首页 > 最新文献

Carbon Capture Science & Technology最新文献

英文 中文
Poly(ionic liquid) composite membranes bearing different anions as biocatalytic membranes for CO2 capture 含不同阴离子的聚(离子液体)复合膜作为二氧化碳捕获的生物催化膜
Pub Date : 2024-08-19 DOI: 10.1016/j.ccst.2024.100269
Cristhian Molina-Fernández , Gauthier Chaplier , Victor Deveen , Yusak Hartanto , Patricia Luis

The enzyme carbonic anhydrase (CA) has gainned considerable attention from the literature and the industry in the context of CO2 capture. CA immobilization in gas-liquid membrane contactors, and more specifically, on poly(ionic liquid) (PIL) composite membranes has been demonstrated to be a potential strategy to facilitate its industrial implementation. These membranes were comprised of a PIL layer coating on a porous hydrophobic polymeric support. In this work, the composition of the PIL layer was tuned by anion exchange to yield a variety of enzyme carriers. The following anions were compared: bromide [Br], acetate [Ac], tetrafluoroborate [BF4], and bis(trifluoromethylsulfonyl)imide [NTf2]. The surface morphology, chemistry, and properties of these composite membranes were characterized by SEM, EDX, ATR-FTIR, and water contact angle. The activity of the different biocatalytic composite membranes was determined by the p-nitrophenyl acetate hydrolysis model reaction. It was found that the anion exchange salts had a detrimental effect on the immobilized enzyme activity. In light of these results, the enzyme immobilization step was conducted after anion exchange. The resulting biocatalytic membranes displayed slight differences in immobilized enzyme activities and thermal stabilities following the order [Br]>[BF4]>[Ac]>[NTf2] and [BF4]>[Br]≈[Ac]>[NTf2], respectively. The differences were more pronounced and detrimental for the most hydrophobic anion, [NTf2]. Parallel trends were noted when the membranes were tested for CO2 absorption in a gas-liquid membrane contactor set-up suggesting that the CO2 mass transfer is strongly influenced by the activity of the immobilized enzymes. In addition, the effect of the absorption conditions, i.e., solvent flow rate, solvent saturation, and solvent concentration were evaluated. Under the best conditions, the novel biocatalytic membranes outperformed the commercial PVDF support by about a factor of 4 in terms of overall mass transfer coefficient. Such improvement would result in significant reductions in the required membrane area to capture CO2 by a gas-liquid membrane contactor.

