Pub Date : 2022-10-12DOI: 10.3389/fsens.2022.974895
Bo Tang, Sebastian Bendas, Victor Krajka, T. May, Anke Moritz, I. Constantinou, S. Reichl, A. Dietzel
Embedded porous membranes are a key element of various organ-on-chip systems. The widely used commercial polymer membranes impose limits with regard to chip integration and thinness. We report a microfluidic chip platform with the key element of a monolithically integrated, ultra-thin (700 nm) nanoporous membrane made of ultra-low-stress ( < 35 MPa) SixNy for culturing and testing reconstructed tissue. The membrane is designed to support various in vitro tissues including co-cultures and to allow passage of molecules but not of cells. A digital laser write method was used to produce nanopores with deterministic but highly flexible positioning within the membrane. A thin layer of photoresist was exposed by accumulation of femtosecond pulses for local two-photon polymerization, which allowed nanopores as small as 350 nm in diameter to be generated through the membranes in a subsequent plasma etch process. The fabricated membranes were used to separate a microfluidic chip into two compartments, which are connected to the outside by microchannel structures. With unique side inlets for fluids, all cells are exposed to identical flow velocities and shear stresses. With the hydrophilic nature of chip materials the self-loading seeding is controlled bottom-up by capillary forces, which makes the seeding procedure homogeneous and less dependent on the operator. The chip is designed to allow fabrication by wafer-level MEMS manufacturing technologies without critical assembly steps, thereby promoting reproducibility and scale-up of fabrication. In order to establish a fully functional test system to be used in a lab incubator, a holder for the bare chip was designed and 3D-printed with additional elements for gravity driven pumping. In order to mimic physiological conditions, the holder was designed to provide not only media delivery but also appropriate shear stress to the tissue. To prove usability, murine microvascular endothelial cells (muMEC) were seeded on the membrane within the chip. Cell compatibility was confirmed after 3 days of dynamic cultivation using fluorescence live/dead assays. Cultivation proved to be reproducible and led to confluent layers with cells preferentially grown on nanoporous areas. The system can in future be cost effectively manufactured in larger quantities in MEMS foundries and can be used for a wide variety of in vitro tissues and test scenarios including pumpless operation within cell incubator cabinets.
{"title":"Self-loading microfluidic platform with ultra-thin nanoporous membrane for organ-on-chip by wafer-level processing","authors":"Bo Tang, Sebastian Bendas, Victor Krajka, T. May, Anke Moritz, I. Constantinou, S. Reichl, A. Dietzel","doi":"10.3389/fsens.2022.974895","DOIUrl":"https://doi.org/10.3389/fsens.2022.974895","url":null,"abstract":"Embedded porous membranes are a key element of various organ-on-chip systems. The widely used commercial polymer membranes impose limits with regard to chip integration and thinness. We report a microfluidic chip platform with the key element of a monolithically integrated, ultra-thin (700 nm) nanoporous membrane made of ultra-low-stress ( < 35 MPa) SixNy for culturing and testing reconstructed tissue. The membrane is designed to support various in vitro tissues including co-cultures and to allow passage of molecules but not of cells. A digital laser write method was used to produce nanopores with deterministic but highly flexible positioning within the membrane. A thin layer of photoresist was exposed by accumulation of femtosecond pulses for local two-photon polymerization, which allowed nanopores as small as 350 nm in diameter to be generated through the membranes in a subsequent plasma etch process. The fabricated membranes were used to separate a microfluidic chip into two compartments, which are connected to the outside by microchannel structures. With unique side inlets for fluids, all cells are exposed to identical flow velocities and shear stresses. With the hydrophilic nature of chip materials the self-loading seeding is controlled bottom-up by capillary forces, which makes the seeding procedure homogeneous and less dependent on the operator. The chip is designed to allow fabrication by wafer-level MEMS manufacturing technologies without critical assembly steps, thereby promoting reproducibility and scale-up of fabrication. In order to establish a fully functional test system to be used in a lab incubator, a holder for the bare chip was designed and 3D-printed with additional elements for gravity driven pumping. In order to mimic physiological conditions, the holder was designed to provide not only media delivery but also appropriate shear stress to the tissue. To prove usability, murine microvascular endothelial cells (muMEC) were seeded on the membrane within the chip. Cell compatibility was confirmed after 3 days of dynamic cultivation using fluorescence live/dead assays. Cultivation proved to be reproducible and led to confluent layers with cells preferentially grown on nanoporous areas. The system can in future be cost effectively manufactured in larger quantities in MEMS foundries and can be used for a wide variety of in vitro tissues and test scenarios including pumpless operation within cell incubator cabinets.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49305654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.3389/fsens.2022.1010212
