Pub Date : 2025-11-01DOI: 10.1016/j.hazl.2025.100165
Liang Zhao , Junjie Zhang , Shivani Kubendraraj , Susana Villa Gonzalez , Murat V. Ardelan , K. Avarachen Mathew , Emmanuel Ansah , Millicent Kwawu , Christopher Gordon , Alexandros G. Asimakopoulos , Bo Yuan
Per- and polyfluoroalkyl substances (PFAS) research in developing countries has largely focused on imported sources such as e-waste, but contributions from local land-use activities remain poorly understood. This study selected Ghana as a model to investigate PFAS contamination in sediments from riverine ecosystems across four land-use types: mining, municipal & electronic waste, and agriculture. In addition to conventional target analysis, we refined the direct total oxidizable precursor (dTOP) assay by applying direct oxidation to sediments, with the highest PFAS yields achieved using an eightfold increase in oxidizing agents. Target PFAS concentrations were relatively low, likely reflecting the impact of global regulations, but post-dTOP concentrations increased by 239–65,400 % across all sites, ranging from 0.603 to 476 ng/g. Over 99 % of detected PFAS were attributed to previously untargeted precursors, emphasizing the iceberg nature of PFAS contamination, where routine methods capture only a small visible fraction. Mining and agricultural areas showed higher PFAS levels than the e-waste zone, suggesting that locally driven sources are dominant contributors. The tailored dTOP approach proved essential in revealing these hidden PFAS burdens, highlighting the need for broader monitoring frameworks to inform environmental risk assessment and sustainable land-use management in developing regions.
{"title":"Substantially underestimated PFAS pollution in diverse Ghana’s land-use types revealed by a refined TOP assay","authors":"Liang Zhao , Junjie Zhang , Shivani Kubendraraj , Susana Villa Gonzalez , Murat V. Ardelan , K. Avarachen Mathew , Emmanuel Ansah , Millicent Kwawu , Christopher Gordon , Alexandros G. Asimakopoulos , Bo Yuan","doi":"10.1016/j.hazl.2025.100165","DOIUrl":"10.1016/j.hazl.2025.100165","url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFAS) research in developing countries has largely focused on imported sources such as e-waste, but contributions from local land-use activities remain poorly understood. This study selected Ghana as a model to investigate PFAS contamination in sediments from riverine ecosystems across four land-use types: mining, municipal & electronic waste, and agriculture. In addition to conventional target analysis, we refined the direct total oxidizable precursor (dTOP) assay by applying direct oxidation to sediments, with the highest PFAS yields achieved using an eightfold increase in oxidizing agents. Target PFAS concentrations were relatively low, likely reflecting the impact of global regulations, but post-dTOP concentrations increased by 239–65,400 % across all sites, ranging from 0.603 to 476 ng/g. Over 99 % of detected PFAS were attributed to previously untargeted precursors, emphasizing the iceberg nature of PFAS contamination, where routine methods capture only a small visible fraction. Mining and agricultural areas showed higher PFAS levels than the e-waste zone, suggesting that locally driven sources are dominant contributors. The tailored dTOP approach proved essential in revealing these hidden PFAS burdens, highlighting the need for broader monitoring frameworks to inform environmental risk assessment and sustainable land-use management in developing regions.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100165"},"PeriodicalIF":8.1,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145465315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-21DOI: 10.1016/j.hazl.2025.100164
Lisa Lowe, Jamie Leonard, Sanjay Mohanty
Chewing gums typically contain plant-based or synthetic plastic polymers to improve their texture and flavor retention. These polymer fragments or microplastics can be released into the environment when disposed of improperly or ingested while chewing gums. Yet, how many microplastics a person may ingest while chewing gums is unknown. Analyzing microplastics released into saliva from 5 natural and 5 synthetic chewing gums, we found that each gram of chewing gum could release up to 637 microplastics, and 94 % of microplastics were released within the first 8 min of chewing. Surprisingly, synthetic chewing gum released a similar (p > 0.8) number of microplastics as natural or plant-based chewing gums. Microplastics released from the chewing gums were predominantly small, with a median size of 45.4 µm. Both of the chewing gum types released four types of plastic polymers—polyolefins, polyterephthalates (PET), polyacrylamides, and polystyrenes,— among which polyolefins were the most abundant. The result reveals that chewing gum consumption, irrespective of the type of chewing gums, could result in direct ingestion of microplastics.
