首页 > 最新文献

BMC Medical Informatics and Decision Making最新文献

英文 中文
Leveraging laboratory biomarkers to predict urosepsis after upper urinary tract stone surgery: an explainable machine learning approach. 利用实验室生物标志物预测上尿路结石手术后尿脓毒症:一种可解释的机器学习方法。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-20 DOI: 10.1186/s12911-025-03314-y
Zuheng Wang, Xiao Li, Qin Li, Rongbin Zhou, Dongwei Pan, Zequn Su, Cunmeng Wei, Wenhao Lu, Fubo Wang
{"title":"Leveraging laboratory biomarkers to predict urosepsis after upper urinary tract stone surgery: an explainable machine learning approach.","authors":"Zuheng Wang, Xiao Li, Qin Li, Rongbin Zhou, Dongwei Pan, Zequn Su, Cunmeng Wei, Wenhao Lu, Fubo Wang","doi":"10.1186/s12911-025-03314-y","DOIUrl":"https://doi.org/10.1186/s12911-025-03314-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145800455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling anesthetic-drug label detection for low-resource operating rooms. 低资源手术室麻醉药品标签检测建模。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-20 DOI: 10.1186/s12911-025-03316-w
Solomon Nsumba, Flavia Delmira Ninsiima, Mary Juliet Nampawu, Peter Nabende, Joyce Nakatumba-Nabende
{"title":"Modeling anesthetic-drug label detection for low-resource operating rooms.","authors":"Solomon Nsumba, Flavia Delmira Ninsiima, Mary Juliet Nampawu, Peter Nabende, Joyce Nakatumba-Nabende","doi":"10.1186/s12911-025-03316-w","DOIUrl":"https://doi.org/10.1186/s12911-025-03316-w","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145800481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ProAE: an R package for graphical tools and standardized analysis of patient-reported outcomes and adverse events data. ProAE:一个R软件包,用于对患者报告的结果和不良事件数据进行图形工具和标准化分析。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-20 DOI: 10.1186/s12911-025-03320-0
Blake Langlais, Brie Noble, Briant Fruth, Mia Truman, Gina L Mazza, Brenda Ginos, Carolyn Mead-Harvey, Minji Lee, Claire Yee, Lauren Rogak, Eric Meek, Allison M Deal, John Devin Peipert, Gita Thanarajasingam, Ethan Basch, Amylou C Dueck

Background: Patient-reported symptomatic adverse events (AE) are increasingly collected in oncology clinical trials to characterize treatment tolerability and inform clinical decision making using the Patient-Reported Outcomes (PRO) version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE®). Although there are numerous analysis methods and graphical approaches used for PRO-CTCAE data, the current PRO literature is limited in unified reporting and graphical approaches as well as public-facing analysis tools.

Results: Collaborative efforts from the Standardization Working Group of the National Cancer Institute Cancer Treatment Tolerability Consortium worked to develop the R package, ProAE. Testing and validation of widely used methods were implemented in the R package and deployed to various open-source outlets including the Comprehensive R Archive Network (CRAN).

Conclusion: ProAE is a free and publicly available collection of standardized statistical analysis tools for PRO-CTCAE and other PRO data used in patient care and research. The ProAE package provides oncology researchers with an efficient and modern means to apply the published analysis approaches, including hypothesis testing, descriptive and inferential tables, and longitudinal graphics, without the need for costly software or licensing.