L. Florea, D. Diamond
In this perspective article, we consider the pathway biochemical sensing will take as the huge businesses underpinning Big Data and the Internet of Things seek new layers of highly valuable information to integrate into our increasingly digitised world. Up to now, the complexity of biochemical sensing has limited its inclusion in a manner similar to more reliable and lower cost technologies based on physical transducers. At its core, this complexity arises from the fundamental need for biochemical sensors to interact intimately at the molecular level with one or more specific components (analytes) in samples that are often highly complex and hostile to the sensors. This limits the functional lifetime of biochemical sensors to at best days or weeks or most commonly single use, making long-term embedded use-models developed for Internet of Things applications beyond reach. Nevertheless, even single use sensors can lead to “big data”, if used in large enough scale (e.g., COVID-19 diagnostics), and progress in continuous is beginning to make headway towards longer-term use models in health and environmental monitoring. New concepts exploiting advanced materials and biomimetic concepts offer opportunities to further extend the lifetime of biochemical sensing devices.
{"title":"Sensors and “The internet of biochemical things”","authors":"L. Florea, D. Diamond","doi":"10.3389/fsens.2022.1010212","DOIUrl":"https://doi.org/10.3389/fsens.2022.1010212","url":null,"abstract":"In this perspective article, we consider the pathway biochemical sensing will take as the huge businesses underpinning Big Data and the Internet of Things seek new layers of highly valuable information to integrate into our increasingly digitised world. Up to now, the complexity of biochemical sensing has limited its inclusion in a manner similar to more reliable and lower cost technologies based on physical transducers. At its core, this complexity arises from the fundamental need for biochemical sensors to interact intimately at the molecular level with one or more specific components (analytes) in samples that are often highly complex and hostile to the sensors. This limits the functional lifetime of biochemical sensors to at best days or weeks or most commonly single use, making long-term embedded use-models developed for Internet of Things applications beyond reach. Nevertheless, even single use sensors can lead to “big data”, if used in large enough scale (e.g., COVID-19 diagnostics), and progress in continuous is beginning to make headway towards longer-term use models in health and environmental monitoring. New concepts exploiting advanced materials and biomimetic concepts offer opportunities to further extend the lifetime of biochemical sensing devices.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43182025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-04DOI: 10.3389/fsens.2022.948466
Philip A. Kocheril, Kiersten D. Lenz, Daniel E. Jacobsen, Jessica Z. Kubicek-Sutherland
Early detection of pathogens using nucleic acids in clinical samples often requires sensitivity at the single-copy level, which currently necessitates time-consuming and expensive nucleic acid amplification. Here, we describe 1) a redesigned flow cell in the shape of a trapezoid-subtracted geometric stadium, and 2) modified experimental procedures that allow for the measurement of sub-attomolar analytes in microliter quantities on a fluorescence-based waveguide biosensor. We verified our instrumental sensitivity with a 200-μL sample of a fluorescent streptavidin conjugate at 100 zM (100 zeptomolar, or 100·10−21 mol L−1) and theoretically explored the applicability of this modified sensing platform in a sandwich immunoassay format using a Langmuir adsorption model. We present assays that demonstrate specific detection of synthetic influenza A DNA (in buffer) and RNA (in saliva) oligonucleotides at the single-copy level (200 μL at 10 zM) using a fluorescent molecular beacon. Lastly, we demonstrate detection of isolated genomic influenza A RNA at a clinically relevant concentration. This work constitutes a sensitivity improvement of over twelve orders of magnitude compared to our previous nucleic acid detection work, illustrating the significant enhancements that can be gained with optimized experimental design.