{"title":"Ingestion of microplastics during chewing gum consumption","authors":"Lisa Lowe, Jamie Leonard, Sanjay Mohanty","doi":"10.1016/j.hazl.2025.100164","DOIUrl":"10.1016/j.hazl.2025.100164","url":null,"abstract":"<div><div>Chewing gums typically contain plant-based or synthetic plastic polymers to improve their texture and flavor retention. These polymer fragments or microplastics can be released into the environment when disposed of improperly or ingested while chewing gums. Yet, how many microplastics a person may ingest while chewing gums is unknown. Analyzing microplastics released into saliva from 5 natural and 5 synthetic chewing gums, we found that each gram of chewing gum could release up to 637 microplastics, and 94 % of microplastics were released within the first 8 min of chewing. Surprisingly, synthetic chewing gum released a similar (p > 0.8) number of microplastics as natural or plant-based chewing gums. Microplastics released from the chewing gums were predominantly small, with a median size of 45.4 µm. Both of the chewing gum types released four types of plastic polymers—polyolefins, polyterephthalates (PET), polyacrylamides, and polystyrenes,— among which polyolefins were the most abundant. The result reveals that chewing gum consumption, irrespective of the type of chewing gums, could result in direct ingestion of microplastics.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100164"},"PeriodicalIF":8.1,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-09DOI: 10.1016/j.hazl.2025.100163
Prashant Srivastava , Becky Macdonald
Biosolids, valued as nutrient-rich soil amendments, are now approached cautiously by farmers due to growing public concern, and increasingly stringent and varying per- and poly-fluoroalkyl substances (PFAS) regulatory standards across jurisdictions. PFAS concentrations in biosolids vary widely between countries and wastewater treatment plants. Inconsistent monitoring and testing protocols hinder accurate assessment and comparison across sites. The fragmented regulatory landscape, with diverse thresholds and evolving requirements, complicates compliance and long-term planning for water utilities, challenging infrastructure investment. A key issue is lack of proven, scalable PFAS treatment technologies for municipal wastewater plants. Current solutions often lack performance, cost-effectiveness, and practicality at scale. Utilities face financial burdens for monitoring and remediation while balancing other priorities, like managing emerging contaminants and reducing greenhouse gas emissions from energy-intensive processes. Effective source control to limit PFAS entry into wastewater systems is critical and cost-effective. Integrated strategies targeting multiple pollutants can optimize investments. Clear, science-based regulatory standards for PFAS in biosolids are urgently needed to guide compliance. Collaboration among utilities, academia, technology providers, and stakeholders, supported by transparent engagement, is essential for practical PFAS management solutions and rebuilding public trust. Sustainable biosolids management depends on evidence-based, interdisciplinary efforts integrating technological innovation, regulatory clarity, and socioecological resilience.
