首页 > 最新文献

BMC Medical Informatics and Decision Making最新文献

英文 中文
Assessing pediatric clinician adherence to the guidelines for prevention of peanut allergy: a natural language processing study. 评估儿科临床医生遵守花生过敏预防指南:一项自然语言处理研究。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-06 DOI: 10.1186/s12911-025-03287-y
Anthony F Wong, Lucy A Bilaver, Jialing Jiang, Yuan Luo, Ruchi S Gupta, Marc Rosenman, Michael S Carroll
{"title":"Assessing pediatric clinician adherence to the guidelines for prevention of peanut allergy: a natural language processing study.","authors":"Anthony F Wong, Lucy A Bilaver, Jialing Jiang, Yuan Luo, Ruchi S Gupta, Marc Rosenman, Michael S Carroll","doi":"10.1186/s12911-025-03287-y","DOIUrl":"10.1186/s12911-025-03287-y","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"9"},"PeriodicalIF":3.8,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CMEO: a metadata-centric ontology for clinical studies exploration and harmonization assessment. CMEO:一个以元数据为中心的临床研究探索和协调评估本体。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-06 DOI: 10.1186/s12911-025-03272-5
Komal Gilani, Wei Wei, Christof Peters, Marlo Verket, Hans-Peter Brunner-La Rocca, Enrico Nicolis, Martina Colombo, Katharina Marx-Schütt, Visara Urovi, Michel Dumontier

The integration of clinical research data across various institutions faces hurdles due to differing definitions, inconsistent terminologies, and inadequate support for interoperable metadata. While biomedical ontologies offer valuable tools for structuring clinical data, they have not yet been fully utilized for creating comprehensive metadata descriptors, such as variable semantics, statistical summaries, and governance elements essential for data discovery and alignment. We present the Clinical Metadata Exploration Ontology (CMEO) that builds upon well-established ontologies to provide a cohesive representation of study designs, data elements, exploratory statistics, and data reuse permissions. CMEO facilitates semantic querying for study exploration and comparison of data elements across studies, particularly when individual-level data cannot be shared. We demonstrate its utility using metadata from five studies: four heart-failure studies and one wearable-based type 1 diabetes study. After serializing, we executed SPARQL queries that operationalized study-level discovery, variable alignment across studies, and governance-constrained reuse. This FAIR-compliant, metadata-driven integration across heterogeneous sources enables scalable, privacy-conscious research and underpins federated clinical data exploration.

