首页 > 最新文献

Carbon Capture Science & Technology最新文献

英文 中文
Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective 通过资源回收和减排,实现食品加工废水的地球边界可持续性:工艺系统工程视角
Pub Date : 2024-10-30 DOI: 10.1016/j.ccst.2024.100319
Alex Durkin , Tom Vinestock , Miao Guo
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth’s natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.
要满足日益增长的人口需求,就必须改变加剧有限自然资源耗竭和环境污染排放的线性生产系统。这些线性生产系统导致地球的自然生物地球化学循环受到人为干扰,并突破了环境安全运行极限。从废弃物中回收资源是一个有助于缓解与资源紧张和有害排放相关的环境问题的解决方案。在本综述中,我们将讨论从食品和饮料加工废水(FPWW)中回收资源的问题,这为解决传统食品生产中的一些环境问题提供了一种协同解决方案。从食品饮料加工废水中回收资源的研究通常侧重于回收特定资源的技术,而没有考虑在满足最终出水水质要求的同时回收多种资源的综合工艺系统。工艺系统工程(PSE)提供了能够解决这一整体工艺设计问题的方法,包括对相互竞争的目标之间的权衡进行建模。FPWW 处理和资源回收的优化在减少食品生产系统对环境的影响方面具有重大意义。即使考虑到废水系统固有的重大不确定性,在遵守出水水质限值的同时回收碳、氮和磷资源的潜力也很大。这篇综述文章概述了我们所面临的环境挑战,在地球边界框架内进行了讨论,并强调了农业食品行业所造成的影响。本文还全面回顾了 FPWW 的特点以及从废水流中回收碳和养分资源的现有技术,尤其侧重于生物工艺。本综述还讨论了 PSE 研究和建模方面的进展。在讨论的基础上,我们以未来的研究方向作为文章的结尾。
{"title":"Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective","authors":"Alex Durkin ,&nbsp;Tom Vinestock ,&nbsp;Miao Guo","doi":"10.1016/j.ccst.2024.100319","DOIUrl":"10.1016/j.ccst.2024.100319","url":null,"abstract":"<div><div>Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth’s natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100319"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids 在从直接空气到工业源的碳捕集过程中利用过程热力学:离子液体的典型案例
Pub Date : 2024-10-30 DOI: 10.1016/j.ccst.2024.100320
Sergio Dorado-Alfaro , Daniel Hospital-Benito , Cristian Moya , Pablo Navarro , Jesús Lemus , José Palomar
<div><div>The development of efficient and cost-effective carbon capture (CC) technologies is becoming a crucial challenge for short-term industrial decarbonization strategies and energy transition goals centred on biomethane and biohydrogen production. Nowadays, available CC technologies present main shortcomings for being applied to the huge wide range of CO<sub>2</sub> partial pressure involved in currently-of-interest industrial CC scenarios (from 0.0004 bar in direct air capture to 13 bar in pre-combustion system: it means five orders of magnitude). Aprotic N-heterocyclic anion-based ionic liquids (AHA-ILs) arise as highly versatile CO<sub>2</sub> chemical absorbents able to deal with this challenge. In this work, the process thermodynamic limits of the CC based on AHA-IL is explored by estimating the thermodynamic CO<sub>2</sub> absorption cyclic capacity (<span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>) for four relevant CC industrial systems [inlet CO<sub>2</sub> partial pressure typical of direct air capture (DAC), post-combustion (post-comb), biogas upgrading (biogas) and pre-combustion (pre-comb)], by means of sensitivity analysis in the literature reported range of key material properties (reaction enthalpy, <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>H</mi><mi>R</mi></msub></mrow></math></span>: [−15, −100 kJ/mol]; reaction entropy, <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>S</mi><mi>R</mi></msub></mrow></math></span>: [−0.05, −0.16 kJ/mol⋅K]; Henry constant, <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span>: [20, 115 bar]) and process operating conditions (absorption temperature, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msup></math></span>: [20, 100 °C]; regeneration temperature, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msup></math></span>: [20, 100 °C]; regeneration pressure, <span><math><msubsup><mi>P</mi><mrow><mi>C</mi><mi>O</mi><mn>2</mn></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msubsup></math></span>: [0.01, 0.5 bar]). It is obtained that <span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span> can be significantly increased by designing AHA-ILs with more negative <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>H</mi><mi>R</mi></msub></mrow></math></span> and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>S</mi><mi>R</mi></msub></mrow></math></span> values, since reaction exothermicity enhances the absorption stage, whereas unfavourable reaction entropy promotes absorbent regeneration. Physical absorption contribution described by <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span> plays a minor role in post-comb and biogas CC systems and becomes highly relevant for pre-comb conditions; surprisingly, DAC process can be enhanced by dec
对于以生物甲烷和生物氢生产为核心的短期工业脱碳战略和能源转型目标而言,开发高效且具有成本效益的碳捕集(CC)技术正成为一项重要挑战。目前,现有的碳捕集(CC)技术在应用于目前感兴趣的工业碳捕集(CC)方案所涉及的巨大二氧化碳分压范围(从直接空气捕集的 0.0004 巴到预燃烧系统的 13 巴:这意味着五个数量级)方面存在主要缺陷。Aprotic N-heterocyclic 阴离子基离子液体(AHA-ILs)作为高度通用的二氧化碳化学吸收剂,能够应对这一挑战。在这项工作中,通过对文献报道的关键材料属性范围(反应焓,ΔHR.[-15, -100 kJ])进行敏感性分析,估算了四种相关 CC 工业系统[典型的直接空气捕集(DAC)、燃烧后(post-comb)、沼气升级(biogas)和燃烧前(pre-comb)的入口二氧化碳分压]的热力学二氧化碳吸收循环能力(zcyclic),从而探索了基于 AHA-IL 的 CC 的工艺热力学极限:[-15,-100 kJ/mol];反应熵,ΔSR:[-0.05,-0.16 kJ/mol-K];亨利常数,KH:[20,115 bar])和工艺操作条件(吸收温度,Tabs:[20,100 °C]; 再生温度,Treg:[20,100 °C]; 再生压力,PCO2reg:[0.01,0.5 bar])。结果表明,通过设计具有更多负值 ΔHR 和 ΔSR 的 AHA-IL 可以显著提高 zcyclic 值,因为反应放热会增强吸收阶段,而不利的反应熵则会促进吸收剂的再生。KH 所描述的物理吸收作用在后化学反应和沼气 CC 系统中作用较小,而在前化学反应条件下则变得非常重要;令人惊讶的是,DAC 过程可以通过降低材料的 KH 值来增强。至于工艺操作条件的影响,通过降低 Tabs 和 PCO2reg 以及增加 Treg 可以提高 CC 循环能力,但不同 CC 方案的影响明显不同:在预混合系统中,z 循环几乎不受影响,而在 DAC 中,工艺条件是获得正 z 循环值的决定因素。最后,对现有文献中的ΔHR、ΔSR 和 KH 的批判性分析表明,通过微调阳离子和阴离子结构来设计 AHA-IL 材料,非常适合于开发具有更佳 CC 工艺性能的创新技术,尤其适用于更具挑战性的 DAC 和稀释碳源捕获。