在二氧化碳捕获方面,碳酸酐酶(CA)受到了文献和工业界的广泛关注。在气液膜接触器中固定碳酸酐酶,更具体地说,在聚(离子液体)(PIL)复合膜上固定碳酸酐酶已被证明是促进其工业化应用的一种潜在策略。这些膜由涂覆在多孔疏水聚合物支架上的 PIL 层组成。在这项工作中,通过阴离子交换调整了 PIL 层的成分,从而产生了多种酶载体。比较了以下阴离子:溴化物[Br]、醋酸盐[Ac]、四氟硼酸盐[BF4]和双(三氟甲基磺酰基)亚胺[NTf2]。这些复合膜的表面形貌、化学性质和特性通过扫描电镜、EDX、ATR-傅立叶变换红外光谱和水接触角进行了表征。通过对硝基苯乙酸酯水解模型反应测定了不同生物催化复合膜的活性。结果发现,阴离子交换盐对固定化酶的活性有不利影响。鉴于这些结果,酶固定化步骤在阴离子交换后进行。所得到的生物催化膜在固定化酶活性和热稳定性方面略有差异,其顺序分别为[Br]> [BF4]> [Ac]> [NTf2]和[BF4]> [Br]≈[Ac]> [NTf2]。对于疏水性最强的阴离子[NTf2]来说,这种差异更为明显和有害。在气液膜接触器装置中测试膜对二氧化碳的吸收时,也发现了类似的趋势,这表明二氧化碳的传质受到固定酶活性的强烈影响。此外,还评估了吸收条件(即溶剂流速、溶剂饱和度和溶剂浓度)的影响。在最佳条件下,新型生物催化膜的总体传质系数比商用 PVDF 支持物高出约 4 倍。这种改进将显著减少气液膜接触器捕获二氧化碳所需的膜面积。
{"title":"Poly(ionic liquid) composite membranes bearing different anions as biocatalytic membranes for CO2 capture","authors":"Cristhian Molina-Fernández ,&nbsp;Gauthier Chaplier ,&nbsp;Victor Deveen ,&nbsp;Yusak Hartanto ,&nbsp;Patricia Luis","doi":"10.1016/j.ccst.2024.100269","DOIUrl":"10.1016/j.ccst.2024.100269","url":null,"abstract":"<div><p>The enzyme carbonic anhydrase (CA) has gainned considerable attention from the literature and the industry in the context of CO<sub>2</sub> capture. CA immobilization in gas-liquid membrane contactors, and more specifically, on poly(ionic liquid) (PIL) composite membranes has been demonstrated to be a potential strategy to facilitate its industrial implementation. These membranes were comprised of a PIL layer coating on a porous hydrophobic polymeric support. In this work, the composition of the PIL layer was tuned by anion exchange to yield a variety of enzyme carriers. The following anions were compared: bromide [Br], acetate [Ac], tetrafluoroborate [BF<sub>4</sub>], and bis(trifluoromethylsulfonyl)imide [NTf<sub>2</sub>]. The surface morphology, chemistry, and properties of these composite membranes were characterized by SEM, EDX, ATR-FTIR, and water contact angle. The activity of the different biocatalytic composite membranes was determined by the p-nitrophenyl acetate hydrolysis model reaction. It was found that the anion exchange salts had a detrimental effect on the immobilized enzyme activity. In light of these results, the enzyme immobilization step was conducted after anion exchange. The resulting biocatalytic membranes displayed slight differences in immobilized enzyme activities and thermal stabilities following the order [Br]&gt;[BF<sub>4</sub>]&gt;[Ac]&gt;[NTf<sub>2</sub>] and [BF<sub>4</sub>]&gt;[Br]≈[Ac]&gt;[NTf<sub>2</sub>], respectively. The differences were more pronounced and detrimental for the most hydrophobic anion, [NTf<sub>2</sub>]. Parallel trends were noted when the membranes were tested for CO<sub>2</sub> absorption in a gas-liquid membrane contactor set-up suggesting that the CO<sub>2</sub> mass transfer is strongly influenced by the activity of the immobilized enzymes. In addition, the effect of the absorption conditions, i.e., solvent flow rate, solvent saturation, and solvent concentration were evaluated. Under the best conditions, the novel biocatalytic membranes outperformed the commercial PVDF support by about a factor of 4 in terms of overall mass transfer coefficient. Such improvement would result in significant reductions in the required membrane area to capture CO<sub>2</sub> by a gas-liquid membrane contactor.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100269"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000812/pdfft?md5=c4ec04e73c2a59e0eb4a54d62d2ca500&pid=1-s2.0-S2772656824000812-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacuum assisted desorption of sodium zirconate sorbent for enhancing cyclic stability in pre-combustion CO2 capture 真空辅助解吸锆酸钠吸附剂以提高燃烧前二氧化碳捕获的循环稳定性
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100277
Duandi Zhou , Yinxiang Wang , Zechen Zhang , Yutao Zhang , Aimin Li , Jingde Luan , Guozhao Ji

Sodium zirconate (Na2ZrO3) is a promising material for pre-combustion CO2 capture due to its fast sorption kinetics and excellent cyclic stability at high temperatures under ideal condition (desorption in 100% N2). Still, there is a lack of study on the performance of Na2ZrO3 cyclic capture under harsh condition (desorption in high concentration CO2). In this study, Na2ZrO3 was prepared by wet-mixing and heated-drying, and the difference in the cyclic CO2 capture performance of the sample was compared between desorption under harsh condition and vacuum condition. The crystal structure of Na2ZrO3 was identified during the sorption-desorption cycles. The crystal structure was also modeled and simulated to analyze the reason for the superior capture performance from the monoclinic Na2ZrO3. It was found that the special interlocked and multilayered stacked structure of the monoclinic Na2ZrO3 allowed for high reactivity with CO2. It was found that high temperature solely had little help in the desorption of Na2ZrO3 under harsh condition, but vacuum condition promoted desorption of Na2ZrO3 in high fraction CO2, and vacuum desorption at 1000 °C-1050 °C resulted in Na2ZrO3 with both good capture performance and cycling stability. Vacuum desorption led to more complete reversion of Na2ZrO3 to the monoclinic state, benefiting for CO2 capture. This study attempted to simulate the harsh capture environments of real industrial applications and to explore the possibility of Na2ZrO3 as a carbon capture material for pre-combustion capture.