由于不同的定义、不一致的术语以及对可互操作元数据的支持不足,跨不同机构的临床研究数据集成面临障碍。虽然生物医学本体为构建临床数据提供了有价值的工具,但它们尚未被充分利用来创建全面的元数据描述符,例如变量语义、统计摘要和数据发现和对齐所必需的治理元素。我们提出临床元数据探索本体(CMEO),它建立在完善的本体之上,提供研究设计、数据元素、探索性统计和数据重用权限的内聚表示。CMEO促进了研究探索的语义查询和跨研究数据元素的比较,特别是当个人层面的数据不能共享时。我们使用五项研究的元数据来证明其实用性:四项心力衰竭研究和一项基于可穿戴设备的1型糖尿病研究。在序列化之后,我们执行了SPARQL查询,这些查询实现了研究级的发现、跨研究的变量对齐和治理约束的重用。这种符合fair标准的、元数据驱动的跨异构数据源集成,支持可扩展的、注重隐私的研究,并支持联合临床数据探索。
{"title":"CMEO: a metadata-centric ontology for clinical studies exploration and harmonization assessment.","authors":"Komal Gilani, Wei Wei, Christof Peters, Marlo Verket, Hans-Peter Brunner-La Rocca, Enrico Nicolis, Martina Colombo, Katharina Marx-Schütt, Visara Urovi, Michel Dumontier","doi":"10.1186/s12911-025-03272-5","DOIUrl":"10.1186/s12911-025-03272-5","url":null,"abstract":"<p><p>The integration of clinical research data across various institutions faces hurdles due to differing definitions, inconsistent terminologies, and inadequate support for interoperable metadata. While biomedical ontologies offer valuable tools for structuring clinical data, they have not yet been fully utilized for creating comprehensive metadata descriptors, such as variable semantics, statistical summaries, and governance elements essential for data discovery and alignment. We present the Clinical Metadata Exploration Ontology (CMEO) that builds upon well-established ontologies to provide a cohesive representation of study designs, data elements, exploratory statistics, and data reuse permissions. CMEO facilitates semantic querying for study exploration and comparison of data elements across studies, particularly when individual-level data cannot be shared. We demonstrate its utility using metadata from five studies: four heart-failure studies and one wearable-based type 1 diabetes study. After serializing, we executed SPARQL queries that operationalized study-level discovery, variable alignment across studies, and governance-constrained reuse. This FAIR-compliant, metadata-driven integration across heterogeneous sources enables scalable, privacy-conscious research and underpins federated clinical data exploration.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"8"},"PeriodicalIF":3.8,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12798102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145696016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring prognostic factors on vascular outcomes among maintenance dialysis patients and establishing a prognosis prediction model using machine learning methods. 探讨维持性透析患者血管结局的预后因素,利用机器学习方法建立预后预测模型。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-05 DOI: 10.1186/s12911-025-03302-2
Chung-Kuan Wu, Zih-Kai Kao, Vy-Khanh Nguyen, Noi Yar, Ming-Tsang Chuang, Tzu-Hao Chang
{"title":"Exploring prognostic factors on vascular outcomes among maintenance dialysis patients and establishing a prognosis prediction model using machine learning methods.","authors":"Chung-Kuan Wu, Zih-Kai Kao, Vy-Khanh Nguyen, Noi Yar, Ming-Tsang Chuang, Tzu-Hao Chang","doi":"10.1186/s12911-025-03302-2","DOIUrl":"10.1186/s12911-025-03302-2","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"6"},"PeriodicalIF":3.8,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous prediction of early and delayed mortality in burn patients: a comparative machine learning analysis of feature importance in a single-center retrospective study. 烧伤患者早期和延迟死亡率的同时预测:单中心回顾性研究中特征重要性的比较机器学习分析
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-05 DOI: 10.1186/s12911-025-03311-1
Mehran Motamedi, Najibeh Mohseni Moallemkolaei, Mohammadhossein Hesamirostami, Mojtaba Ghorbani, Leila Shokrizadeh Arani
{"title":"Simultaneous prediction of early and delayed mortality in burn patients: a comparative machine learning analysis of feature importance in a single-center retrospective study.","authors":"Mehran Motamedi, Najibeh Mohseni Moallemkolaei, Mohammadhossein Hesamirostami, Mojtaba Ghorbani, Leila Shokrizadeh Arani","doi":"10.1186/s12911-025-03311-1","DOIUrl":"10.1186/s12911-025-03311-1","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"7"},"PeriodicalIF":3.8,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12797782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145687053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MelAnalyze: fact-checking melatonin claims using large language models and natural language inference. MelAnalyze:使用大型语言模型和自然语言推理来核实褪黑激素的说法。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-04 DOI: 10.1186/s12911-025-03291-2
Nikitha Karkera, Samik Ghosh, Germaine Escames, Sucheendra K Palaniappan
{"title":"MelAnalyze: fact-checking melatonin claims using large language models and natural language inference.","authors":"Nikitha Karkera, Samik Ghosh, Germaine Escames, Sucheendra K Palaniappan","doi":"10.1186/s12911-025-03291-2","DOIUrl":"10.1186/s12911-025-03291-2","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"39"},"PeriodicalIF":3.8,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12875012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-driven risk stratification to guide variceal embolization in TIPS-treated cirrhotic patients with acute variceal bleeding. 机器学习驱动的风险分层指导tips治疗的肝硬化急性静脉曲张出血患者的静脉曲张栓塞。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-04 DOI: 10.1186/s12911-025-03304-0
Gangfeng Zhu, Yipeng Song, Beijia Yu, Cixiang Chen, Siying Chen, Yi Xie, Qiang Yi, Haozhe Fu, Xiangcai Wang, Li Huang
{"title":"Machine learning-driven risk stratification to guide variceal embolization in TIPS-treated cirrhotic patients with acute variceal bleeding.","authors":"Gangfeng Zhu, Yipeng Song, Beijia Yu, Cixiang Chen, Siying Chen, Yi Xie, Qiang Yi, Haozhe Fu, Xiangcai Wang, Li Huang","doi":"10.1186/s12911-025-03304-0","DOIUrl":"10.1186/s12911-025-03304-0","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"3"},"PeriodicalIF":3.8,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital health for Tuberculosis control: findings from the piloting of an electronic medical record in Luanda (Angola). 数字保健促进结核病控制:罗安达(安哥拉)电子病历试点的结果。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-04 DOI: 10.1186/s12911-025-03270-7
Claudia Robbiati, Maria Elena Tosti, Joaquim Tomas, Giulia Natali, Luca De Simeis, Nsuka Da Silva, Florentino Ferraz Joaquim, Daniel Tulomba, Neusa Lazary, Janet Adão, Fabio Manenti, Maria Grazia Dente
{"title":"Digital health for Tuberculosis control: findings from the piloting of an electronic medical record in Luanda (Angola).","authors":"Claudia Robbiati, Maria Elena Tosti, Joaquim Tomas, Giulia Natali, Luca De Simeis, Nsuka Da Silva, Florentino Ferraz Joaquim, Daniel Tulomba, Neusa Lazary, Janet Adão, Fabio Manenti, Maria Grazia Dente","doi":"10.1186/s12911-025-03270-7","DOIUrl":"10.1186/s12911-025-03270-7","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":" ","pages":"4"},"PeriodicalIF":3.8,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12781550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145676567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECG-based deep learning for chronic kidney disease detection and cardiovascular risk prediction. 基于脑电图的深度学习用于慢性肾脏疾病检测和心血管风险预测。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-03 DOI: 10.1186/s12911-025-03278-z
Ping-Huang Tsai, Shang-Yang Lee, Chia-Ling Helen Wei, Yu-Juei Hsu, Chin Lin