{"title":"Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids","authors":"Sergio Dorado-Alfaro ,&nbsp;Daniel Hospital-Benito ,&nbsp;Cristian Moya ,&nbsp;Pablo Navarro ,&nbsp;Jesús Lemus ,&nbsp;José Palomar","doi":"10.1016/j.ccst.2024.100320","DOIUrl":"10.1016/j.ccst.2024.100320","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The development of efficient and cost-effective carbon capture (CC) technologies is becoming a crucial challenge for short-term industrial decarbonization strategies and energy transition goals centred on biomethane and biohydrogen production. Nowadays, available CC technologies present main shortcomings for being applied to the huge wide range of CO&lt;sub&gt;2&lt;/sub&gt; partial pressure involved in currently-of-interest industrial CC scenarios (from 0.0004 bar in direct air capture to 13 bar in pre-combustion system: it means five orders of magnitude). Aprotic N-heterocyclic anion-based ionic liquids (AHA-ILs) arise as highly versatile CO&lt;sub&gt;2&lt;/sub&gt; chemical absorbents able to deal with this challenge. In this work, the process thermodynamic limits of the CC based on AHA-IL is explored by estimating the thermodynamic CO&lt;sub&gt;2&lt;/sub&gt; absorption cyclic capacity (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) for four relevant CC industrial systems [inlet CO&lt;sub&gt;2&lt;/sub&gt; partial pressure typical of direct air capture (DAC), post-combustion (post-comb), biogas upgrading (biogas) and pre-combustion (pre-comb)], by means of sensitivity analysis in the literature reported range of key material properties (reaction enthalpy, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;: [−15, −100 kJ/mol]; reaction entropy, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;: [−0.05, −0.16 kJ/mol⋅K]; Henry constant, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;: [20, 115 bar]) and process operating conditions (absorption temperature, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;: [20, 100 °C]; regeneration temperature, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;: [20, 100 °C]; regeneration pressure, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;: [0.01, 0.5 bar]). It is obtained that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; can be significantly increased by designing AHA-ILs with more negative &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; values, since reaction exothermicity enhances the absorption stage, whereas unfavourable reaction entropy promotes absorbent regeneration. Physical absorption contribution described by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; plays a minor role in post-comb and biogas CC systems and becomes highly relevant for pre-comb conditions; surprisingly, DAC process can be enhanced by dec","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100320"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in H2 purification and CO2 capture: Evolving from flat sheet to hollow fiber membranes H2 净化和 CO2 捕获的最新进展:从平板膜到中空纤维膜的演变
Pub Date : 2024-10-29 DOI: 10.1016/j.ccst.2024.100334
Jun Yi Teh , Wai Fen Yong
Hydrogen (H2) production and demand have steadily increased, leading to a rise in carbon dioxide (CO2) emissions since fossil fuels are the current raw material for H2 production. Thin film composite (TFC) hollow fiber membranes have become significant in H2 purification and CO2 capture, playing a critical role in developing next-generation fuels and supporting the United Nations Sustainable Development Goal 7 (SDG 7) – Affordable and Clean Energy, with the goal of providing universal access to clean, advanced, and renewable energy for all. However, the polymeric selective layer of TFC membranes faces a trade-off between permeability and selectivity, as well as challenges including CO2 plasticization and physical aging. Additionally, H2/CO2 separation remains particularly challenging because H2, being diffusivity-selective, permeates more quickly through the membrane due to its smaller molecular size and higher kinetic energy, while CO2, being solubility-selective, has a high affinity for dissolving in most polymeric membranes. Herein, this review provides an in-depth exploration of innovative modification strategies designed to overcome these challenges in glassy polymeric membranes and enhance H2 separation performance in the recent 10 years. Various nanofillers, such as metal-organic frameworks (MOFs) such as University of Oslo (UiO), Materials Institute Lavoisier (MILs), and Zeolitic Imidazolate Frameworks (ZIFs), have shown remarkable potential in boosting gas separation capabilities due to their superior compatibility with polymer matrices and tunable properties. The review also explores different types of hollow fiber membranes, including single layer, dual-layer, and TFC, alongside fabrication techniques like interfacial polymerization and dip-coating. Critically, the analysis highlights cutting-edge strategies to improve membrane performance, such as (i) thermal cross-linking, (ii) chemical cross-linking, (iii) ultraviolet (UV) cross-linking, (iv) polymer blends, and (v) modified fillers, along with their objectives and expected outcome. Furthermore, the review spotlights breakthroughs in H2/CO2, H2/CH4, and H2/N2 separation technologies, emphasizing the critical need for continued innovation to drive sustainable H2 production and meet the growing clean energy demand.