锆酸钠(Na2ZrO3)在理想条件下(100% N2 中的解吸),在高温下具有快速的吸附动力学和出色的循环稳定性,因此是一种很有前途的燃烧前二氧化碳捕集材料。但目前还缺乏对 Na2ZrO3 在苛刻条件下(高浓度 CO2 中的解吸)循环捕集性能的研究。本研究采用湿法混合和加热干燥的方法制备了 Na2ZrO3,并比较了苛刻条件下和真空条件下解吸样品循环捕集二氧化碳性能的差异。在吸附-解吸循环过程中,确定了 Na2ZrO3 的晶体结构。还对晶体结构进行了建模和模拟,以分析单斜 Na2ZrO3 具有优异捕集性能的原因。研究发现,单斜 Na2ZrO3 特殊的互锁和多层堆叠结构使其与二氧化碳的反应活性很高。研究发现,在苛刻条件下,仅靠高温对 Na2ZrO3 的解吸作用不大,但真空条件可促进 Na2ZrO3 对高浓度 CO2 的解吸,在 1000 ℃-1050 ℃ 的真空解吸条件下得到的 Na2ZrO3 具有良好的捕获性能和循环稳定性。真空解吸使 Na2ZrO3 更完全地恢复到单斜状态,有利于二氧化碳的捕获。本研究试图模拟实际工业应用中恶劣的捕集环境,并探索将 Na2ZrO3 用作燃烧前捕集的碳捕集材料的可能性。
{"title":"Vacuum assisted desorption of sodium zirconate sorbent for enhancing cyclic stability in pre-combustion CO2 capture","authors":"Duandi Zhou ,&nbsp;Yinxiang Wang ,&nbsp;Zechen Zhang ,&nbsp;Yutao Zhang ,&nbsp;Aimin Li ,&nbsp;Jingde Luan ,&nbsp;Guozhao Ji","doi":"10.1016/j.ccst.2024.100277","DOIUrl":"10.1016/j.ccst.2024.100277","url":null,"abstract":"<div><p>Sodium zirconate (Na<sub>2</sub>ZrO<sub>3</sub>) is a promising material for pre-combustion CO<sub>2</sub> capture due to its fast sorption kinetics and excellent cyclic stability at high temperatures under ideal condition (desorption in 100% N<sub>2</sub>). Still, there is a lack of study on the performance of Na<sub>2</sub>ZrO<sub>3</sub> cyclic capture under harsh condition (desorption in high concentration CO<sub>2</sub>). In this study, Na<sub>2</sub>ZrO<sub>3</sub> was prepared by wet-mixing and heated-drying, and the difference in the cyclic CO<sub>2</sub> capture performance of the sample was compared between desorption under harsh condition and vacuum condition. The crystal structure of Na<sub>2</sub>ZrO<sub>3</sub> was identified during the sorption-desorption cycles. The crystal structure was also modeled and simulated to analyze the reason for the superior capture performance from the monoclinic Na<sub>2</sub>ZrO<sub>3</sub>. It was found that the special interlocked and multilayered stacked structure of the monoclinic Na<sub>2</sub>ZrO<sub>3</sub> allowed for high reactivity with CO<sub>2</sub>. It was found that high temperature solely had little help in the desorption of Na<sub>2</sub>ZrO<sub>3</sub> under harsh condition, but vacuum condition promoted desorption of Na<sub>2</sub>ZrO<sub>3</sub> in high fraction CO<sub>2</sub>, and vacuum desorption at 1000 °C-1050 °C resulted in Na<sub>2</sub>ZrO<sub>3</sub> with both good capture performance and cycling stability. Vacuum desorption led to more complete reversion of Na<sub>2</sub>ZrO<sub>3</sub> to the monoclinic state, benefiting for CO<sub>2</sub> capture. This study attempted to simulate the harsh capture environments of real industrial applications and to explore the possibility of Na<sub>2</sub>ZrO<sub>3</sub> as a carbon capture material for pre-combustion capture.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100277"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000897/pdfft?md5=cc7b20c2ed225f2ebcbdc4f175db6ee8&pid=1-s2.0-S2772656824000897-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyethyleneimine coated AgInS2 quantum dots for efficient CO2 photoreduction to C2H6 聚乙烯亚胺涂层 AgInS2 量子点用于高效 CO2 光还原为 C2H6
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100272
Yunjing Deng, Huiyong Wang, Qian Zhang, Yingying Guo, Jianji Wang