Background: Chronic kidney disease (CKD) is a global health burden with low awareness among both patients and healthcare providers. Deep learning models (DLMs) have shown promise in interpreting electrocardiograms (ECGs) for various disease and may offer new opportunities for early CKD detection.

Methods: We enrolled 66,587 outpatients with estimated glomerular filtration rate (eGFR) data from January 2010 to October 2020. A total of 72,618 ECGs from 49,632 patients were used to develop DLMs. Internal validation was performed on 16,955 nonoverlapping patients, and external validation involved 10,476 patients from a community hospital. The primary outcome was the detection of CKD, defined as eGFR < 60 mL/min/1.73 m². Secondary outcomes included all-cause mortality and major cardiovascular events.

Results: The DLM achieved an AUC of 0.885 and 0.861 in the internal and external validation sets, respectively. Patients flagged by the DLM as having CKD showed more clinical risk factors for CKD progression and cardiovascular disease. Among patients without baseline CKD, those with a positive DLM screen had a significantly higher risk of incident CKD (hazard ratios 2.14 and 1.38; 95% CIs: 1.76-2.60 and 1.09-1.74). DLM stratification also predicted adverse outcomes such as stroke, heart failure, and atrial fibrillation more effectively than eGFR classification alone.

Conclusion: An ECG-based deep learning model can help identify individuals at risk for CKD and its complications, even before laboratory abnormalities emerge. This approach may support early detection and risk stratification in clinical practice.

Clinical trial number: Not applicable.