背景:肿瘤临床试验越来越多地收集患者报告的症状性不良事件(AE),以表征治疗耐受性,并使用不良事件通用术语标准(PRO- ctcae®)的患者报告结局(PRO)版本为临床决策提供信息。尽管有许多分析方法和图形方法用于PRO- ctcae数据,但目前的PRO文献在统一报告和图形方法以及面向公众的分析工具方面受到限制。结果:在国家癌症研究所癌症治疗耐受性联盟标准化工作组的共同努力下,开发了R包ProAE。广泛使用的方法的测试和验证在R包中实现,并部署到各种开源出口,包括综合R存档网络(CRAN)。结论:ProAE是一个免费且公开的PRO- ctcae和其他PRO数据用于患者护理和研究的标准化统计分析工具。ProAE软件包为肿瘤学研究人员提供了一种高效和现代的方法来应用已发表的分析方法,包括假设检验、描述性和推断表以及纵向图形,而不需要昂贵的软件或许可。
{"title":"ProAE: an R package for graphical tools and standardized analysis of patient-reported outcomes and adverse events data.","authors":"Blake Langlais, Brie Noble, Briant Fruth, Mia Truman, Gina L Mazza, Brenda Ginos, Carolyn Mead-Harvey, Minji Lee, Claire Yee, Lauren Rogak, Eric Meek, Allison M Deal, John Devin Peipert, Gita Thanarajasingam, Ethan Basch, Amylou C Dueck","doi":"10.1186/s12911-025-03320-0","DOIUrl":"https://doi.org/10.1186/s12911-025-03320-0","url":null,"abstract":"<p><strong>Background: </strong>Patient-reported symptomatic adverse events (AE) are increasingly collected in oncology clinical trials to characterize treatment tolerability and inform clinical decision making using the Patient-Reported Outcomes (PRO) version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE®). Although there are numerous analysis methods and graphical approaches used for PRO-CTCAE data, the current PRO literature is limited in unified reporting and graphical approaches as well as public-facing analysis tools.</p><p><strong>Results: </strong>Collaborative efforts from the Standardization Working Group of the National Cancer Institute Cancer Treatment Tolerability Consortium worked to develop the R package, ProAE. Testing and validation of widely used methods were implemented in the R package and deployed to various open-source outlets including the Comprehensive R Archive Network (CRAN).</p><p><strong>Conclusion: </strong>ProAE is a free and publicly available collection of standardized statistical analysis tools for PRO-CTCAE and other PRO data used in patient care and research. The ProAE package provides oncology researchers with an efficient and modern means to apply the published analysis approaches, including hypothesis testing, descriptive and inferential tables, and longitudinal graphics, without the need for costly software or licensing.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145800435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on predicted in-hospital mortality in critically ill patients with coronary heart disease: analysis of the MIMIC-IV database. 冠心病危重患者住院死亡率预测研究:MIMIC-IV数据库分析
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-18 DOI: 10.1186/s12911-025-03319-7
Yijing Tao, Guoxin Huang, Mengna Huang, Qianwen Yao, Zhisong Wang, Leng Han, Donglai Cao, Guoxiu Ke, Yiwen Zheng, Juan Wang
{"title":"A study on predicted in-hospital mortality in critically ill patients with coronary heart disease: analysis of the MIMIC-IV database.","authors":"Yijing Tao, Guoxin Huang, Mengna Huang, Qianwen Yao, Zhisong Wang, Leng Han, Donglai Cao, Guoxiu Ke, Yiwen Zheng, Juan Wang","doi":"10.1186/s12911-025-03319-7","DOIUrl":"https://doi.org/10.1186/s12911-025-03319-7","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145780372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable AI models for identifying anxiety and distress in cardiac patients with ICDs. 可解释的AI模型用于识别患有icd的心脏病患者的焦虑和痛苦。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-18 DOI: 10.1186/s12911-025-03315-x
Ali Ebrahimi, Jakob Bo Reinevald Eriksen, David Krogh Kølbæk, Jonas Mohr Pedersen, Ebbe Vincent Just Christensen, Søren Skovbakke, Ole Skov, Susanne Schmidt Pedersen, Amir Sorayaie Azar, Uffe Kock Wiil