Quantum dots exhibit great potential in photocatalytic CO2 conversion into value-added fuels to achieve a carbon-neutral society, owing to their unique optical properties and tunable surface chemistry. However, the generation of multi-carbon hydrocarbon products remains a grand challenge. Herein, polyethyleneimine (PEI) coated AgInS2 quantum dots (AgInS2@PEI QDs) are designed for the photo-catalytic conversion of CO2 to C2 products. It is found that the yield and selectivity of C2H6 can be significantly enhanced by regulating the content of Ag and PEI in AgInS2@PEI QDs. Under the optimal conditions, C2H6 yield reaches 63 μmol g-1, and the electron selectivity is 30.3 %. A mechanistic study reveals that PEI effectively promotes the accumulation of photogenerated electrons, and the CO-enriched local environment caused by Ag boosts CC coupling on asymmetric bimetallic sites. This work offers new insight on the design of efficient quantum dot photocatalysts for CO2 conversion to C2 products.

量子点因其独特的光学特性和可调表面化学性质,在光催化二氧化碳转化为高附加值燃料以实现碳中和社会方面展现出巨大潜力。然而,生成多碳碳氢化合物产品仍然是一个巨大的挑战。本文设计了聚乙烯亚胺(PEI)包覆的 AgInS2 量子点(AgInS2@PEI QDs),用于光催化将 CO2 转化为 C2 产物。研究发现,通过调节 AgInS2@PEI QDs 中 Ag 和 PEI 的含量,可以显著提高 C2H6 的产率和选择性。在最佳条件下,C2H6 产率达到 63 μmol g-1,电子选择性为 30.3%。机理研究表明,PEI 能有效地促进光生电子的积累,而 Ag 带来的富含 CO 的局部环境则促进了不对称双金属位点上的 CC 耦合。这项研究为设计将 CO2 转化为 C2 产物的高效量子点光催化剂提供了新的思路。
{"title":"Polyethyleneimine coated AgInS2 quantum dots for efficient CO2 photoreduction to C2H6","authors":"Yunjing Deng,&nbsp;Huiyong Wang,&nbsp;Qian Zhang,&nbsp;Yingying Guo,&nbsp;Jianji Wang","doi":"10.1016/j.ccst.2024.100272","DOIUrl":"10.1016/j.ccst.2024.100272","url":null,"abstract":"<div><p>Quantum dots exhibit great potential in photocatalytic CO<sub>2</sub> conversion into value-added fuels to achieve a carbon-neutral society, owing to their unique optical properties and tunable surface chemistry. However, the generation of multi-carbon hydrocarbon products remains a grand challenge. Herein, polyethyleneimine (PEI) coated AgInS<sub>2</sub> quantum dots (AgInS<sub>2</sub>@PEI QDs) are designed for the photo-catalytic conversion of CO<sub>2</sub> to C<sub>2</sub> products. It is found that the yield and selectivity of C<sub>2</sub>H<sub>6</sub> can be significantly enhanced by regulating the content of Ag and PEI in AgInS<sub>2</sub>@PEI QDs. Under the optimal conditions, C<sub>2</sub>H<sub>6</sub> yield reaches 63 μmol g<sup>-1</sup>, and the electron selectivity is 30.3 %. A mechanistic study reveals that PEI effectively promotes the accumulation of photogenerated electrons, and the CO-enriched local environment caused by Ag boosts C<img>C coupling on asymmetric bimetallic sites. This work offers new insight on the design of efficient quantum dot photocatalysts for CO<sub>2</sub> conversion to C<sub>2</sub> products.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100272"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000848/pdfft?md5=573f56abdb40eb17fc84f564b6c9d7a6&pid=1-s2.0-S2772656824000848-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon dioxide capture in sodium carbonate solution: Mass transfer kinetics and DTAC surfactant enhancement mechanism 碳酸钠溶液中的二氧化碳捕获:传质动力学和 DTAC 表面活性剂的增强机制
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100270
Can Fang, Haoyu Zhang, Yi Xiao, Tianyu Zhao, Renjie Zou, Guangqian Luo, Xian Li, Hong Yao