背景:慢性肾脏疾病(CKD)是一种全球性的健康负担,患者和医疗保健提供者对其认识都很低。深度学习模型(DLMs)在解释各种疾病的心电图(ECGs)方面显示出了希望,并可能为早期CKD检测提供新的机会。方法:从2010年1月至2020年10月,我们招募了66,587名门诊患者,他们有肾小球滤过率(eGFR)的估计数据。来自49,632名患者的72,618张心电图被用于发展dlm。内部验证对16,955名非重叠患者进行,外部验证涉及来自社区医院的10,476名患者。主要终点是CKD的检测,定义为eGFR结果:DLM在内部和外部验证集中的AUC分别为0.885和0.861。被DLM标记为CKD的患者显示出CKD进展和心血管疾病的更多临床危险因素。在无基线CKD的患者中,DLM筛查阳性的患者发生CKD的风险明显更高(风险比为2.14和1.38;95% ci: 1.76-2.60和1.09-1.74)。DLM分层也比单独的eGFR分类更有效地预测诸如中风、心力衰竭和房颤等不良后果。结论:基于心电图的深度学习模型可以帮助识别CKD及其并发症的风险个体,甚至在实验室异常出现之前。这种方法可以在临床实践中支持早期发现和风险分层。临床试验号:不适用。
{"title":"ECG-based deep learning for chronic kidney disease detection and cardiovascular risk prediction.","authors":"Ping-Huang Tsai, Shang-Yang Lee, Chia-Ling Helen Wei, Yu-Juei Hsu, Chin Lin","doi":"10.1186/s12911-025-03278-z","DOIUrl":"10.1186/s12911-025-03278-z","url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease (CKD) is a global health burden with low awareness among both patients and healthcare providers. Deep learning models (DLMs) have shown promise in interpreting electrocardiograms (ECGs) for various disease and may offer new opportunities for early CKD detection.</p><p><strong>Methods: </strong>We enrolled 66,587 outpatients with estimated glomerular filtration rate (eGFR) data from January 2010 to October 2020. A total of 72,618 ECGs from 49,632 patients were used to develop DLMs. Internal validation was performed on 16,955 nonoverlapping patients, and external validation involved 10,476 patients from a community hospital. The primary outcome was the detection of CKD, defined as eGFR < 60 mL/min/1.73 m². Secondary outcomes included all-cause mortality and major cardiovascular events.</p><p><strong>Results: </strong>The DLM achieved an AUC of 0.885 and 0.861 in the internal and external validation sets, respectively. Patients flagged by the DLM as having CKD showed more clinical risk factors for CKD progression and cardiovascular disease. Among patients without baseline CKD, those with a positive DLM screen had a significantly higher risk of incident CKD (hazard ratios 2.14 and 1.38; 95% CIs: 1.76-2.60 and 1.09-1.74). DLM stratification also predicted adverse outcomes such as stroke, heart failure, and atrial fibrillation more effectively than eGFR classification alone.</p><p><strong>Conclusion: </strong>An ECG-based deep learning model can help identify individuals at risk for CKD and its complications, even before laboratory abnormalities emerge. This approach may support early detection and risk stratification in clinical practice.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"439"},"PeriodicalIF":3.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12676854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145667286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying coding integrity and reliability of ICD-11 MMS for rare disease registration: a case study of the Chinese rare disease catalogue. 量化ICD-11罕见病登记MMS编码的完整性和可靠性——以中国罕见病目录为例
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-03 DOI: 10.1186/s12911-025-03275-2
Xue Bai, Jian Guo, Meng Zhang, Yi Wang, Naishi Li

Introduction: Epidemiological data on rare diseases (RDs) affect the accurate scientific assessment of these diseases and lead to many issues in policy-making, healthcare systems, and legislation. The coding system is crucial for accurately identifying and calculating the incidence rates of each RD. This study focuses on the effectiveness of collecting RD data via the ICD-11 and examines whether the ICD-11 can fully support RD statistics. The findings of this study should provide a foundation for replacing the ICD-10 with the ICD-11.

Methods: This study included 121 RDs from the first "Rare Disease Catalogue"in China. The diseases were recoded independently by two experts in the ICD-11 MMS. A comparative analysis was conducted on the distributions of chapters, code types, and index terms in the ICD-10 and ICD-11 MMS.

Results: This study analysed 121 rare diseases (RDs) from China's first Rare Disease Catalogue. These RDs mapped to 204 ICD-10 codes (1.4% of all codes), including 76 (37.3%) non-index terms, and to 171 ICD-11 MMS codes (0.96% of all codes). The proportion of RD codes was significantly lower in ICD-11 than in ICD-10 (0.96% vs. 1.4%, P < 0.001), indicating greater dilution of RDs in ICD-11. All ICD-11 MMS codes were indexed (100% vs. 62.7% in ICD-10, P < 0.001), and 51 ICD-11 MMS codes (29.8%, P < 0.001) provided more detailed classifications. When using the ICD-11 to code RDs for subsequent statistical analyses, it is recommended that a network system of RD index terms be established in advance.

Conclusion: The ICD-11 can replace the ICD-10 for coding RDs. However, many RD terms do not have accurate codes and must be uniquely identified with URIs in the ICD-11. To ensure the reliability of RD-related data, establishing a local RD database for reporting data via the ICD-11 in China is essential.