{"title":"Amplification-free nucleic acid detection with a fluorescence-based waveguide biosensor","authors":"Philip A. Kocheril, Kiersten D. Lenz, Daniel E. Jacobsen, Jessica Z. Kubicek-Sutherland","doi":"10.3389/fsens.2022.948466","DOIUrl":"https://doi.org/10.3389/fsens.2022.948466","url":null,"abstract":"Early detection of pathogens using nucleic acids in clinical samples often requires sensitivity at the single-copy level, which currently necessitates time-consuming and expensive nucleic acid amplification. Here, we describe 1) a redesigned flow cell in the shape of a trapezoid-subtracted geometric stadium, and 2) modified experimental procedures that allow for the measurement of sub-attomolar analytes in microliter quantities on a fluorescence-based waveguide biosensor. We verified our instrumental sensitivity with a 200-μL sample of a fluorescent streptavidin conjugate at 100 zM (100 zeptomolar, or 100·10−21 mol L−1) and theoretically explored the applicability of this modified sensing platform in a sandwich immunoassay format using a Langmuir adsorption model. We present assays that demonstrate specific detection of synthetic influenza A DNA (in buffer) and RNA (in saliva) oligonucleotides at the single-copy level (200 μL at 10 zM) using a fluorescent molecular beacon. Lastly, we demonstrate detection of isolated genomic influenza A RNA at a clinically relevant concentration. This work constitutes a sensitivity improvement of over twelve orders of magnitude compared to our previous nucleic acid detection work, illustrating the significant enhancements that can be gained with optimized experimental design.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49475772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-03DOI: 10.3389/fsens.2022.1016791
Yoon Choi, Su-Ryeon Park, Sei-Jung Lee, Chang-Hyung Choi
We present a double emulsion drop-based microfluidic approach to produce uniform polyacrylic acid functionalized polyethylene glycol (PAA-PEG) microgels. By utilizing double emulsion drops as templates, we produce monodisperse microgels by rapid photopolymerization of the inner prepolymer drop consisting of polyacrylic acid (PAA) and polyethylene glycol diacrylate (PEGDA), followed by dewetting the oil layer when they disperse into an aqueous media. The size control of the PAA-PEG microgels with a broad range is achieved by tuning the flow rate of each phase; the uniformity of the microgels is maintained even when the flow rate changes. The results show rapid R-phycoerythrin (R-PE) coupling with the microgels’ carboxylate with minimal non-specific adsorption, demonstrating highly efficient and reliable biomolecular conjugation within PAA-PEG microgels.
{"title":"Microfluidic production of polyacrylic acid functionalized PEG microgels for efficient biomolecular conjugation","authors":"Yoon Choi, Su-Ryeon Park, Sei-Jung Lee, Chang-Hyung Choi","doi":"10.3389/fsens.2022.1016791","DOIUrl":"https://doi.org/10.3389/fsens.2022.1016791","url":null,"abstract":"We present a double emulsion drop-based microfluidic approach to produce uniform polyacrylic acid functionalized polyethylene glycol (PAA-PEG) microgels. By utilizing double emulsion drops as templates, we produce monodisperse microgels by rapid photopolymerization of the inner prepolymer drop consisting of polyacrylic acid (PAA) and polyethylene glycol diacrylate (PEGDA), followed by dewetting the oil layer when they disperse into an aqueous media. The size control of the PAA-PEG microgels with a broad range is achieved by tuning the flow rate of each phase; the uniformity of the microgels is maintained even when the flow rate changes. The results show rapid R-phycoerythrin (R-PE) coupling with the microgels’ carboxylate with minimal non-specific adsorption, demonstrating highly efficient and reliable biomolecular conjugation within PAA-PEG microgels.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47142443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-23DOI: 10.3389/fsens.2022.998928
Elisa S. Ramil Brick, J. Holland, Dimitris E. Anagnostou, K. Brown, M. Desmulliez
Agroforestry can be defined as an agroecosystem whereby soil is used holistically and synergistically by various stakeholders including farmers, livestock, and plants. As such, agroforestry offers numerous benefits that include conservation of biodiversity, regulation of pests and diseases, increased quality of soil, air and water, efficient cycling of nutrients, and resilience to climate change. Review of published studies in agroforestry shows however that research in this area could benefit from increased real-time, spatial and temporal measurements. This situation is to be contrasted with that of precision agriculture in monocultures and precision livestock farming where progress made in sensor systems has attracted considerable research interest. It is advocated in this review article that wireless sensor networks could also significantly impact agroforestry through the monitoring of the local real-time interactions that occur between the various components constituting agroforestry systems. This review article proposes therefore the new field of data-driven agroforestry which lies at the intersection of precision agriculture, precision livestock farming, permaculture, and agroforestry. Data-driven agroforestry has the potential to not only help farmers harness the interactions between the different components of an agroforestry system to their advantage but also shine light on fundamental interactions between soil, plants, trees, and livestock while offering a sustainable agricultural method beneficial to all agroforestry stakeholders.