Sodium carbonate solvent absorbent has been widely studied for CO2 reduction to deal with global warming because of its green, low cost, and non-corrosive advantages. However, in the application of sodium carbonate as an absorbent for CO2 capture, there is no unified cognition of the mass transfer process, which leads to the lack of guidance for the industrial large-scale process. Moreover, the mechanism of mass transfer enhancement of surfactants, which can effectively improve the mass transfer performance, has not been effectively explored in the literature. Based on this, this paper firstly adopts the molecular dynamics method to analyze the solution characteristics after surfactant addition and optimize the surfactant. Subsequently, a classical dissolved oxygen test method was used to measure the gas-liquid mass transfer coefficient for CO2 absorption into sodium carbonate solution. And based on this mass transfer coefficient measurement method, the mass transfer process of sodium carbonate solution with surfactant was analyzed. The results showed that the sodium carbonate solution with 5 wt% concentration and 10 wt% concentration at 30 °C did not satisfy the pseudo first-order fast chemical reaction kinetics assumption. To improve CO2 absorption mass transfer rate, dodecyl trimethyl ammonium chloride (DTAC) surfactant was introduced, which was improved by 119 % compared with non-enhanced solvent at 5 wt% concentration solution, and the assumption of pseudo first order fast chemical reaction was satisfied. After the introduction of surfactant, the barrier effect decreased the liquid phase mass transfer coefficient, but the Marangoni effect happened in the 5 wt% concentration of sodium carbonate solution, which enhanced the liquid-phase mass-transfer coefficient. This finding reveals the mechanism of mass transfer promotion of sodium carbonate by the surfactant DTAC, which is of great engineering significance for the application in the field of decarbonization after the introduction of surfactant.

碳酸钠溶剂吸收剂因其绿色环保、成本低廉、无腐蚀性等优点,已被广泛研究用于减少二氧化碳排放,以应对全球变暖问题。然而,在将碳酸钠作为吸收剂用于二氧化碳捕集的过程中,对其传质过程还没有统一的认知,导致对工业化大规模工艺缺乏指导。此外,表面活性剂的传质增强机理能有效改善传质性能,但文献中并未对其进行有效探讨。基于此,本文首先采用分子动力学方法分析了表面活性剂加入后的溶液特性,并对表面活性剂进行了优化。随后,采用经典的溶解氧测试方法,测量碳酸钠溶液吸收二氧化碳时的气液传质系数。根据这种传质系数测量方法,分析了加入表面活性剂的碳酸钠溶液的传质过程。结果表明,在 30 °C 下,浓度为 5 wt% 和 10 wt% 的碳酸钠溶液不满足伪一阶快速化学反应动力学假设。为了提高二氧化碳的吸收传质速率,引入了十二烷基三甲基氯化铵(DTAC)表面活性剂,在 5 wt%浓度溶液中,与未增强溶剂相比,传质速率提高了 119%,满足了假一阶快速化学反应假设。引入表面活性剂后,屏障效应降低了液相传质系数,但在 5 wt%浓度的碳酸钠溶液中出现了马兰戈尼效应,提高了液相传质系数。这一发现揭示了表面活性剂 DTAC 促进碳酸钠传质的机理,对于引入表面活性剂后在脱碳领域的应用具有重要的工程意义。
{"title":"Carbon dioxide capture in sodium carbonate solution: Mass transfer kinetics and DTAC surfactant enhancement mechanism","authors":"Can Fang,&nbsp;Haoyu Zhang,&nbsp;Yi Xiao,&nbsp;Tianyu Zhao,&nbsp;Renjie Zou,&nbsp;Guangqian Luo,&nbsp;Xian Li,&nbsp;Hong Yao","doi":"10.1016/j.ccst.2024.100270","DOIUrl":"10.1016/j.ccst.2024.100270","url":null,"abstract":"<div><p>Sodium carbonate solvent absorbent has been widely studied for CO<sub>2</sub> reduction to deal with global warming because of its green, low cost, and non-corrosive advantages. However, in the application of sodium carbonate as an absorbent for CO<sub>2</sub> capture, there is no unified cognition of the mass transfer process, which leads to the lack of guidance for the industrial large-scale process. Moreover, the mechanism of mass transfer enhancement of surfactants, which can effectively improve the mass transfer performance, has not been effectively explored in the literature. Based on this, this paper firstly adopts the molecular dynamics method to analyze the solution characteristics after surfactant addition and optimize the surfactant. Subsequently, a classical dissolved oxygen test method was used to measure the gas-liquid mass transfer coefficient for CO<sub>2</sub> absorption into sodium carbonate solution. And based on this mass transfer coefficient measurement method, the mass transfer process of sodium carbonate solution with surfactant was analyzed. The results showed that the sodium carbonate solution with 5 wt% concentration and 10 wt% concentration at 30 °C did not satisfy the pseudo first-order fast chemical reaction kinetics assumption. To improve CO<sub>2</sub> absorption mass transfer rate, dodecyl trimethyl ammonium chloride (DTAC) surfactant was introduced, which was improved by 119 % compared with non-enhanced solvent at 5 wt% concentration solution, and the assumption of pseudo first order fast chemical reaction was satisfied. After the introduction of surfactant, the barrier effect decreased the liquid phase mass transfer coefficient, but the Marangoni effect happened in the 5 wt% concentration of sodium carbonate solution, which enhanced the liquid-phase mass-transfer coefficient. This finding reveals the mechanism of mass transfer promotion of sodium carbonate by the surfactant DTAC, which is of great engineering significance for the application in the field of decarbonization after the introduction of surfactant.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100270"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000824/pdfft?md5=3d7cd906eec73fe0e741827795a124e2&pid=1-s2.0-S2772656824000824-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of alkali metal oxide adsorbent for direct air capture: Identification of physicochemical adsorption and analysis of regeneration mechanism 设计用于直接捕获空气的碱金属氧化物吸附剂:理化吸附鉴定和再生机制分析
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100268
Lecan Huang , Jinchen Ma , Fan Wang , Guorong Xu , Haibo Zhao