{"title":"PFAS in biosolids: Insights into current and future challenges","authors":"Prashant Srivastava , Becky Macdonald","doi":"10.1016/j.hazl.2025.100163","DOIUrl":"10.1016/j.hazl.2025.100163","url":null,"abstract":"<div><div>Biosolids, valued as nutrient-rich soil amendments, are now approached cautiously by farmers due to growing public concern, and increasingly stringent and varying per- and poly-fluoroalkyl substances (PFAS) regulatory standards across jurisdictions. PFAS concentrations in biosolids vary widely between countries and wastewater treatment plants. Inconsistent monitoring and testing protocols hinder accurate assessment and comparison across sites. The fragmented regulatory landscape, with diverse thresholds and evolving requirements, complicates compliance and long-term planning for water utilities, challenging infrastructure investment. A key issue is lack of proven, scalable PFAS treatment technologies for municipal wastewater plants. Current solutions often lack performance, cost-effectiveness, and practicality at scale. Utilities face financial burdens for monitoring and remediation while balancing other priorities, like managing emerging contaminants and reducing greenhouse gas emissions from energy-intensive processes. Effective source control to limit PFAS entry into wastewater systems is critical and cost-effective. Integrated strategies targeting multiple pollutants can optimize investments. Clear, science-based regulatory standards for PFAS in biosolids are urgently needed to guide compliance. Collaboration among utilities, academia, technology providers, and stakeholders, supported by transparent engagement, is essential for practical PFAS management solutions and rebuilding public trust. Sustainable biosolids management depends on evidence-based, interdisciplinary efforts integrating technological innovation, regulatory clarity, and socioecological resilience.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100163"},"PeriodicalIF":8.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145048291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-07DOI: 10.1016/j.hazl.2025.100162
Jonathan Navarro Ramos , Lara Dronjak , Sofian Kanan , Md Maruf Mortula , Joshua S. Wallace , Fatin Samara , Ning Dai , Diana S. Aga
Climate change is associated with the intensification of weather patterns, including extreme weather events of historically arid regions such as the United Arab Emirates (UAE). On April 16–17, 2024, the UAE experienced a severe storm with unusually heavy precipitation, which resulted in widespread urban flooding, contaminated floodwaters, and the potential for cross-contamination in water distribution systems. Ten floodwater samples from around the American University of Sharjah, UAE, were analyzed for the presence of emerging contaminants (e.g., tire-derived chemicals, pharmaceuticals, and personal care products (PPCPs)) and selected metals. Tire-derived chemicals were detected at varying concentrations: N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) (<detection limit - 26 ng/L), 6PPD-quinone (20–270 ng/L), 1,3-diphenylguanidine (DPG) (490–14,340 ng/L), and hexa(methoxymethyl)melamine (HMMM) (70–15,800 ng/L). Four PPCPs (caffeine, cotinine, acetaminophen, and lidocaine) were detected at lower concentrations (42–779 ng/L, 6–179 ng/L, 4–196 ng/L, and 1–7 ng/L, respectively). Significantly higher amounts of all tire-derived chemicals and PPCPs were observed in samples from outside the campus. Metals were also detected: aluminum (92–218 µg/L), iron (49–349 µg/L), potassium (160–3860 µg/L), manganese (3 µg/L), and barium (1–7 µg/L). Correlation analysis revealed a strong positive correlation between 6PPD-quinone and HMMM (r = 0.893, p = 0.000507), and among acetaminophen, caffeine, cotinine, and lidocaine (r = 0.501–0.980, and p < 0.05), suggesting shared sources stemming from high vehicular activity and raw wastewater overflow. These findings emphasize the need for arid regions to implement targeted stormwater management and monitoring strategies during extreme weather events to address floodwater-driven mobilization of environmental contaminants.