氢气(H2)的生产和需求稳步增长,导致二氧化碳(CO2)排放量增加,因为化石燃料是目前生产 H2 的原材料。薄膜复合(TFC)中空纤维膜在 H2 净化和二氧化碳捕获方面具有重要作用,在开发下一代燃料和支持联合国可持续发展目标 7(SDG 7)--负担得起的清洁能源方面发挥着至关重要的作用,该目标旨在为所有人普及清洁、先进和可再生能源。然而,TFC 膜的聚合物选择层面临着渗透性和选择性之间的权衡,以及二氧化碳塑化和物理老化等挑战。此外,H2/CO2 分离仍然特别具有挑战性,因为具有扩散选择性的 H2 因其分子尺寸较小和动能较高而更快地透过膜,而具有溶解选择性的 CO2 在大多数聚合物膜中具有较高的溶解亲和力。在此,本综述深入探讨了近 10 年来旨在克服玻璃聚合物膜中的这些挑战并提高 H2 分离性能的创新改性策略。各种纳米填料,如奥斯陆大学(UiO)、拉瓦锡材料研究所(MILs)和沸石咪唑框架(ZIFs)等金属有机框架(MOFs),因其与聚合物基质的卓越兼容性和可调特性,在提高气体分离能力方面已显示出显著的潜力。综述还探讨了不同类型的中空纤维膜,包括单层膜、双层膜和 TFC 膜,以及界面聚合和浸涂等制造技术。重要的是,分析强调了提高膜性能的前沿策略,如(i)热交联、(ii)化学交联、(iii)紫外线(UV)交联、(iv)聚合物混合物和(v)改性填料,以及它们的目标和预期结果。此外,综述还重点介绍了在 H2/CO2、H2/CH4 和 H2/N2 分离技术方面取得的突破,强调了持续创新以推动可持续 H2 生产和满足日益增长的清洁能源需求的迫切需要。
{"title":"Recent advances in H2 purification and CO2 capture: Evolving from flat sheet to hollow fiber membranes","authors":"Jun Yi Teh ,&nbsp;Wai Fen Yong","doi":"10.1016/j.ccst.2024.100334","DOIUrl":"10.1016/j.ccst.2024.100334","url":null,"abstract":"<div><div>Hydrogen (H<sub>2</sub>) production and demand have steadily increased, leading to a rise in carbon dioxide (CO<sub>2</sub>) emissions since fossil fuels are the current raw material for H<sub>2</sub> production. Thin film composite (TFC) hollow fiber membranes have become significant in H<sub>2</sub> purification and CO<sub>2</sub> capture, playing a critical role in developing next-generation fuels and supporting the United Nations Sustainable Development Goal 7 (SDG 7) – Affordable and Clean Energy, with the goal of providing universal access to clean, advanced, and renewable energy for all. However, the polymeric selective layer of TFC membranes faces a trade-off between permeability and selectivity, as well as challenges including CO<sub>2</sub> plasticization and physical aging. Additionally, H<sub>2</sub>/CO<sub>2</sub> separation remains particularly challenging because H<sub>2</sub>, being diffusivity-selective, permeates more quickly through the membrane due to its smaller molecular size and higher kinetic energy, while CO<sub>2</sub>, being solubility-selective, has a high affinity for dissolving in most polymeric membranes. Herein, this review provides an in-depth exploration of innovative modification strategies designed to overcome these challenges in glassy polymeric membranes and enhance H<sub>2</sub> separation performance in the recent 10 years. Various nanofillers, such as metal-organic frameworks (MOFs) such as University of Oslo (UiO), Materials Institute Lavoisier (MILs), and Zeolitic Imidazolate Frameworks (ZIFs), have shown remarkable potential in boosting gas separation capabilities due to their superior compatibility with polymer matrices and tunable properties. The review also explores different types of hollow fiber membranes, including single layer, dual-layer, and TFC, alongside fabrication techniques like interfacial polymerization and dip-coating. Critically, the analysis highlights cutting-edge strategies to improve membrane performance, such as (i) thermal cross-linking, (ii) chemical cross-linking, (iii) ultraviolet (UV) cross-linking, (iv) polymer blends, and (v) modified fillers, along with their objectives and expected outcome. Furthermore, the review spotlights breakthroughs in H<sub>2</sub>/CO<sub>2</sub>, H<sub>2</sub>/CH<sub>4</sub>, and H<sub>2</sub>/N<sub>2</sub> separation technologies, emphasizing the critical need for continued innovation to drive sustainable H<sub>2</sub> production and meet the growing clean energy demand.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100334"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal reduction of CO2 captured by aqueous amine solutions into formate: Comparison between in situ generated H2 and gaseous H2 as reductant and evaluation of amine stability 胺水溶液将捕获的 CO2 水热还原为甲酸盐:比较原位生成的 H2 与作为还原剂的气态 H2,评估胺的稳定性
Pub Date : 2024-10-28 DOI: 10.1016/j.ccst.2024.100333
Laura Quintana-Gómez , Luana Cristina Dos Santos , Fernando Cossio-Cid , Víctor Ciordia-Asenjo , Miguel Almarza , Alberto Goikoechea , Sergio Ferrero , Celedonio M․ Álvarez , José J․ Segovia , Ángel Martín , M․Dolores Bermejo
By CO2 Capture and Utilization technologies (CCU), organic compounds can be produced industrially in a sustainable manner, generating an economic benefit that offsets the cost of CO2 capture. In this context, the use of CO2 chemisorbed by amines to generate chemicals is an attractive alternative, given that large-scale facilities using absorption to capture CO2 are already operational. The aim of this work is to convert CO2 captured in aqueous amines, specifically 3-amino-1-propanol (AP) and 2-amino-2-methyl-1-propanol (AMP), to produce formate, using either Zn, Al or gaseous H2 as reductants and Pd/C as catalyst. The highest yield of formate (68 %) was achieved with AP (125 °C, 75 bar, 120 min) using gaseous hydrogen as reductant. Using metals as reductants, reaction yields were lower, with a 12 % yield at 200 °C as the best result. After reduction, NMR analyses show that the amines did not suffer degradation, raising the possibility of reusing them for CO2 capture in a continuous process. These results indicate that CO2-loaded amines reduction is a promising CCU technology that can be integrated with the current technologies for gas treatment.