{"title":"Explainable AI models for identifying anxiety and distress in cardiac patients with ICDs.","authors":"Ali Ebrahimi, Jakob Bo Reinevald Eriksen, David Krogh Kølbæk, Jonas Mohr Pedersen, Ebbe Vincent Just Christensen, Søren Skovbakke, Ole Skov, Susanne Schmidt Pedersen, Amir Sorayaie Azar, Uffe Kock Wiil","doi":"10.1186/s12911-025-03315-x","DOIUrl":"https://doi.org/10.1186/s12911-025-03315-x","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145780392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning in early screening for high-grade cervical intraepithelial neoplasia using blood testing. 机器学习在血液检测高级别宫颈上皮内瘤变早期筛查中的应用。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-18 DOI: 10.1186/s12911-025-03321-z
Congbo Yue, Shichao Liu, Wenhua Wang, Yu Zhao, Xiaofeng Zhang, Guanghui Zhao
{"title":"Machine learning in early screening for high-grade cervical intraepithelial neoplasia using blood testing.","authors":"Congbo Yue, Shichao Liu, Wenhua Wang, Yu Zhao, Xiaofeng Zhang, Guanghui Zhao","doi":"10.1186/s12911-025-03321-z","DOIUrl":"https://doi.org/10.1186/s12911-025-03321-z","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145780433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted haematology: machine learning-based prediction of iron-deficiency anaemia from reticulocyte maturation indices. 人工智能辅助血液学:基于网络红细胞成熟指数的缺铁性贫血的机器学习预测。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-18 DOI: 10.1186/s12911-025-03318-8
Hesamaddin Kamalzadeh, Niloofar Choobin, Ali Haghighat, Majid Teremmahi Ardestani, Mobina Farhanpoor
{"title":"AI-assisted haematology: machine learning-based prediction of iron-deficiency anaemia from reticulocyte maturation indices.","authors":"Hesamaddin Kamalzadeh, Niloofar Choobin, Ali Haghighat, Majid Teremmahi Ardestani, Mobina Farhanpoor","doi":"10.1186/s12911-025-03318-8","DOIUrl":"https://doi.org/10.1186/s12911-025-03318-8","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145780421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the frequent exacerbator phenotype in COPD: development and validation of a multicenter real-world prediction model. 预测慢性阻塞性肺病的频繁加重因子表型:多中心现实世界预测模型的开发和验证。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-15 DOI: 10.1186/s12911-025-03281-4
Hongbing Peng, Yiming Zhou, Shuaiji Lu, Ying Nie, Jianting Zhang, Jijun Yang
{"title":"Predicting the frequent exacerbator phenotype in COPD: development and validation of a multicenter real-world prediction model.","authors":"Hongbing Peng, Yiming Zhou, Shuaiji Lu, Ying Nie, Jianting Zhang, Jijun Yang","doi":"10.1186/s12911-025-03281-4","DOIUrl":"10.1186/s12911-025-03281-4","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"443"},"PeriodicalIF":3.8,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12706962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145762251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive machine learning for postoperative pain using biosignals: a retrospective observational study. 使用生物信号预测术后疼痛的机器学习:一项回顾性观察研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-15 DOI: 10.1186/s12911-025-03305-z
Jieun Oh, Dongheon Lee, Minwoong Kang, Chahyun Oh, Seyeon Park, Jiho Park, Kyungsang Kim, Boohwi Hong
{"title":"Predictive machine learning for postoperative pain using biosignals: a retrospective observational study.","authors":"Jieun Oh, Dongheon Lee, Minwoong Kang, Chahyun Oh, Seyeon Park, Jiho Park, Kyungsang Kim, Boohwi Hong","doi":"10.1186/s12911-025-03305-z","DOIUrl":"https://doi.org/10.1186/s12911-025-03305-z","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145762272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early prediction of vasopressor initiation in ICU sepsis patients using an interpretable EHR-based ML model. 使用可解释的基于ehr的ML模型早期预测ICU脓毒症患者的血管加压药物启动。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-15 DOI: 10.1186/s12911-025-03274-3
Lucas Duval, Antoine Villié, Fei Zheng, Gabriel Terraz, Sophie Blein, Esther Duperchy, Martin Everett, Johan Frieling, Jean-François Llitjos, Maxime Bodinier