{"title":"Emerging contaminants in stormwater: Tire-derived chemicals, pharmaceuticals, and heavy metals detected in a United Arab Emirates extreme weather event","authors":"Jonathan Navarro Ramos , Lara Dronjak , Sofian Kanan , Md Maruf Mortula , Joshua S. Wallace , Fatin Samara , Ning Dai , Diana S. Aga","doi":"10.1016/j.hazl.2025.100162","DOIUrl":"10.1016/j.hazl.2025.100162","url":null,"abstract":"<div><div>Climate change is associated with the intensification of weather patterns, including extreme weather events of historically arid regions such as the United Arab Emirates (UAE). On April 16–17, 2024, the UAE experienced a severe storm with unusually heavy precipitation, which resulted in widespread urban flooding, contaminated floodwaters, and the potential for cross-contamination in water distribution systems. Ten floodwater samples from around the American University of Sharjah, UAE, were analyzed for the presence of emerging contaminants (e.g., tire-derived chemicals, pharmaceuticals, and personal care products (PPCPs)) and selected metals. Tire-derived chemicals were detected at varying concentrations: N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) (<detection limit - 26 ng/L), 6PPD-quinone (20–270 ng/L), 1,3-diphenylguanidine (DPG) (490–14,340 ng/L), and hexa(methoxymethyl)melamine (HMMM) (70–15,800 ng/L). Four PPCPs (caffeine, cotinine, acetaminophen, and lidocaine) were detected at lower concentrations (42–779 ng/L, 6–179 ng/L, 4–196 ng/L, and 1–7 ng/L, respectively). Significantly higher amounts of all tire-derived chemicals and PPCPs were observed in samples from outside the campus. Metals were also detected: aluminum (92–218 µg/L), iron (49–349 µg/L), potassium (160–3860 µg/L), manganese (3 µg/L), and barium (1–7 µg/L). Correlation analysis revealed a strong positive correlation between 6PPD-quinone and HMMM (r = 0.893, p = 0.000507), and among acetaminophen, caffeine, cotinine, and lidocaine (r = 0.501–0.980, and p < 0.05), suggesting shared sources stemming from high vehicular activity and raw wastewater overflow. These findings emphasize the need for arid regions to implement targeted stormwater management and monitoring strategies during extreme weather events to address floodwater-driven mobilization of environmental contaminants.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100162"},"PeriodicalIF":8.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144813908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-06DOI: 10.1016/j.hazl.2025.100161
Shu Wei Hsueh , Anya Callista Kurniadi , Tan S.M. Amelia , Chin-Fa Lee , Sebastian D. Fugmann , Shu Yuan Yang
Polylactic acid (PLA), the most popular bioplastic, has high sustainability potential as it is bio-sourced and also harbors biodegradability. A form of its biodegradability is via composting, and it was previously established that thermophilic temperatures are needed for PLA breakdown in composts. Here we report the development of composts that have overcome the high-temperature requirement for PLA composting. Our mesophilic composts exhibited clear PLA biodegradability, and this is due to specific biological activity enriched in our material. To investigate the nature of this mesophilic activity, we conducted metagenomics analysis to reveal the microbial composition and enzyme-coding potential associated with PLA biodegradation. These efforts revealed multiple enzyme subtypes with strong enrichment on PLA surfaces in our trained composts, and the top candidate was a type of hydro-lyase, an enzyme that can cleave ester bonds in the absence of water. Hydro-lyases represent a novel class of enzymes that could facilitate PLA degradation, and our results point to the model that the combinatorial action of multiple types of enzymes is what drives PLA biodegradation and how the temperature barrier for PLA composting is overcome.
{"title":"Mesophilic compostability of polylactic acid and the associated microbiome as revealed by metagenomics","authors":"Shu Wei Hsueh , Anya Callista Kurniadi , Tan S.M. Amelia , Chin-Fa Lee , Sebastian D. Fugmann , Shu Yuan Yang","doi":"10.1016/j.hazl.2025.100161","DOIUrl":"10.1016/j.hazl.2025.100161","url":null,"abstract":"<div><div>Polylactic acid (PLA), the most popular bioplastic, has high sustainability potential as it is bio-sourced and also harbors biodegradability. A form of its biodegradability is via composting, and it was previously established that thermophilic temperatures are needed for PLA breakdown in composts. Here we report the development of composts that have overcome the high-temperature requirement for PLA composting. Our mesophilic composts exhibited clear PLA biodegradability, and this is due to specific biological activity enriched in our material. To investigate the nature of this mesophilic activity, we conducted metagenomics analysis to reveal the microbial composition and enzyme-coding potential associated with PLA biodegradation. These efforts revealed multiple enzyme subtypes with strong enrichment on PLA surfaces in our trained composts, and the top candidate was a type of hydro-lyase, an enzyme that can cleave ester bonds in the absence of water. Hydro-lyases represent a novel class of enzymes that could facilitate PLA degradation, and our results point to the model that the combinatorial action of multiple types of enzymes is what drives PLA biodegradation and how the temperature barrier for PLA composting is overcome.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100161"},"PeriodicalIF":8.1,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144828235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-24DOI: 10.1016/j.hazl.2025.100160