{"title":"A review of agroforestry, precision agriculture, and precision livestock farming—The case for a data-driven agroforestry strategy","authors":"Elisa S. Ramil Brick, J. Holland, Dimitris E. Anagnostou, K. Brown, M. Desmulliez","doi":"10.3389/fsens.2022.998928","DOIUrl":"https://doi.org/10.3389/fsens.2022.998928","url":null,"abstract":"Agroforestry can be defined as an agroecosystem whereby soil is used holistically and synergistically by various stakeholders including farmers, livestock, and plants. As such, agroforestry offers numerous benefits that include conservation of biodiversity, regulation of pests and diseases, increased quality of soil, air and water, efficient cycling of nutrients, and resilience to climate change. Review of published studies in agroforestry shows however that research in this area could benefit from increased real-time, spatial and temporal measurements. This situation is to be contrasted with that of precision agriculture in monocultures and precision livestock farming where progress made in sensor systems has attracted considerable research interest. It is advocated in this review article that wireless sensor networks could also significantly impact agroforestry through the monitoring of the local real-time interactions that occur between the various components constituting agroforestry systems. This review article proposes therefore the new field of data-driven agroforestry which lies at the intersection of precision agriculture, precision livestock farming, permaculture, and agroforestry. Data-driven agroforestry has the potential to not only help farmers harness the interactions between the different components of an agroforestry system to their advantage but also shine light on fundamental interactions between soil, plants, trees, and livestock while offering a sustainable agricultural method beneficial to all agroforestry stakeholders.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45219900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-22DOI: 10.3389/fsens.2022.977770
H. Gorji, J. V. Van Kessel, Bradd J. Haley, Kaylee Husarik, J. Sonnier, S. Shahabi, H. K. Zadeh, D. Chan, J. Qin, I. Baek, M. Kim, A. Akhbardeh, Mona Sohrabi, Brick Kerge, N. Mackinnon, F. Vasefi, K. Tavakolian
Precise, reliable, and speedy contamination detection and disinfection is an ongoing challenge for the food-service industry. Contamination in food-related services can cause foodborne illness, endangering customers and jeopardizing provider reputations. Fluorescence imaging has been shown to be capable of identifying organic residues and biofilms that can host pathogens. We use new fluorescence imaging technology, applying Xception and DeepLabv3+ deep learning algorithms to identify and segment contaminated areas in images of equipment and surfaces. Deep learning models demonstrated a 98.78% accuracy for differentiation between clean and contaminated frames on various surfaces and resulted in an intersection over union (IoU) score of 95.13% for the segmentation of contamination. The portable imaging system’s intrinsic disinfection capability was evaluated on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions in under 5 s. Results showed that fluorescence imaging with deep learning algorithms could help assure safety and cleanliness in the food-service industry.