关于罕见病(RDs)的流行病学数据影响对这些疾病的准确科学评估,并导致决策、卫生保健系统和立法中的许多问题。编码系统对于准确识别和计算每种RD的发病率至关重要。本研究着重于通过ICD-11收集RD数据的有效性,并检查ICD-11是否可以完全支持RD统计。本研究结果可为ICD-11替代ICD-10提供依据。方法:选取中国首个《罕见病目录》中的121个品种作为研究对象。这些疾病由两位专家在ICD-11 MMS中独立编码。比较分析了ICD-10和ICD-11 MMS中章节、编码类型和索引项的分布。结果:本研究分析了中国首个罕见病目录中的121种罕见病。这些rd映射到204个ICD-10代码(占所有代码的1.4%),包括76个(37.3%)非索引术语,以及171个ICD-11 MMS代码(占所有代码的0.96%)。ICD-11中RD编码的比例明显低于ICD-10(0.96%比1.4%),P结论:ICD-11可以替代ICD-10编码RD。然而,许多RD术语没有准确的代码,必须用ICD-11中的uri唯一标识。为确保研发相关数据的可靠性,在中国建立一个本地研发数据库,通过ICD-11报告数据至关重要。
{"title":"Quantifying coding integrity and reliability of ICD-11 MMS for rare disease registration: a case study of the Chinese rare disease catalogue.","authors":"Xue Bai, Jian Guo, Meng Zhang, Yi Wang, Naishi Li","doi":"10.1186/s12911-025-03275-2","DOIUrl":"10.1186/s12911-025-03275-2","url":null,"abstract":"<p><strong>Introduction: </strong>Epidemiological data on rare diseases (RDs) affect the accurate scientific assessment of these diseases and lead to many issues in policy-making, healthcare systems, and legislation. The coding system is crucial for accurately identifying and calculating the incidence rates of each RD. This study focuses on the effectiveness of collecting RD data via the ICD-11 and examines whether the ICD-11 can fully support RD statistics. The findings of this study should provide a foundation for replacing the ICD-10 with the ICD-11.</p><p><strong>Methods: </strong>This study included 121 RDs from the first \"Rare Disease Catalogue\"in China. The diseases were recoded independently by two experts in the ICD-11 MMS. A comparative analysis was conducted on the distributions of chapters, code types, and index terms in the ICD-10 and ICD-11 MMS.</p><p><strong>Results: </strong>This study analysed 121 rare diseases (RDs) from China's first Rare Disease Catalogue. These RDs mapped to 204 ICD-10 codes (1.4% of all codes), including 76 (37.3%) non-index terms, and to 171 ICD-11 MMS codes (0.96% of all codes). The proportion of RD codes was significantly lower in ICD-11 than in ICD-10 (0.96% vs. 1.4%, P < 0.001), indicating greater dilution of RDs in ICD-11. All ICD-11 MMS codes were indexed (100% vs. 62.7% in ICD-10, P < 0.001), and 51 ICD-11 MMS codes (29.8%, P < 0.001) provided more detailed classifications. When using the ICD-11 to code RDs for subsequent statistical analyses, it is recommended that a network system of RD index terms be established in advance.</p><p><strong>Conclusion: </strong>The ICD-11 can replace the ICD-10 for coding RDs. However, many RD terms do not have accurate codes and must be uniquely identified with URIs in the ICD-11. To ensure the reliability of RD-related data, establishing a local RD database for reporting data via the ICD-11 in China is essential.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"440"},"PeriodicalIF":3.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12676748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145667256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and evaluation patient portal for patients with HTLV-1. HTLV-1患者门户网站的设计与评价。
IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS Pub Date : 2025-12-02 DOI: 10.1186/s12911-025-03276-1
Reyhaneh Norouzi Aval, Houshang Rafatpanah, Masoumeh Sarbaz, Khalil Kimiafar, Seyyedeh Fatemeh Mousavi Baigi
{"title":"Design and evaluation patient portal for patients with HTLV-1.","authors":"Reyhaneh Norouzi Aval, Houshang Rafatpanah, Masoumeh Sarbaz, Khalil Kimiafar, Seyyedeh Fatemeh Mousavi Baigi","doi":"10.1186/s12911-025-03276-1","DOIUrl":"10.1186/s12911-025-03276-1","url":null,"abstract":"","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"438"},"PeriodicalIF":3.8,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12673748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145660450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Informatics and Decision Making
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1