James Chen, Ruby Zhang, Maciej Podlesny, Tyler Smith, Chao Shi, Jian Li
In response to the growing shift from graphite to silicon in Li-ion battery anodes, we propose a novel low-carbon pyrometallurgical recycling method that uses silicon as the reducing agent. Silicon was chosen as the reductant because, as the emerging high-capacity anode material, it not only integrates seamlessly with next-generation battery chemistries but also offers a substantially lower carbon footprint than conventional carbon-based reducing agents. The thermodynamics and reaction mechanism between LiCoO2 and Si are investigated using differential thermal and thermogravimetric analyses. The reaction products are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. When heated to 1500 °C, LiCoO2 undergoes simultaneous decomposition and melting, reacting with Si to produce cobalt spheres. Through a laser-enabled recycling process for only 30 s with a laser power of 2 kW, LiCoO2 is reduced via silicothermic reaction to a Co–Si alloy with only a small amount of slag (Li2SiO3 and Li2Co(SiO4)). This successful use of silicon paves the way for a cleaner, more sustainable battery recycling strategy.
{"title":"A laser-enabled low carbon emission pyrometallurgical approach to recycle Li-ion batteries via silicothermic reductions","authors":"James Chen, Ruby Zhang, Maciej Podlesny, Tyler Smith, Chao Shi, Jian Li","doi":"10.1016/j.hazl.2025.100160","DOIUrl":"10.1016/j.hazl.2025.100160","url":null,"abstract":"<div><div>In response to the growing shift from graphite to silicon in Li-ion battery anodes, we propose a novel low-carbon pyrometallurgical recycling method that uses silicon as the reducing agent. Silicon was chosen as the reductant because, as the emerging high-capacity anode material, it not only integrates seamlessly with next-generation battery chemistries but also offers a substantially lower carbon footprint than conventional carbon-based reducing agents. The thermodynamics and reaction mechanism between LiCoO<sub>2</sub> and Si are investigated using differential thermal and thermogravimetric analyses. The reaction products are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. When heated to 1500 °C, LiCoO<sub>2</sub> undergoes simultaneous decomposition and melting, reacting with Si to produce cobalt spheres. Through a laser-enabled recycling process for only 30 s with a laser power of 2 kW, LiCoO<sub>2</sub> is reduced via silicothermic reaction to a Co–Si alloy with only a small amount of slag (Li<sub>2</sub>SiO<sub>3</sub> and Li<sub>2</sub>Co(SiO<sub>4</sub>)). This successful use of silicon paves the way for a cleaner, more sustainable battery recycling strategy.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100160"},"PeriodicalIF":8.1,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144842184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-22DOI: 10.1016/j.hazl.2025.100159
Kshitija Shah , Vijaya Pandey , Himadri Bose , Yun Hao , Rohan Ghosh Choudhuri , Allison Connolly , Hilary Wyner , Elizabeth Deyett , Kent Sorenson , James A. Wohlschlegel , Shaily Mahendra
The differential expression of molecular markers identified in response to environmental contaminants offer insights into early-stage resilience pathways that may support biological remediation approaches. Per- and polyfluoroalkyl substances (PFAS) are chemically stable, persistent environmental pollutants, which are associated with multiple adverse health effects. While fungi possess oxidative enzymes with potential for PFAS biotransformation, the molecular basis of their tolerance and response remains poorly understood. This study investigated the proteomic response of Phanerochaete chrysosporium to 10 mg/L PFOA and an environmentally relevant concentration of a PFAS mixture. Although no measurable PFAS degradation was observed over a 25-day exposure period, significant differential protein expression of key stress-response proteins such as cytochrome P450s, glutathione S-transferases, heat shock proteins, peroxidases, and ABC transporters were noted, in both intra- and extracellular fractions. Functional enrichment revealed the activation of pathways related to posttranslational modification, protein turnover, membrane efflux mechanisms, catabolism, and signal transduction. Proteomic profiles were shaped more closely by exposure duration and localization than by compound identity. These findings highlight the early-stage adaptations and signaling mechanisms of wood-decaying fungi under PFAS stress, which precede observable chemical breakdown, and offer critical insights into fungal responses that may be leveraged for future monitoring and bioremediation strategies.