{"title":"Deep learning and multiwavelength fluorescence imaging for cleanliness assessment and disinfection in Food Services","authors":"H. Gorji, J. V. Van Kessel, Bradd J. Haley, Kaylee Husarik, J. Sonnier, S. Shahabi, H. K. Zadeh, D. Chan, J. Qin, I. Baek, M. Kim, A. Akhbardeh, Mona Sohrabi, Brick Kerge, N. Mackinnon, F. Vasefi, K. Tavakolian","doi":"10.3389/fsens.2022.977770","DOIUrl":"https://doi.org/10.3389/fsens.2022.977770","url":null,"abstract":"Precise, reliable, and speedy contamination detection and disinfection is an ongoing challenge for the food-service industry. Contamination in food-related services can cause foodborne illness, endangering customers and jeopardizing provider reputations. Fluorescence imaging has been shown to be capable of identifying organic residues and biofilms that can host pathogens. We use new fluorescence imaging technology, applying Xception and DeepLabv3+ deep learning algorithms to identify and segment contaminated areas in images of equipment and surfaces. Deep learning models demonstrated a 98.78% accuracy for differentiation between clean and contaminated frames on various surfaces and resulted in an intersection over union (IoU) score of 95.13% for the segmentation of contamination. The portable imaging system’s intrinsic disinfection capability was evaluated on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions in under 5 s. Results showed that fluorescence imaging with deep learning algorithms could help assure safety and cleanliness in the food-service industry.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45868915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-16DOI: 10.3389/fsens.2022.1007355
Do Yeon Kim, Jiwoo Kim, Wookyoung Jang, K. W. Bong
Multiplex detection of protein biomarkers in biological fluids facilitates high-throughput detection using small-volume samples, thereby enhancing efficacy of diagnostic assays and proteomic studies. Graphically encoded hydrogel microparticles conjugated with capture antibodies have shown great potential in multiplex immunoassays by providing superior sensitivity and specificity, a broad dynamic range, and large encoding capacity. Recently, the process of post-synthesis conjugation of reduced capture antibodies to unreacted acrylate moieties in hydrogel particles has been developed to efficiently prevent the aggregation of capture antibodies inside particles, which occurs when using conventional conjugation methods. This direct conjugation process yielded robust assay performance through homogeneous conjugation of the capture antibodies, and avoided the use of hydrolytically unstable linker additives. However, no research has been conducted to optimize the process of conjugating capture antibodies to the particles. We here present a strategy to optimize capture antibody conjugation based on the finding that excessive addition of capture antibodies during incubation can rather lower the amount of capture antibodies conjugated to the particles for some types of capture antibodies. Based on our optimized capture antibody conjugation process, a singleplex immunoassay for a selected target was conducted. Enhanced sensitivity compared with previous studies was confirmed. We also validated the increased specificity of multiplex detection through our optimization process. We believe that the optimization process presented herein for capture antibody conjugation will advance the field of encoded hydrogel microparticle-based immunoassays.
{"title":"Optimizing reduced capture antibody conjugation to encoded hydrogel microparticles for enhanced multiplex immunoassays","authors":"Do Yeon Kim, Jiwoo Kim, Wookyoung Jang, K. W. Bong","doi":"10.3389/fsens.2022.1007355","DOIUrl":"https://doi.org/10.3389/fsens.2022.1007355","url":null,"abstract":"Multiplex detection of protein biomarkers in biological fluids facilitates high-throughput detection using small-volume samples, thereby enhancing efficacy of diagnostic assays and proteomic studies. Graphically encoded hydrogel microparticles conjugated with capture antibodies have shown great potential in multiplex immunoassays by providing superior sensitivity and specificity, a broad dynamic range, and large encoding capacity. Recently, the process of post-synthesis conjugation of reduced capture antibodies to unreacted acrylate moieties in hydrogel particles has been developed to efficiently prevent the aggregation of capture antibodies inside particles, which occurs when using conventional conjugation methods. This direct conjugation process yielded robust assay performance through homogeneous conjugation of the capture antibodies, and avoided the use of hydrolytically unstable linker additives. However, no research has been conducted to optimize the process of conjugating capture antibodies to the particles. We here present a strategy to optimize capture antibody conjugation based on the finding that excessive addition of capture antibodies during incubation can rather lower the amount of capture antibodies conjugated to the particles for some types of capture antibodies. Based on our optimized capture antibody conjugation process, a singleplex immunoassay for a selected target was conducted. Enhanced sensitivity compared with previous studies was confirmed. We also validated the increased specificity of multiplex detection through our optimization process. We believe that the optimization process presented herein for capture antibody conjugation will advance the field of encoded hydrogel microparticle-based immunoassays.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48146426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-26DOI: 10.3389/fsens.2022.958633
S. Martic, Meaghan Tabobondung, Stephanie Gao, T. Lewis
Microplastics (MPs) are a part of our daily lives and persist in the environment all across the globe. As a recently recognized emerging pollutant, there is a call to action to mitigate and monitor microplastics. Despite traditional remediation and characterization methodologies, MP-related challenges still exist. Electrochemical strategies for microplastic remediation have been reported in recent years, but very few reports exist on using electrochemical sensors for monitoring microplastics. Therefore, this minireview highlights the opportunities within the existing electrochemical remediation platforms towards sensor design and development, and elaborates on microplastic electrochemical sensors so far.