Direct air capture (DAC) represents an advanced negative carbon emission technology, with the key being high-performance CO2 adsorbents. First, this work carefully identifies CO2 physisorption and chemisorption by CaO/HcATP (CaO loaded on acid-modified attapulgite) as DAC adsorbent. The chemisorption of amorphous "CaO" plays a crucial role in both the adsorption capacity and rate, with contributions of 66.8 % and 50.85 %, respectively. The adsorption capacity of CaO/HcATP is only 212.4 ± 25.7 µmol/g via the simple CO2 physisorption and improved by 426.7 µmol/g owning to the chemisorption of amorphous CaO. Second, the concentration of silanol groups on CaO/HcATP plays a pivotal role in the adsorption process. The concentration of silanol groups decreases to 3.85 OH/nm2 after undergoing 30 cycles of adsorption-desorption. Then it increases to 9.54 OH/nm2 by adsorbing the moisture in the air, resulting in a recovered adsorption capacity of 90.7 %. Furthermore, the pseudo-first-order adsorption kinetics model effectively predicted the experimental results. Finally, the dual loop of CO2 capture and regeneration is summarized using the CaO/HcATP as DAC adsorbent. The amorphous "CaO" interacts with the surface silanol of HcATP, synergistically capturing CO2 in the form of "CaO···CO2", which reduces desorption energy consumption. The wetting property of HcATP contributes to the regeneration of CaO/HcATP. This work contributes to establishing fundamental principles for designing cost-effective DAC adsorbents.