{"title":"Fungal proteomic response to PFAS mixtures: Defense or offense?","authors":"Kshitija Shah , Vijaya Pandey , Himadri Bose , Yun Hao , Rohan Ghosh Choudhuri , Allison Connolly , Hilary Wyner , Elizabeth Deyett , Kent Sorenson , James A. Wohlschlegel , Shaily Mahendra","doi":"10.1016/j.hazl.2025.100159","DOIUrl":"10.1016/j.hazl.2025.100159","url":null,"abstract":"<div><div>The differential expression of molecular markers identified in response to environmental contaminants offer insights into early-stage resilience pathways that may support biological remediation approaches. Per- and polyfluoroalkyl substances (PFAS) are chemically stable, persistent environmental pollutants, which are associated with multiple adverse health effects. While fungi possess oxidative enzymes with potential for PFAS biotransformation, the molecular basis of their tolerance and response remains poorly understood. This study investigated the proteomic response of <em>Phanerochaete chrysosporium</em> to 10 mg/L PFOA and an environmentally relevant concentration of a PFAS mixture. Although no measurable PFAS degradation was observed over a 25-day exposure period, significant differential protein expression of key stress-response proteins such as cytochrome P450s, glutathione S-transferases, heat shock proteins, peroxidases, and ABC transporters were noted, in both intra- and extracellular fractions. Functional enrichment revealed the activation of pathways related to posttranslational modification, protein turnover, membrane efflux mechanisms, catabolism, and signal transduction. Proteomic profiles were shaped more closely by exposure duration and localization than by compound identity. These findings highlight the early-stage adaptations and signaling mechanisms of wood-decaying fungi under PFAS stress, which precede observable chemical breakdown, and offer critical insights into fungal responses that may be leveraged for future monitoring and bioremediation strategies.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100159"},"PeriodicalIF":8.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144724694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-13DOI: 10.1016/j.hazl.2025.100158
Johanna Freilinger , Jan O. Back , Raphael Plangger , Herwig Schottenberger , Christian W. Huck , Marco Rupprich , Rania Bakry
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants for which authorities worldwide have imposed limits on drinking water, groundwater and surface water. This has created challenges in PFAS detection, leading to an urgent need for reliable and selective solid-phase extraction (SPE) materials for PFAS analysis. In addressing this demand, we have tailored highly crosslinked copolymers containing 3-(1H,1H,2H,2H-perfluorooctyl)-1-vinylimidazolium chloride as a comonomer with ethylene dimethacrylate in various molar ratios. For ionic fluorosurfactants, these copolymers feature a dual binding mechanism that synergistically combines fluorophilic interactions and electrostatic attraction, enhancing selectivity and efficiency. The adsorption behavior of short- and long-chain PFAS and their recoveries were evaluated and compared to commercial SPE cartridges. Characterization revealed the highest ion-exchange capacity (412.7 ± 22 µeq g−1) for a monomer-to-crosslinker ratio of 2:1. The dynamic adsorption capacities for various PFAS ranged from 15.2 to 306 g−1. Recovery experiments consistently demonstrated high PFAS recoveries (98.8–121.6 %), while enrichment studies from wastewater confirmed its robustness in complex environmental matrices (recoveries: 90.8–99.2 %). Additionally, reusability experiments showed consistent recoveries over five cycles (recoveries: 90.34–108.0 %). The findings underscore the potential of this innovative polyelectrolyte as a selective, regenerable, and efficient alternative to conventional SPE materials, qualifying it as a superior candidate for PFAS analysis.