{"title":"Emerging electrochemical tools for microplastics remediation and sensing","authors":"S. Martic, Meaghan Tabobondung, Stephanie Gao, T. Lewis","doi":"10.3389/fsens.2022.958633","DOIUrl":"https://doi.org/10.3389/fsens.2022.958633","url":null,"abstract":"Microplastics (MPs) are a part of our daily lives and persist in the environment all across the globe. As a recently recognized emerging pollutant, there is a call to action to mitigate and monitor microplastics. Despite traditional remediation and characterization methodologies, MP-related challenges still exist. Electrochemical strategies for microplastic remediation have been reported in recent years, but very few reports exist on using electrochemical sensors for monitoring microplastics. Therefore, this minireview highlights the opportunities within the existing electrochemical remediation platforms towards sensor design and development, and elaborates on microplastic electrochemical sensors so far.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47800937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-25DOI: 10.3389/fsens.2022.907443
T. Tauchnitz, Y. Daskal, R. Dittrich, Michael Günthel, F. Mertens, Y. Joseph
Chemiresistive composites of gold (Au) nanoparticles interlinked with different types of organic molecules were prepared automatically by layer-by-layer self-assembly using a microfluidic cell. For the assembly process, dodecylamine-stabilized Au nanoparticles with an average size of 3.7 nm as well as alkyl dithiols, alkyl diamines, and alkyl bisdithiocarbamates with different alkyl chain length (C6 and C8) were used. X-ray photoelectron spectroscopy was applied on prepared nanoparticle composites to study the film composition and the degree of interlinkage. For the measurement of electrical and vapor-sensing properties, silicon dies equipped with gold interdigitated electrodes were used. All films show linear current-voltage characteristics and conductivities in the range of 10–2 and 10–4 Ω−1 cm−1 at room temperature. The sensitivity of the film is investigated by dosing them with vapors of toluene, 1-propanol, 4-methyl-2-pentanone, and water in the concentration range from 100 to 5,000 ppm at 0% relative humidity. All composite films respond with an increase in their electrical resistance to the analytes. The sensors show a high signal-to-noise ratio which indicates a detection limit below 100 ppm for all test vapors. The response dynamics demonstrate a high reversibility and a fast sensing mechanism especially for dithiols and diamines with response and recovery times from 2 to 10 s. The dithiol sensors exhibit a high selectivity to toluene and 4-methyl-2-pentanone whereas the bisdithiocarbamate composites are suitable for the detection of water and 1-propanol. All materials are stable for (at least) several months.