通过二氧化碳捕获和利用技术(CCU),可以以可持续的方式在工业上生产有机化合物,产生的经济效益可以抵消二氧化碳捕获的成本。在这种情况下,利用胺对二氧化碳进行化学吸附来生产化学品是一种有吸引力的替代方法,因为利用吸收技术捕获二氧化碳的大型设施已经投入使用。这项工作的目的是利用 Zn、Al 或气态 H2 作为还原剂,Pd/C 作为催化剂,将捕集到水胺(特别是 3-氨基-1-丙醇 (AP) 和 2-氨基-2-甲基-1-丙醇 (AMP))中的二氧化碳转化为甲酸盐。使用气态氢作为还原剂,在 AP(125 °C,75 巴,120 分钟)条件下甲酸盐的产量最高(68%)。使用金属作为还原剂时,反应产率较低,200 ℃ 时的最佳产率为 12%。还原后的核磁共振分析表明,胺类物质没有发生降解,因此有可能在连续工艺中将其重新用于二氧化碳捕获。这些结果表明,二氧化碳负载胺还原是一种很有前景的 CCU 技术,可以与当前的气体处理技术相结合。
{"title":"Hydrothermal reduction of CO2 captured by aqueous amine solutions into formate: Comparison between in situ generated H2 and gaseous H2 as reductant and evaluation of amine stability","authors":"Laura Quintana-Gómez ,&nbsp;Luana Cristina Dos Santos ,&nbsp;Fernando Cossio-Cid ,&nbsp;Víctor Ciordia-Asenjo ,&nbsp;Miguel Almarza ,&nbsp;Alberto Goikoechea ,&nbsp;Sergio Ferrero ,&nbsp;Celedonio M․ Álvarez ,&nbsp;José J․ Segovia ,&nbsp;Ángel Martín ,&nbsp;M․Dolores Bermejo","doi":"10.1016/j.ccst.2024.100333","DOIUrl":"10.1016/j.ccst.2024.100333","url":null,"abstract":"<div><div>By CO<sub>2</sub> Capture and Utilization technologies (CCU), organic compounds can be produced industrially in a sustainable manner, generating an economic benefit that offsets the cost of CO<sub>2</sub> capture. In this context, the use of CO<sub>2</sub> chemisorbed by amines to generate chemicals is an attractive alternative, given that large-scale facilities using absorption to capture CO<sub>2</sub> are already operational. The aim of this work is to convert CO<sub>2</sub> captured in aqueous amines, specifically 3-amino-1-propanol (AP) and 2-amino-2-methyl-1-propanol (AMP), to produce formate, using either Zn, Al or gaseous H<sub>2</sub> as reductants and Pd/C as catalyst. The highest yield of formate (68 %) was achieved with AP (125 °C, 75 bar, 120 min) using gaseous hydrogen as reductant. Using metals as reductants, reaction yields were lower, with a 12 % yield at 200 °C as the best result. After reduction, NMR analyses show that the amines did not suffer degradation, raising the possibility of reusing them for CO<sub>2</sub> capture in a continuous process. These results indicate that CO<sub>2</sub>-loaded amines reduction is a promising CCU technology that can be integrated with the current technologies for gas treatment.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100333"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 reduction by chars obtained by pyrolysis of real wastes: Low temperature adsorption and high temperature CO2 capture 通过热解实际废弃物获得的炭还原二氧化碳:低温吸附和高温捕获二氧化碳
Pub Date : 2024-10-28 DOI: 10.1016/j.ccst.2024.100332
N. Miskolczi , N. Gao , C. Quan , A.T. Laszlo
In this work, the carbon dioxide capture of waste derived chars was investigated. The char samples were obtained by pyrolysis of municipal plastic waste, biomass and sewage sludge from agriculture at 400, 600 and 900 °C in nitrogen atmosphere. For further experiments, chars with a grain size between 0.315 mm and 1.50 mm were investigated. The CO2 uptake capacity of samples was tested at 40 °C through a 10 adsorption-desorption cycles using a mixture of 70 % nitrogen and 30 % carbon dioxide. The CO2 uptake capacity of the reference activated carbon was 3.71–3.90 mmol CO2/g, while that of the waste derived char samples varied between 0.76–2.33 mmol CO2/g depending on the pyrolysis temperature and the raw materials. Chars with large specific surface area obtained at 900 °C had the highest CO2 uptake capacity. Char obtained from municipal plastic waste at a pyrolysis temperature of 900 °C has the largest specific surface area. The biomass and sewage sludge derived chars contained alkali metals and earth metals in oxide form, therefore the possibility of their application for carbonization-calcination cycles was also investigated. In case of the high-temperature tests, the CO2 uptake took place at 750 °C, while the release at 900 °C. During the 10 cycles test, significant decrease in capacity up to the 5th cycle was found. The capacity of char obtained from agricultural sewage sludge was 18.68 mmol CO2/g in the first cycle, which decreased drastically to 2.88–2.96 mmol CO2/g after the 5th cycle.