直接空气捕集(DAC)是一种先进的负碳排放技术,其关键在于高性能的二氧化碳吸附剂。首先,这项工作仔细研究了作为 DAC 吸附剂的 CaO/HcATP(酸改性阿塔蓬石上的 CaO)对二氧化碳的物理吸附和化学吸附。无定形 "CaO "的化学吸附对吸附容量和吸附速率都起着至关重要的作用,其贡献率分别为 66.8 % 和 50.85 %。通过简单的二氧化碳物理吸附,CaO/HcATP 的吸附容量仅为 212.4 ± 25.7 µmol/g,而通过无定形 CaO 的化学吸附,吸附容量提高了 426.7 µmol/g。其次,CaO/HcATP 上硅醇基团的浓度在吸附过程中起着关键作用。经过 30 次吸附-解吸循环后,硅醇基团的浓度降至 3.85 OH/nm2。然后,通过吸附空气中的水分,硅烷醇基团的浓度增加到 9.54 OH/nm2,从而使吸附容量恢复到 90.7%。此外,伪一阶吸附动力学模型有效地预测了实验结果。最后,以 CaO/HcATP 作为 DAC 吸附剂,总结了二氧化碳捕获和再生的双循环。无定形的 "CaO "与 HcATP 表面的硅烷醇相互作用,以 "CaO---CO2 "的形式协同捕获二氧化碳,从而降低了解吸能耗。HcATP 的润湿特性有助于 CaO/HcATP 的再生。这项工作有助于为设计具有成本效益的 DAC 吸附剂确立基本原则。
{"title":"Design of alkali metal oxide adsorbent for direct air capture: Identification of physicochemical adsorption and analysis of regeneration mechanism","authors":"Lecan Huang ,&nbsp;Jinchen Ma ,&nbsp;Fan Wang ,&nbsp;Guorong Xu ,&nbsp;Haibo Zhao","doi":"10.1016/j.ccst.2024.100268","DOIUrl":"10.1016/j.ccst.2024.100268","url":null,"abstract":"<div><p>Direct air capture (DAC) represents an advanced negative carbon emission technology, with the key being high-performance CO<sub>2</sub> adsorbents. First, this work carefully identifies CO<sub>2</sub> physisorption and chemisorption by CaO/HcATP (CaO loaded on acid-modified attapulgite) as DAC adsorbent. The chemisorption of amorphous \"CaO\" plays a crucial role in both the adsorption capacity and rate, with contributions of 66.8 % and 50.85 %, respectively. The adsorption capacity of CaO/HcATP is only 212.4 ± 25.7 µmol/g via the simple CO<sub>2</sub> physisorption and improved by 426.7 µmol/g owning to the chemisorption of amorphous CaO. Second, the concentration of silanol groups on CaO/HcATP plays a pivotal role in the adsorption process. The concentration of silanol groups decreases to 3.85 OH/nm<sup>2</sup> after undergoing 30 cycles of adsorption-desorption. Then it increases to 9.54 OH/nm<sup>2</sup> by adsorbing the moisture in the air, resulting in a recovered adsorption capacity of 90.7 %. Furthermore, the pseudo-first-order adsorption kinetics model effectively predicted the experimental results. Finally, the dual loop of CO<sub>2</sub> capture and regeneration is summarized using the CaO/HcATP as DAC adsorbent. The amorphous \"CaO\" interacts with the surface silanol of HcATP, synergistically capturing CO<sub>2</sub> in the form of \"CaO···CO<sub>2</sub>\", which reduces desorption energy consumption. The wetting property of HcATP contributes to the regeneration of CaO/HcATP. This work contributes to establishing fundamental principles for designing cost-effective DAC adsorbents.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100268"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000800/pdfft?md5=a2a7fb403b63125fc7ec7aba6cc112e4&pid=1-s2.0-S2772656824000800-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol emissions and mitigation of aqueous AMP/PZ solvent for postcombustion CO2 capture 用于燃烧后二氧化碳捕获的 AMP/PZ 水溶液的气溶胶排放和缓解措施
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100273
Lianbo Liu , Xiaojun Wang , Huanjun Wang , Tao Wang , Mengxiang Fang

Aerosol emissions from the CO2-capture process have a significant impact on both solvent depletion and environmental contamination. This work comprehensively investigated the emissions of AMP (2-amino-2-methyl-1propanol)/PZ (piperazine) from a bench-scale platform and a CO2-capture pilot plant. The concentration of nuclei in flue gas is a key factor affecting aerosol emissions, and a high nuclei concentration leads to more serious aerosol emission problems. The amine emissions after the absorber in the three different scenarios (no added nuclei, nuclei added, and pilot plant) were 273, 1051, and 1347 mg/Nm3, respectively. Increasing the lean-solvent temperature promoted aerosol emissions, and increasing the liquid/gas ratio and CO2 loading in the lean solvent suppressed aerosol emissions. In the pilot plant, the effects of four mitigation measures were evaluated, and it was found that dry bed and acid washing had better mitigation effects than did conventional water washing; amine emissions could be reduced to as low as 21 mg/Nm3 PZ and 25 mg/Nm3 AMP. This study provides a reference for the design and optimization of carbon-dioxide-capture systems, which can help to reduce the impact on the environment.