{"title":"Development of a fluorophilic ion-exchange material with dual binding mechanism for solid-phase extraction of PFAS","authors":"Johanna Freilinger , Jan O. Back , Raphael Plangger , Herwig Schottenberger , Christian W. Huck , Marco Rupprich , Rania Bakry","doi":"10.1016/j.hazl.2025.100158","DOIUrl":"10.1016/j.hazl.2025.100158","url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants for which authorities worldwide have imposed limits on drinking water, groundwater and surface water. This has created challenges in PFAS detection, leading to an urgent need for reliable and selective solid-phase extraction (SPE) materials for PFAS analysis. In addressing this demand, we have tailored highly crosslinked copolymers containing 3-(1<em>H</em>,1<em>H</em>,2<em>H</em>,2<em>H</em>-perfluorooctyl)-1-vinylimidazolium chloride as a comonomer with ethylene dimethacrylate in various molar ratios. For ionic fluorosurfactants, these copolymers feature a dual binding mechanism that synergistically combines fluorophilic interactions and electrostatic attraction, enhancing selectivity and efficiency. The adsorption behavior of short- and long-chain PFAS and their recoveries were evaluated and compared to commercial SPE cartridges. Characterization revealed the highest ion-exchange capacity (412.7 ± 22 µeq g<sup>−1</sup>) for a monomer-to-crosslinker ratio of 2:1. The dynamic adsorption capacities for various PFAS ranged from 15.2 to 306 g<sup>−1</sup>. Recovery experiments consistently demonstrated high PFAS recoveries (98.8–121.6 %), while enrichment studies from wastewater confirmed its robustness in complex environmental matrices (recoveries: 90.8–99.2 %). Additionally, reusability experiments showed consistent recoveries over five cycles (recoveries: 90.34–108.0 %). The findings underscore the potential of this innovative polyelectrolyte as a selective, regenerable, and efficient alternative to conventional SPE materials, qualifying it as a superior candidate for PFAS analysis.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100158"},"PeriodicalIF":6.6,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144653752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-21DOI: 10.1016/j.hazl.2025.100157
Dinay Eloisa Durán-Sequeda , Aldo Ibarra-Rondón , Pedro Fragoso-Castilla
Pleurotus ostreatus has emerged as a promising model for heavy metal bioremediation. Given the known role of laccases in copper oxidation, it was hypothesized that higher laccase activity would correlate with increased copper removal. This study evaluated how the composition of the culture medium influences copper adsorption and its relationship with copper-induced laccase activity in this fungus. Fungal pellets were produced in two different media, and their morphological characteristics, laccase activity, and copper removal capacity were evaluated. The results show that, contrary to expectations, pellets with more complex morphology and higher laccase activity exhibited a maximum copper loading capacity approximately six-fold lower than those produced in media with lower laccase activity. Analysis of the pellets by SEM-EDX, FTIR, and confocal microscopy revealed some physicochemical differences. Pellets with higher copper loading capacity had higher fluorescence suggesting more cell wall polysaccharide content, but lower laccase activity. These results offer a possible link between copper removal and copper-induced laccase activity associated with compositional medium for fungal culture. This finding represents a novel approach to designing and optimizing fungal biotechnological solutions in heavy metal bioremediation.