Background: Early identification of septic patients who will require vasopressor support could provide a critical window for hemodynamic optimisation, yet current bedside cues often appear only when shock is imminent.

Objective: We aimed to develop and validate an interpretable electronic health record (EHR)-based machine-learning model that predicts vasopressor initiation several hours before therapy in intensive care unit (ICU) patients with sepsis.

Methods: We conducted a retrospective study using the MIMIC-IV v2.2 database (2008-2019). We screened adult Sepsis-3 ICU stays and labeled the patients who commenced continuous vasopressor infusions 6 to 48 hours after admission as cases; we defined controls as sepsis patients with ICU stays ≥48 hours and no vasopressor exposure. We performed one to one nearest neighbour matching on age, sex, Charlson index, SOFA score with the cardiovascular component removed, weight, and early lactate/hematocrit availability to minimise confounding. We engineered demographic, physiological, and laboratory features measured from -6 to -2 hours relative to vasopressor initiation (or a matched time point) under multiple parameter combinations. We trained seven algorithms with Monte Carlo cross validation and evaluated performance on an independent validation set. We assessed model interpretability with Shapley values.

Results: We analyzed 1,539 cases and 1,431 controls; the independent validation set comprised 751 stays (~25%). A Random Forest classifier achieved an area under the receiver operating characteristic (AUROC) of 0.75 (95% CI, 0.72-0.79), a sensitivity of 0.74 (95% CI, 0.69-0.78), a specificity of 0.65 (95% CI, 0.60-0.70), a precision of 0.70 (95% CI, 0.66-0.74) and a F1 score of 0.72 (95% CI, 0.68-0.75) at the Youden's index threshold. The model outperformed simple surrogates-mean blood pressure (AUROC, 0.68; 95% CI, 0.64-0.72) and modified shock index (AUROC, 0.65; 95% CI, 0.62-0.69)-and a reproduced bidirectional LSTM (AUROC, 0.73; 95% CI, 0.70-0.77). Key predictors included declining mean blood pressure at - 2 to -4 hours, elevated lactate ( > 2.5 mmol/L), and hematocrit outside 30-37%. Model alerts would occur two to four hours before vasopressor initiation, providing actionable lead time for clinicians.

Conclusions: This proof-of-concept study shows that routinely collected ICU data can predict impending vasopressor initiation with clinically interpretable outputs. However, these findings reflect internal validation only and should be interpreted with caution. External validation on multi-center retrospective cohorts, followed by silent-mode prospective evaluation, is warranted to confirm generalisability and to assess the real-world impact on time-to-vasopressor, fluid balance, and patient outcomes.