在这项工作中,我们研究了废物衍生炭的二氧化碳捕获。焦炭样品是通过在氮气环境中以 400、600 和 900 °C 高温分解城市塑料垃圾、生物质和农业污水污泥获得的。在进一步的实验中,研究了粒度在 0.315 毫米和 1.50 毫米之间的木炭。样品的二氧化碳吸收能力是在 40 °C 条件下,使用 70% 氮气和 30% 二氧化碳的混合物,通过 10 次吸附-解吸循环进行测试的。参考活性炭的二氧化碳吸收能力为 3.71-3.90 mmol CO2/g,而废物衍生炭样品的二氧化碳吸收能力则在 0.76-2.33 mmol CO2/g 之间变化,具体取决于热解温度和原料。在 900 °C 下获得的比表面积较大的炭具有最高的二氧化碳吸收能力。在 900 °C 高温分解温度下从城市塑料垃圾中获得的炭具有最大的比表面积。生物质和污水污泥制得的炭含有氧化物形式的碱金属和土金属,因此还研究了将其用于碳化-煅烧循环的可能性。在高温测试中,二氧化碳的吸收发生在 750 °C 时,而释放发生在 900 °C 时。在 10 次循环测试中,发现容量在第 5 次循环之前明显下降。从农业污水污泥中获得的炭的容量在第一个循环中为 18.68 mmol CO2/g,在第 5 个循环后急剧下降至 2.88-2.96 mmol CO2/g。
{"title":"CO2 reduction by chars obtained by pyrolysis of real wastes: Low temperature adsorption and high temperature CO2 capture","authors":"N. Miskolczi ,&nbsp;N. Gao ,&nbsp;C. Quan ,&nbsp;A.T. Laszlo","doi":"10.1016/j.ccst.2024.100332","DOIUrl":"10.1016/j.ccst.2024.100332","url":null,"abstract":"<div><div>In this work, the carbon dioxide capture of waste derived chars was investigated. The char samples were obtained by pyrolysis of municipal plastic waste, biomass and sewage sludge from agriculture at 400, 600 and 900 °C in nitrogen atmosphere. For further experiments, chars with a grain size between 0.315 mm and 1.50 mm were investigated. The CO<sub>2</sub> uptake capacity of samples was tested at 40 °C through a 10 adsorption-desorption cycles using a mixture of 70 % nitrogen and 30 % carbon dioxide. The CO<sub>2</sub> uptake capacity of the reference activated carbon was 3.71–3.90 mmol CO<sub>2</sub>/g, while that of the waste derived char samples varied between 0.76–2.33 mmol CO<sub>2</sub>/g depending on the pyrolysis temperature and the raw materials. Chars with large specific surface area obtained at 900 °C had the highest CO<sub>2</sub> uptake capacity. Char obtained from municipal plastic waste at a pyrolysis temperature of 900 °C has the largest specific surface area. The biomass and sewage sludge derived chars contained alkali metals and earth metals in oxide form, therefore the possibility of their application for carbonization-calcination cycles was also investigated. In case of the high-temperature tests, the CO<sub>2</sub> uptake took place at 750 °C, while the release at 900 °C. During the 10 cycles test, significant decrease in capacity up to the 5th cycle was found. The capacity of char obtained from agricultural sewage sludge was 18.68 mmol CO<sub>2</sub>/g in the first cycle, which decreased drastically to 2.88–2.96 mmol CO<sub>2</sub>/g after the 5th cycle.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100332"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and optimization of 3D porous polymers for efficient CO2 capture and H2 storage 合成和优化三维多孔聚合物,实现高效二氧化碳捕获和 H2 封存
Pub Date : 2024-10-24 DOI: 10.1016/j.ccst.2024.100330
Rawan A. Al-Qahtani , Mahmoud M. Abdelnaby , Ismail Abdulazeez , Othman Charles S. Al-Hamouz
In this study, a new porous organic polymer (KFUPM-CO2) with intrinsic nitrogen atoms as active sites for CO2 capture was optimized and synthesized via Friedel-Crafts alkylation of triptycene and 2,2-bipyridine. The porous polymer shows a high surface area of 1100 m2/g with a tuned microporosity of less than 1.2 nm, confirmed by NLDFT. KFUPM-CO2 showed a remarkable CO2 sorption capacity of 5.6 mmol/g at 273 K, 3.2 mmol/g at 298 K, and a pressure of 760 mmHg KFUPM-CO2 showed a high enthalpy of adsorption of 43.7 kJ/mol for CO2 with IAST selectivity of CO2/N2 of 127 at 273 K and 97 at 298 K on simulated flue gas composition. Additionally, KFUPM-CO2 exhibited an H2 storage capacity of 1.5 wt. % at 77 K and 860 mmHg Grand Canonical Monte Carlo (GCMC) simulations further revealed that KFUPM-CO2 was mainly stabilized by π-π intra-molecular interactions, and exhibited strong van der Waals attractions to CO2 molecules via the pyridyl nitrogen atoms, resulting in the rapid uptake. The combined advantages of binding 2,2-bipyridine with triptycene provided a robust porous polymer with abundant nitrogen sites, permanent porosity, and thermal stability, rendering KFUPM-CO2 an excellent candidate for CO2 capture and H2 storage technologies.
本研究通过三庚烯和 2,2-联吡啶的 Friedel-Crafts 烷基化反应,优化合成了一种新型多孔有机聚合物(KFUPM-CO2),其固有氮原子是捕获二氧化碳的活性位点。经 NLDFT 证实,这种多孔聚合物具有 1100 m2/g 的高表面积和小于 1.2 nm 的调谐微孔。KFUPM-CO2 在 273 K 和 298 K 条件下的二氧化碳吸附容量分别为 5.6 mmol/g和 3.2 mmol/g,在 760 mmHg 的压力下,KFUPM-CO2 对二氧化碳的吸附焓分别为 43.7 kJ/mol,在模拟烟道气成分中,273 K 和 298 K 条件下的 IAST CO2/N2 选择性分别为 127 和 97。此外,KFUPM-CO2 在 77 K 和 860 mmHg 条件下的 H2 储量为 1.5 wt. %,大规范蒙特卡洛(GCMC)模拟进一步表明,KFUPM-CO2 主要通过 π-π 分子内相互作用而稳定,并通过吡啶基氮原子对 CO2 分子表现出强烈的范德华吸引力,从而实现了快速吸收。将 2,2-联吡啶与三庚烯结合在一起的综合优势提供了一种具有丰富氮位点、永久孔隙度和热稳定性的坚固多孔聚合物,使 KFUPM-CO2 成为二氧化碳捕获和 H2 储存技术的绝佳候选材料。
{"title":"Synthesis and optimization of 3D porous polymers for efficient CO2 capture and H2 storage","authors":"Rawan A. Al-Qahtani ,&nbsp;Mahmoud M. Abdelnaby ,&nbsp;Ismail Abdulazeez ,&nbsp;Othman Charles S. Al-Hamouz","doi":"10.1016/j.ccst.2024.100330","DOIUrl":"10.1016/j.ccst.2024.100330","url":null,"abstract":"<div><div>In this study, a new porous organic polymer (KFUPM-CO<sub>2</sub>) with intrinsic nitrogen atoms as active sites for CO<sub>2</sub> capture was optimized and synthesized via Friedel-Crafts alkylation of triptycene and 2,2-bipyridine. The porous polymer shows a high surface area of 1100 m<sup>2</sup>/g with a tuned microporosity of less than 1.2 nm, confirmed by NLDFT. KFUPM-CO<sub>2</sub> showed a remarkable CO<sub>2</sub> sorption capacity of 5.6 mmol/g at 273 K, 3.2 mmol/g at 298 K, and a pressure of 760 mmHg KFUPM-CO<sub>2</sub> showed a high enthalpy of adsorption of 43.7 kJ/mol for CO<sub>2</sub> with IAST selectivity of CO<sub>2</sub>/N<sub>2</sub> of 127 at 273 K and 97 at 298 K on simulated flue gas composition. Additionally, KFUPM-CO<sub>2</sub> exhibited an H<sub>2</sub> storage capacity of 1.5 wt. % at 77 K and 860 mmHg Grand Canonical Monte Carlo (GCMC) simulations further revealed that KFUPM-CO<sub>2</sub> was mainly stabilized by π-π intra-molecular interactions, and exhibited strong van der Waals attractions to CO<sub>2</sub> molecules via the pyridyl nitrogen atoms, resulting in the rapid uptake. The combined advantages of binding 2,2-bipyridine with triptycene provided a robust porous polymer with abundant nitrogen sites, permanent porosity, and thermal stability, rendering KFUPM-CO<sub>2</sub> an excellent candidate for CO<sub>2</sub> capture and H<sub>2</sub> storage technologies.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100330"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking heat-driven adsorption carbon pumps (HACP): A thermodynamic perspective 热驱动吸附碳泵(HACP)的基准:热力学视角