{"title":"Micropellets of Pleurotus ostreatus for copper removal: Influence of nutritional conditions and laccase activity on adsorption","authors":"Dinay Eloisa Durán-Sequeda , Aldo Ibarra-Rondón , Pedro Fragoso-Castilla","doi":"10.1016/j.hazl.2025.100157","DOIUrl":"10.1016/j.hazl.2025.100157","url":null,"abstract":"<div><div><em>Pleurotus ostreatus</em> has emerged as a promising model for heavy metal bioremediation. Given the known role of laccases in copper oxidation, it was hypothesized that higher laccase activity would correlate with increased copper removal. This study evaluated how the composition of the culture medium influences copper adsorption and its relationship with copper-induced laccase activity in this fungus. Fungal pellets were produced in two different media, and their morphological characteristics, laccase activity, and copper removal capacity were evaluated. The results show that, contrary to expectations, pellets with more complex morphology and higher laccase activity exhibited a maximum copper loading capacity approximately six-fold lower than those produced in media with lower laccase activity. Analysis of the pellets by SEM-EDX, FTIR, and confocal microscopy revealed some physicochemical differences. Pellets with higher copper loading capacity had higher fluorescence suggesting more cell wall polysaccharide content, but lower laccase activity. These results offer a possible link between copper removal and copper-induced laccase activity associated with compositional medium for fungal culture. This finding represents a novel approach to designing and optimizing fungal biotechnological solutions in heavy metal bioremediation.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100157"},"PeriodicalIF":6.6,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144471371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-20DOI: 10.1016/j.hazl.2025.100156
Hallie Webb , Stephen Rosansky , Samer Mohamad Al-Dirani , Kavitha Dasu , Christopher G. Scheitlin , Jeff Davis , Leonardo Chiques
Per- and polyfluoroalkyl substances (PFAS) have become a top environmental concern for the military due to the prevalence of PFAS contamination from aqueous film-forming-foams (AFFFs) used to suppress fires in emergencies and training exercises. Supercritical water oxidation (SCWO) has emerged as a promising technology for the removal and destruction of PFAS in aqueous media. This project used the SCWO-based PFAS Annihilator® at Peterson Space Force Base to treat unconcentrated, 50 %, and 79 % concentrated PFAS-contaminated water onsite and demonstrate the efficacy of the technology. This study analyzed target PFAS, total organofluorine, and non-PFAS contaminants removed by the SCWO system. Here, 94.3 % of target PFAS in the unconcentrated influent, 99.2 % in the 50 % concentrated influent, and 99.7 % in the 79 % concentrated influent were destroyed, while removing > 95.5 % of total organofluorine, with limited byproducts in the aqueous and vapor effluent. The mass balance achieved 52–102 % fluoride recovery across the three concentrations. A novel cost assessment demonstrates improved economic efficiency with increasing influent concentration, suggesting that SCWO can efficiently remove and destroy PFAS from contaminated water to levels below regulatory requirements, solidifying itself as an innovative solution to PFAS contamination.
{"title":"PFAS destruction using supercritical water oxidation (SCWO) at Peterson Space Force Base","authors":"Hallie Webb , Stephen Rosansky , Samer Mohamad Al-Dirani , Kavitha Dasu , Christopher G. Scheitlin , Jeff Davis , Leonardo Chiques","doi":"10.1016/j.hazl.2025.100156","DOIUrl":"10.1016/j.hazl.2025.100156","url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFAS) have become a top environmental concern for the military due to the prevalence of PFAS contamination from aqueous film-forming-foams (AFFFs) used to suppress fires in emergencies and training exercises. Supercritical water oxidation (SCWO) has emerged as a promising technology for the removal and destruction of PFAS in aqueous media. This project used the SCWO-based PFAS Annihilator® at Peterson Space Force Base to treat unconcentrated, 50 %, and 79 % concentrated PFAS-contaminated water onsite and demonstrate the efficacy of the technology. This study analyzed target PFAS, total organofluorine, and non-PFAS contaminants removed by the SCWO system. Here, 94.3 % of target PFAS in the unconcentrated influent, 99.2 % in the 50 % concentrated influent, and 99.7 % in the 79 % concentrated influent were destroyed, while removing > 95.5 % of total organofluorine, with limited byproducts in the aqueous and vapor effluent. The mass balance achieved 52–102 % fluoride recovery across the three concentrations. A novel cost assessment demonstrates improved economic efficiency with increasing influent concentration, suggesting that SCWO can efficiently remove and destroy PFAS from contaminated water to levels below regulatory requirements, solidifying itself as an innovative solution to PFAS contamination.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100156"},"PeriodicalIF":6.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144549017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}