer risk without requiring additional diagnostic tests.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study of 3,962,209 adults aged 50-69 years who participated in the Korean National Health Screening program between 2010 and 2015, with follow-up until December 31, 2021. A total of 12,401 liver cancer cases were identified. Using data from three biennial screenings over 6 years, we developed a one-dimensional convolutional neural network model to predict 5-year liver cancer risk. The cohort was randomly divided at the patient level into training (80%) and testing (20%) sets. Predictors included demographic, clinical, behavioral, anthropometric, and laboratory features. Model performance was compared with logistic regression, extreme gradient boosting, multilayer perceptron, and current national surveillance criteria, assessed by the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. Interpretability was examined using SHapley values and Cox regression, and sensitivity analyses evaluated the impact of screening timing.</p><p><strong>Results: </strong>Our model achieved an AUROC of 0.810 (95% CI, 0.802-0.818) and an AUPRC of 0.029 (95% CI, 0.026-0.034), with a sensitivity of 0.736 (95% CI, 0.720-0.753), clearly outperforming the current national criteria which showed an AUROC of 0.552 (95% CI, 0.546-0.558), an AUPRC of 0.007 (95% CI, 0.006-0.008), and a sensitivity of only 0.112 (95% CI, 0.100-0.125). The top-risk quintile accounted for 65% of incident liver cancer cases and had a 27-fold higher hazard compared to the lowest-risk group. Major predictors included age, viral hepatitis, family history of liver cancer, cholesterol levels, alcohol consumption, and metabolic factors. Sensitivity analyses demonstrated that incorporating all three screening time points yielded the highest overall performance.</p><p><strong>Conclusions: </strong>Applying a deep learning model to routinely collected national screening data improved liver cancer risk stratification and enabled early identification of high-risk individuals, including those without prior liver disease. This approach supports scalable, policy-relevant screening strategies within existing public health infrastructure.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swin Transformer-based intelligent fracture classification and radiographic assessment to support clinical decision-making. 基于Swin变压器的智能骨折分类和影像学评估,支持临床决策。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-16 DOI: 10.1186/s12911-025-03327-7
Yuming Xu, Weiao Ying, Yi Du, Qing Wang, Juan Zheng, Zhouliang Yang
{"title":"Swin Transformer-based intelligent fracture classification and radiographic assessment to support clinical decision-making.","authors":"Yuming Xu, Weiao Ying, Yi Du, Qing Wang, Juan Zheng, Zhouliang Yang","doi":"10.1186/s12911-025-03327-7","DOIUrl":"https://doi.org/10.1186/s12911-025-03327-7","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145988614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of explainable AI (xAI) in dementia detection and prognosis: a scoping review. 可解释人工智能(xAI)在痴呆检测和预后中的应用:范围综述。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-16 DOI: 10.1186/s12911-025-03279-y
Phuong Anh Nguyen, Fareed Ud Din, Matthew Krug, Rikki Jones
{"title":"Use of explainable AI (xAI) in dementia detection and prognosis: a scoping review.","authors":"Phuong Anh Nguyen, Fareed Ud Din, Matthew Krug, Rikki Jones","doi":"10.1186/s12911-025-03279-y","DOIUrl":"https://doi.org/10.1186/s12911-025-03279-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145988551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of random-forest based federated ensemble learning algorithms for delirium prediction using electronic medical records from eleven hospitals in Austria: a retrospective study. 基于随机森林的联邦集成学习算法的开发和验证,用于使用奥地利11家医院的电子医疗记录进行谵妄预测:一项回顾性研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-14 DOI: 10.1186/s12911-025-03322-y
Sai Pavan Kumar Veeranki, Dieter Hayn, Diether Kramer, Piyush Gajananrao Gampawar, Martin Baumgartner, Lena Delia Lorenzer, Michael Schrempf, Günter Schreier
{"title":"Development and validation of random-forest based federated ensemble learning algorithms for delirium prediction using electronic medical records from eleven hospitals in Austria: a retrospective study.","authors":"Sai Pavan Kumar Veeranki, Dieter Hayn, Diether Kramer, Piyush Gajananrao Gampawar, Martin Baumgartner, Lena Delia Lorenzer, Michael Schrempf, Günter Schreier","doi":"10.1186/s12911-025-03322-y","DOIUrl":"https://doi.org/10.1186/s12911-025-03322-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and efficient data-driven psychiatric assessment using machine learning. 使用机器学习的准确和高效的数据驱动的精神病学评估。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-13 DOI: 10.1186/s12911-025-03329-5
Kseniia Konishcheva, Bennett L Leventhal, Maki Koyama, Sambit Panda, Joshua T Vogelstein, Michael P Milham, Ariel B Lindner, Arno Klein
{"title":"Accurate and efficient data-driven psychiatric assessment using machine learning.","authors":"Kseniia Konishcheva, Bennett L Leventhal, Maki Koyama, Sambit Panda, Joshua T Vogelstein, Michael P Milham, Ariel B Lindner, Arno Klein","doi":"10.1186/s12911-025-03329-5","DOIUrl":"10.1186/s12911-025-03329-5","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"40"},"PeriodicalIF":3.8,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145958868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a risk nomogram for predicting recurrence in patients with non-valvular atrial fibrillation after radiofrequency catheter ablation. 非瓣膜性心房颤动患者射频导管消融后复发的风险图的开发和验证。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2026-01-10 DOI: 10.1186/s12911-025-03338-4
Yi Yu, Jin-Lan Chen, Guang-Yin Li, Shen-Shen Huang, Ting Wang, Xiao-Kai Li, Yi-Gang Li
{"title":"Development and validation of a risk nomogram for predicting recurrence in patients with non-valvular atrial fibrillation after radiofrequency catheter ablation.","authors":"Yi Yu, Jin-Lan Chen, Guang-Yin Li, Shen-Shen Huang, Ting Wang, Xiao-Kai Li, Yi-Gang Li","doi":"10.1186/s12911-025-03338-4","DOIUrl":"10.1186/s12911-025-03338-4","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"22"},"PeriodicalIF":3.8,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12829022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145948637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Informatics and Decision Making
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1