Pub Date : 2024-10-24 DOI: 10.1016/j.ccst.2024.100331
Shuangjun Li , Lijin Chen , Shuai Deng , Xiangkun Elvis Cao , Xiaolin Wang , Ki Bong Lee
Benchmarking is pivotal in standardizing industrial devices, leading to notable performance enhancements in fields such as heating pump air conditioning, photovoltaic devices, and more. The significance of treating the CO2 capture system in small/medium size was emphasized in this work as a standalone device from a thermodynamic perspective, which facilitates the creation of a comprehensive benchmarking methodology. In this study, we studied the heat-driven adsorption carbon pump (HACP) as a typical case for benchmarking. The benchmarking methodology proposed is structured through a five-step process: defining boundaries, determining indicators, establishing calculation processes, collecting and analyzing data, and ultimately evaluating and optimizing performance. By utilizing thermodynamic principles, the energy efficiency of HACP devices was assessed. Through the combination of standardized tests and theoretical calculations, this work enables a quantitative evaluation of energy consumption and the thermodynamic perfection of specific HACP devices.
基准测试对于工业设备的标准化至关重要,可显著提高暖泵空调、光伏设备等领域的性能。本研究从热力学角度强调了将中小型二氧化碳捕集系统作为独立设备处理的重要性,这有助于建立全面的基准测试方法。在这项研究中,我们将热驱动吸附碳泵(HACP)作为一个典型的基准案例进行研究。我们提出的基准测试方法分为五个步骤:定义边界、确定指标、建立计算流程、收集和分析数据,以及最终评估和优化性能。利用热力学原理,对 HACP 设备的能效进行了评估。通过将标准化测试和理论计算相结合,这项工作能够对特定 HACP 设备的能耗和热力学完美性进行量化评估。
{"title":"Benchmarking heat-driven adsorption carbon pumps (HACP): A thermodynamic perspective","authors":"Shuangjun Li ,&nbsp;Lijin Chen ,&nbsp;Shuai Deng ,&nbsp;Xiangkun Elvis Cao ,&nbsp;Xiaolin Wang ,&nbsp;Ki Bong Lee","doi":"10.1016/j.ccst.2024.100331","DOIUrl":"10.1016/j.ccst.2024.100331","url":null,"abstract":"<div><div>Benchmarking is pivotal in standardizing industrial devices, leading to notable performance enhancements in fields such as heating pump air conditioning, photovoltaic devices, and more. The significance of treating the CO<sub>2</sub> capture system in small/medium size was emphasized in this work as a standalone device from a thermodynamic perspective, which facilitates the creation of a comprehensive benchmarking methodology. In this study, we studied the heat-driven adsorption carbon pump (HACP) as a typical case for benchmarking. The benchmarking methodology proposed is structured through a five-step process: defining boundaries, determining indicators, establishing calculation processes, collecting and analyzing data, and ultimately evaluating and optimizing performance. By utilizing thermodynamic principles, the energy efficiency of HACP devices was assessed. Through the combination of standardized tests and theoretical calculations, this work enables a quantitative evaluation of energy consumption and the thermodynamic perfection of specific HACP devices.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100331"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-scale study of CO2 desublimation in a contact liquid 接触液体中二氧化碳脱华的孔隙尺度研究
Pub Date : 2024-10-23 DOI: 10.1016/j.ccst.2024.100329
Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo
<div><div>Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> from industrial flue gases, helping mitigate climate change. Understanding <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> transport between the gas and liquid, homogeneous and heterogeneous desublimation of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span>, and solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> generation). The <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature (<span><math><msub><mi>T</mi><mi>l</mi></msub></math></span>) and flue gas temperature (<span><math><msub><mi>T</mi><mn>0</mn></msub></math></span>) are found to accelerate the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhance the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture velocity (<span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>). However, excessively low <span><math><msub><mi>T</mi><mi>l</mi></msub></math></span> and <span><math><msub><mi>T</mi><mn>0</mn></msub></math></span> values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>, due to the limited <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. The CCC system performs effectively when purifying flue gases with high <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> content (<span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span>). This is because the large <span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span> accelerates the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhances the overall <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture efficiency. A high gas injection velocity (or <span><math><mtext>Pe</mtext></math></span>) is beneficial for amplifying <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span> by increasing the gas–liquid interfaces and enhancing the <span><math><msub><mtext>CO