{"title":"Bisdithiocarbamate and Diamine Interlinked Gold Nanoparticle Networks: Characterization of Chemical Composition and Chemiresistive Properties","authors":"T. Tauchnitz, Y. Daskal, R. Dittrich, Michael Günthel, F. Mertens, Y. Joseph","doi":"10.3389/fsens.2022.907443","DOIUrl":"https://doi.org/10.3389/fsens.2022.907443","url":null,"abstract":"Chemiresistive composites of gold (Au) nanoparticles interlinked with different types of organic molecules were prepared automatically by layer-by-layer self-assembly using a microfluidic cell. For the assembly process, dodecylamine-stabilized Au nanoparticles with an average size of 3.7 nm as well as alkyl dithiols, alkyl diamines, and alkyl bisdithiocarbamates with different alkyl chain length (C6 and C8) were used. X-ray photoelectron spectroscopy was applied on prepared nanoparticle composites to study the film composition and the degree of interlinkage. For the measurement of electrical and vapor-sensing properties, silicon dies equipped with gold interdigitated electrodes were used. All films show linear current-voltage characteristics and conductivities in the range of 10–2 and 10–4 Ω−1 cm−1 at room temperature. The sensitivity of the film is investigated by dosing them with vapors of toluene, 1-propanol, 4-methyl-2-pentanone, and water in the concentration range from 100 to 5,000 ppm at 0% relative humidity. All composite films respond with an increase in their electrical resistance to the analytes. The sensors show a high signal-to-noise ratio which indicates a detection limit below 100 ppm for all test vapors. The response dynamics demonstrate a high reversibility and a fast sensing mechanism especially for dithiols and diamines with response and recovery times from 2 to 10 s. The dithiol sensors exhibit a high selectivity to toluene and 4-methyl-2-pentanone whereas the bisdithiocarbamate composites are suitable for the detection of water and 1-propanol. All materials are stable for (at least) several months.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42876957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-23DOI: 10.3389/fsens.2022.985963
M. Olivero, Aurora Bellone, Andon Bano, A. Vallan, G. Perrone
Single mode-Multimode-Single mode (SMS) sensors have been attracted a relevant attention because of their simple manufacturing, their capability of sensing different quantities, and their enhanced sensitivity compared to the most common fiber optic sensor represented by Fiber Bragg Gratings (FBGs). Moreover, SMS sensors exhibit blue-shift sensitivity to strain, opposite to FBGs, making them suitable in applications where strain-temperature cross-sensitivity may be an issue. SMS sensors are made by splicing a short multimode, preferably a two mode or quasi two-mode, optical fiber jumper between single mode pigtails. The interference of the modes propagating at different phase velocities produces a spectral pattern that shifts with temperature, strain or any perturbation of the phase difference among the modes. In this paper we review the main features of SMSs as temperature sensors and we present a potential biomedical application in an all-fiber flowmeter based on the hot-wire principle: a fiber-coupled laser source at 980 nm is used as a controllable heating source of the SMS sensor that, when immersed in fluid flow, converts the temperature variation, caused by the heat removal, into a wavelength shift of the transmitted spectrum. Thermal characterization and proof-of-concept experiments show the feasibility and functionality of the sensor and provide an outlook on possible developments and potential applications.
{"title":"Optical fiber flowmeter based on a single mode-multimode-single mode structure","authors":"M. Olivero, Aurora Bellone, Andon Bano, A. Vallan, G. Perrone","doi":"10.3389/fsens.2022.985963","DOIUrl":"https://doi.org/10.3389/fsens.2022.985963","url":null,"abstract":"Single mode-Multimode-Single mode (SMS) sensors have been attracted a relevant attention because of their simple manufacturing, their capability of sensing different quantities, and their enhanced sensitivity compared to the most common fiber optic sensor represented by Fiber Bragg Gratings (FBGs). Moreover, SMS sensors exhibit blue-shift sensitivity to strain, opposite to FBGs, making them suitable in applications where strain-temperature cross-sensitivity may be an issue. SMS sensors are made by splicing a short multimode, preferably a two mode or quasi two-mode, optical fiber jumper between single mode pigtails. The interference of the modes propagating at different phase velocities produces a spectral pattern that shifts with temperature, strain or any perturbation of the phase difference among the modes. In this paper we review the main features of SMSs as temperature sensors and we present a potential biomedical application in an all-fiber flowmeter based on the hot-wire principle: a fiber-coupled laser source at 980 nm is used as a controllable heating source of the SMS sensor that, when immersed in fluid flow, converts the temperature variation, caused by the heat removal, into a wavelength shift of the transmitted spectrum. Thermal characterization and proof-of-concept experiments show the feasibility and functionality of the sensor and provide an outlook on possible developments and potential applications.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45310688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}