背景:早期识别需要血管加压剂支持的脓毒症患者可以为血流动力学优化提供关键窗口,然而目前的床边提示通常仅在休克迫在眉睫时出现。目的:我们旨在开发和验证一个可解释的基于电子健康记录(EHR)的机器学习模型,该模型可以预测重症监护病房(ICU)脓毒症患者治疗前几小时的血管加压药物启动。方法:采用MIMIC-IV v2.2数据库(2008-2019)进行回顾性研究。我们筛选成人脓毒症-3 ICU住院患者,并将入院后6至48小时开始持续输注血管加压素的患者标记为病例;我们将对照组定义为ICU住院≥48小时且无血管加压药物暴露的脓毒症患者。我们对年龄、性别、Charlson指数、去除心血管成分的SOFA评分、体重和早期乳酸/红细胞压积进行了一对一的近邻匹配,以尽量减少混淆。我们设计了人口统计学、生理学和实验室特征,在多个参数组合下,测量了相对于血管加压素起始(或匹配的时间点)的-6至-2小时。我们用蒙特卡罗交叉验证训练了七种算法,并在一个独立的验证集上评估了性能。我们用Shapley值评估模型的可解释性。结果:我们分析了1539例病例和1431例对照;独立验证集包括751个停留(~25%)。随机森林分类器在约登指数阈值下的接收者工作特征(AUROC)面积为0.75 (95% CI, 0.72-0.79),灵敏度为0.74 (95% CI, 0.69-0.78),特异性为0.65 (95% CI, 0.60-0.70),精度为0.70 (95% CI, 0.66-0.74), F1评分为0.72 (95% CI, 0.68-0.75)。该模型优于简单的替代指标——平均血压(AUROC, 0.68; 95% CI, 0.64-0.72)和改进的休克指数(AUROC, 0.65; 95% CI, 0.62-0.69),以及复制的双向LSTM (AUROC, 0.73; 95% CI, 0.70-0.77)。主要预测指标包括- 2至-4小时平均血压下降,乳酸升高(> 2.5 mmol/L),红细胞压积超过30-37%。模型警报将在血管加压剂启动前2至4小时发生,为临床医生提供可操作的提前时间。结论:这项概念验证性研究表明,常规收集的ICU数据可以预测即将开始的血管加压药物,并具有临床可解释的输出。然而,这些发现仅反映了内部验证,应谨慎解释。对多中心回顾性队列进行外部验证,然后进行沉默模式前瞻性评估,以确认其普遍性,并评估对血管加压时间、液体平衡和患者预后的实际影响。
{"title":"Early prediction of vasopressor initiation in ICU sepsis patients using an interpretable EHR-based ML model.","authors":"Lucas Duval, Antoine Villié, Fei Zheng, Gabriel Terraz, Sophie Blein, Esther Duperchy, Martin Everett, Johan Frieling, Jean-François Llitjos, Maxime Bodinier","doi":"10.1186/s12911-025-03274-3","DOIUrl":"10.1186/s12911-025-03274-3","url":null,"abstract":"<p><strong>Background: </strong>Early identification of septic patients who will require vasopressor support could provide a critical window for hemodynamic optimisation, yet current bedside cues often appear only when shock is imminent.</p><p><strong>Objective: </strong>We aimed to develop and validate an interpretable electronic health record (EHR)-based machine-learning model that predicts vasopressor initiation several hours before therapy in intensive care unit (ICU) patients with sepsis.</p><p><strong>Methods: </strong>We conducted a retrospective study using the MIMIC-IV v2.2 database (2008-2019). We screened adult Sepsis-3 ICU stays and labeled the patients who commenced continuous vasopressor infusions 6 to 48 hours after admission as cases; we defined controls as sepsis patients with ICU stays ≥48 hours and no vasopressor exposure. We performed one to one nearest neighbour matching on age, sex, Charlson index, SOFA score with the cardiovascular component removed, weight, and early lactate/hematocrit availability to minimise confounding. We engineered demographic, physiological, and laboratory features measured from -6 to -2 hours relative to vasopressor initiation (or a matched time point) under multiple parameter combinations. We trained seven algorithms with Monte Carlo cross validation and evaluated performance on an independent validation set. We assessed model interpretability with Shapley values.</p><p><strong>Results: </strong>We analyzed 1,539 cases and 1,431 controls; the independent validation set comprised 751 stays (~25%). A Random Forest classifier achieved an area under the receiver operating characteristic (AUROC) of 0.75 (95% CI, 0.72-0.79), a sensitivity of 0.74 (95% CI, 0.69-0.78), a specificity of 0.65 (95% CI, 0.60-0.70), a precision of 0.70 (95% CI, 0.66-0.74) and a F1 score of 0.72 (95% CI, 0.68-0.75) at the Youden's index threshold. The model outperformed simple surrogates-mean blood pressure (AUROC, 0.68; 95% CI, 0.64-0.72) and modified shock index (AUROC, 0.65; 95% CI, 0.62-0.69)-and a reproduced bidirectional LSTM (AUROC, 0.73; 95% CI, 0.70-0.77). Key predictors included declining mean blood pressure at - 2 to -4 hours, elevated lactate ( > 2.5 mmol/L), and hematocrit outside 30-37%. Model alerts would occur two to four hours before vasopressor initiation, providing actionable lead time for clinicians.</p><p><strong>Conclusions: </strong>This proof-of-concept study shows that routinely collected ICU data can predict impending vasopressor initiation with clinically interpretable outputs. However, these findings reflect internal validation only and should be interpreted with caution. External validation on multi-center retrospective cohorts, followed by silent-mode prospective evaluation, is warranted to confirm generalisability and to assess the real-world impact on time-to-vasopressor, fluid balance, and patient outcomes.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"442"},"PeriodicalIF":3.8,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12706921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145762239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Informatics and Decision Making
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1