在接触液中运行的低温碳捕集(CCC)是一种从工业烟气中捕集二氧化碳的创新技术,有助于减缓气候变化。了解接触液中的二氧化碳脱华特性对于优化 CCC 至关重要,但由于涉及复杂的物理过程,因此具有挑战性。在这项工作中,开发了一个多物理场格子玻尔兹曼(LB)模型,用于研究接触液中二氧化碳在各种操作条件下的脱附情况,其中包含多种完全耦合的物理场(即两相流、三相传热、气体和液体之间的二氧化碳传输、二氧化碳的均相和异相脱附及固体二氧化碳生成)。接触液体中的二氧化碳升华过程得到了很好的再现。此外,还进行了参数研究和定量分析,以确定 CCC 的最佳条件。研究发现,降低液体温度(Tl)和烟道气温度(T0)可加快二氧化碳脱华速度,提高二氧化碳捕获速度(vc)。但应避免 Tl 和 T0 值过低。由于二氧化碳供应量有限,这些条件会增加冷却能耗,但只能略微提高 vc。在净化二氧化碳含量(Y0)较高的烟气时,CCC 系统能有效发挥作用。这是因为较大的 Y0 会加快 CO2 的脱附速度,提高整体 CO2 捕获效率。较高的气体注入速度(或 Pe)有利于通过增加气液界面和提高二氧化碳供应量来放大 vc。然而,应避免过高的 Pe 值,因为它会阻碍二氧化碳向液态或固态二氧化碳表面的传输,最终限制了可用于解升华的二氧化碳量,并抑制 vc 值的提高。本研究开发了一种可行的 LB 方法,用于研究不同条件下接触液体中的二氧化碳脱华情况,从而推动了 CCC 知识库的发展,并促进了其工业应用。
{"title":"Pore-scale study of CO2 desublimation in a contact liquid","authors":"Timan Lei ,&nbsp;Geng Wang ,&nbsp;Junyu Yang ,&nbsp;Jin Chen ,&nbsp;Kai H. Luo","doi":"10.1016/j.ccst.2024.100329","DOIUrl":"10.1016/j.ccst.2024.100329","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; from industrial flue gases, helping mitigate climate change. Understanding &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; transport between the gas and liquid, homogeneous and heterogeneous desublimation of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, and solid &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; generation). The &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) and flue gas temperature (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) are found to accelerate the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; desublimation rate and enhance the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; capture velocity (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;). However, excessively low &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, due to the limited &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; supply. The CCC system performs effectively when purifying flue gases with high &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; content (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;). This is because the large &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; accelerates the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; desublimation rate and enhances the overall &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO&lt;/mtext&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; capture efficiency. A high gas injection velocity (or &lt;span&gt;&lt;math&gt;&lt;mtext&gt;Pe&lt;/mtext&gt;&lt;/math&gt;&lt;/span&gt;) is beneficial for amplifying &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; by increasing the gas–liquid interfaces and enhancing the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mtext&gt;CO","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100329"},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing the deployment and information management of direct air capture: A solution enabled by integrating consortium blockchain system 推进直接空气捕获的部署和信息管理:整合联盟区块链系统的解决方案
Pub Date : 2024-10-19 DOI: 10.1016/j.ccst.2024.100300
Zihan Chen , Yiyu Liu , Eryu Wang , Huajie You , Qi Gao , Fan David Yeung , Jia Li
Direct air capture (DAC) is a critical and emerging Negative Emissions Technology (NET) that directly removes CO2 from the atmosphere, significantly contributing to climate change. However, the deployment and management of large-scale DAC faces challenges such as collections and analysis of energy consumption data, intricate device and system management, emission prediction and operation strategy, precise carbon footprint tracking, etc. This paper proposes the integration of blockchain technology with DAC systems to address these challenges, utilizing blockchain's inherent properties of immutability, security, and transparency. The implementation strategy includes the development of a DAC consortium blockchain system, leveraging a consensus mechanism,1 ECDSA encryption,2 IoT3 integration, and digital signatures. Preliminary modeling of the proposed system suggests potential improvements in operational efficiency and a reduction in data inaccuracies. The proposed system underscores the system's ability to streamline identity verification, improve data collection accuracy, and facilitate secure, confidential information sharing among DAC stakeholders. By enhancing the efficiency and reliability of DAC operations, this approach supports the scalable and effective deployment of NETs in the global effort to combat climate change. Future research will focus on empirical validation through pilot projects and simulations to further substantiate these claims.
直接空气捕集(DAC)是一种重要的新兴负排放技术(NET),可直接清除大气中的二氧化碳,极大地促进气候变化。然而,大规模 DAC 的部署和管理面临着各种挑战,如能耗数据的收集和分析、错综复杂的设备和系统管理、排放预测和运行策略、精确的碳足迹跟踪等。本文利用区块链固有的不可篡改性、安全性和透明性等特性,提出将区块链技术与 DAC 系统集成,以应对这些挑战。实施策略包括开发一个 DAC 联盟区块链系统,利用共识机制1 、ECDSA 加密2 、物联网3 集成和数字签名。对拟议系统的初步建模表明,该系统有可能提高运行效率并减少数据不准确性。拟议系统强调了该系统简化身份验证、提高数据收集准确性以及促进 DAC 利益相关者之间安全、保密信息共享的能力。通过提高 DAC 运行的效率和可靠性,该方法支持在全球应对气候变化的努力中可扩展和有效地部署 NET。未来的研究将侧重于通过试点项目和模拟进行经验验证,以进一步证实这些主张。
{"title":"Advancing the deployment and information management of direct air capture: A solution enabled by integrating consortium blockchain system","authors":"Zihan Chen ,&nbsp;Yiyu Liu ,&nbsp;Eryu Wang ,&nbsp;Huajie You ,&nbsp;Qi Gao ,&nbsp;Fan David Yeung ,&nbsp;Jia Li","doi":"10.1016/j.ccst.2024.100300","DOIUrl":"10.1016/j.ccst.2024.100300","url":null,"abstract":"<div><div>Direct air capture (DAC) is a critical and emerging Negative Emissions Technology (NET) that directly removes CO2 from the atmosphere, significantly contributing to climate change. However, the deployment and management of large-scale DAC faces challenges such as collections and analysis of energy consumption data, intricate device and system management, emission prediction and operation strategy, precise carbon footprint tracking, etc. This paper proposes the integration of blockchain technology with DAC systems to address these challenges, utilizing blockchain's inherent properties of immutability, security, and transparency. The implementation strategy includes the development of a DAC consortium blockchain system, leveraging a consensus mechanism,<span><span><sup>1</sup></span></span> ECDSA encryption,<span><span><sup>2</sup></span></span> IoT<span><span><sup>3</sup></span></span> integration, and digital signatures. Preliminary modeling of the proposed system suggests potential improvements in operational efficiency and a reduction in data inaccuracies. The proposed system underscores the system's ability to streamline identity verification, improve data collection accuracy, and facilitate secure, confidential information sharing among DAC stakeholders. By enhancing the efficiency and reliability of DAC operations, this approach supports the scalable and effective deployment of NETs in the global effort to combat climate change. Future research will focus on empirical validation through pilot projects and simulations to further substantiate these claims.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100300"},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Offshore carbon storage from power plants based on real option and multi‐period source‐sink matching: A case study in the eastern coastal China 基于实物期权和多期源汇匹配的电厂离岸碳封存:中国东部沿海案例研究
Pub Date : 2024-10-17 DOI: 10.1016/j.ccst.2024.100314
Xingyu Zan , Panjie Ji , Yuxuan Ying , Long Jiang , Xiaoqing Lin , Angjian Wu , Qi Lu , Qunxing Huang , Xiaodong Li , Jianhua Yan
Carbon capture utilization and storage (CCUS) emerges as a pivotal strategy for CO2 reduction in the power sector, particularly focusing on the overlooked domain of offshore storage along China's east coast. In spite of the potential high costs, irreversible investments, and lengthy development, offshore storage can still be prospective. Considering autonomous decision-making among emission sources, this study pioneers a CO2 offshore storage investment decision model tailored for coal-fired and gas-fired power plants. Innovating an offshore storage source-sink matching model with a real options model and introducing a pipeline network optimization model allows a realistic source-sink matching strategy to be explored under optimal investment timing. According to the results, among 154 large stationary emission sources in Zhejiang Province, offshore storage could reduce CO2 emissions by 4.59 Gt, utilizing the Qiantang, Minjiang, and Fuzhou depressions. It is economically feasible to implement offshore storage with a whole-process unit cost of 368.8 CNY/tCO2, mainly dominated by capture costs. A hybrid carbon tax-subsidy policy promotes carbon reduction and economic benefits, offering a more effective incentive for emission sources to invest in offshore storage than a single policy. At a hybrid policy price of 250 CNY/tCO2, all 27 selected emission sources are projected to invest in offshore storage by 2048, with a preference for the Qiantang depression as the storage site. Practically, this study provides important technical support and guidance for the large-scale deployment of offshore storage.
碳捕集利用与封存(CCUS)已成为电力行业减少二氧化碳排放的关键战略,尤其是在中国东部沿海被忽视的海上封存领域。尽管潜在成本高、投资不可逆、开发周期长,但海上封存仍具有广阔前景。考虑到排放源之间的自主决策,本研究为燃煤和燃气电厂量身定制了一个二氧化碳海上封存投资决策模型。利用实物期权模型对离岸封存源汇匹配模型进行创新,并引入管网优化模型,从而探索出最优投资时机下的现实源汇匹配策略。研究结果表明,在浙江省 154 个大型固定排放源中,利用钱塘江、闽江和福州洼地进行海上封存可减少 CO2 排放 4.59 Gt。实施海上封存在经济上是可行的,全过程单位成本为 368.8 元人民币/吨二氧化碳,主要由捕集成本决定。碳税-补贴混合政策既能促进碳减排,又能提高经济效益,与单一政策相比,能更有效地激励排放源投资海上封存。在 250 元人民币/吨 CO2 的混合政策价格下,预计到 2048 年,所有 27 个选定的排放源都将投资海上封存,并优先选择钱塘江坳陷作为封存地点。该研究为大规模部署海上封存提供了重要的技术支持和指导。
{"title":"Offshore carbon storage from power plants based on real option and multi‐period source‐sink matching: A case study in the eastern coastal China","authors":"Xingyu Zan ,&nbsp;Panjie Ji ,&nbsp;Yuxuan Ying ,&nbsp;Long Jiang ,&nbsp;Xiaoqing Lin ,&nbsp;Angjian Wu ,&nbsp;Qi Lu ,&nbsp;Qunxing Huang ,&nbsp;Xiaodong Li ,&nbsp;Jianhua Yan","doi":"10.1016/j.ccst.2024.100314","DOIUrl":"10.1016/j.ccst.2024.100314","url":null,"abstract":"<div><div>Carbon capture utilization and storage (CCUS) emerges as a pivotal strategy for CO<sub>2</sub> reduction in the power sector, particularly focusing on the overlooked domain of offshore storage along China's east coast. In spite of the potential high costs, irreversible investments, and lengthy development, offshore storage can still be prospective. Considering autonomous decision-making among emission sources, this study pioneers a CO<sub>2</sub> offshore storage investment decision model tailored for coal-fired and gas-fired power plants. Innovating an offshore storage source-sink matching model with a real options model and introducing a pipeline network optimization model allows a realistic source-sink matching strategy to be explored under optimal investment timing. According to the results, among 154 large stationary emission sources in Zhejiang Province, offshore storage could reduce CO<sub>2</sub> emissions by 4.59 Gt, utilizing the Qiantang, Minjiang, and Fuzhou depressions. It is economically feasible to implement offshore storage with a whole-process unit cost of 368.8 CNY/t<sub>CO2</sub>, mainly dominated by capture costs. A hybrid carbon tax-subsidy policy promotes carbon reduction and economic benefits, offering a more effective incentive for emission sources to invest in offshore storage than a single policy. At a hybrid policy price of 250 CNY/t<sub>CO2</sub>, all 27 selected emission sources are projected to invest in offshore storage by 2048, with a preference for the Qiantang depression as the storage site. Practically, this study provides important technical support and guidance for the large-scale deployment of offshore storage.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100314"},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Capture Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1