二氧化碳捕集过程中的气溶胶排放对溶剂消耗和环境污染都有重大影响。这项研究全面调查了台式平台和二氧化碳捕集中试装置中 AMP(2-氨基-2-甲基-1-丙醇)/PZ(哌嗪)的排放情况。烟气中的原子核浓度是影响气溶胶排放的关键因素,原子核浓度过高会导致更严重的气溶胶排放问题。在三种不同方案(未添加核子、添加核子和中试装置)中,吸收器后的胺排放量分别为 273、1051 和 1347 mg/Nm3。提高贫溶剂温度会促进气溶胶排放,而提高贫溶剂中的液气比和二氧化碳含量则会抑制气溶胶排放。在试验工厂中,对四种减缓措施的效果进行了评估,结果发现干床和酸洗的减缓效果优于传统的水洗;胺排放可降至最低 21 mg/Nm3 PZ 和 25 mg/Nm3 AMP。这项研究为二氧化碳捕集系统的设计和优化提供了参考,有助于减少对环境的影响。
{"title":"Aerosol emissions and mitigation of aqueous AMP/PZ solvent for postcombustion CO2 capture","authors":"Lianbo Liu ,&nbsp;Xiaojun Wang ,&nbsp;Huanjun Wang ,&nbsp;Tao Wang ,&nbsp;Mengxiang Fang","doi":"10.1016/j.ccst.2024.100273","DOIUrl":"10.1016/j.ccst.2024.100273","url":null,"abstract":"<div><p>Aerosol emissions from the CO<sub>2</sub>-capture process have a significant impact on both solvent depletion and environmental contamination. This work comprehensively investigated the emissions of AMP (2-amino-2-methyl-1propanol)/PZ (piperazine) from a bench-scale platform and a CO<sub>2</sub>-capture pilot plant. The concentration of nuclei in flue gas is a key factor affecting aerosol emissions, and a high nuclei concentration leads to more serious aerosol emission problems. The amine emissions after the absorber in the three different scenarios (no added nuclei, nuclei added, and pilot plant) were 273, 1051, and 1347 mg/Nm<sup>3</sup>, respectively. Increasing the lean-solvent temperature promoted aerosol emissions, and increasing the liquid/gas ratio and CO<sub>2</sub> loading in the lean solvent suppressed aerosol emissions. In the pilot plant, the effects of four mitigation measures were evaluated, and it was found that dry bed and acid washing had better mitigation effects than did conventional water washing; amine emissions could be reduced to as low as 21 mg/Nm<sup>3</sup> PZ and 25 mg/Nm<sup>3</sup> AMP. This study provides a reference for the design and optimization of carbon-dioxide-capture systems, which can help to reduce the impact on the environment.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100273"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400085X/pdfft?md5=1cc9bb8194f28e2f8f31a48d520dff72&pid=1-s2.0-S277265682400085X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable MOF-based mixed matrix membranes with enhanced permeation processes facilitate the scale application of membrane-based carbon capture technologies 具有增强渗透过程的可扩展 MOF 基混合基质膜促进了膜法碳捕集技术的规模化应用
Pub Date : 2024-08-16 DOI: 10.1016/j.ccst.2024.100276
Hao Zhang , Li Sheng , Jia Chen , Xiaolin Wang , Peipei Tao , Dongsheng Ren , Hao Cui , Kai Yang , Zhuozhuo Tang , Zhijun Zhang , Xiangming He , Hong Xu

Mixed-matrix membranes (MMMs) leverage the processability of polymers and selectivity of Metal-Organic Frameworks (MOFs). However, they still suffer from poor interfacial compatibility and limited scalability in preparation. In certain polymers, MOFs can bridge the pores within the polymer membrane, enhancing the CO2 adsorption and solubility properties, thus selectively boosting the CO2 permeability. In this study, high-performance MMMs were prepared using scalable CALF-20 in combination with PIM-1. MMMs with a 5% doping level achieved CO2 permeability up to 8003 barrer with 25% improvement in CO2/N2 selectivity. This enhancement was attributed to well-designed MMMs, where MOFs matched the abundant non-interconnecting pores in the PIM-1 membrane. This study represents a significant advancement towards scaling up the preparation of high-performance MOF-based MMMs for carbon capture applications.

混合基质膜(MMMs)利用了聚合物的可加工性和金属有机框架(MOFs)的选择性。然而,它们在制备过程中仍然存在界面兼容性差和可扩展性有限的问题。在某些聚合物中,MOFs 可以弥合聚合物膜内的孔隙,增强二氧化碳的吸附和溶解特性,从而有选择性地提高二氧化碳的渗透性。本研究使用可扩展的 CALF-20 与 PIM-1 结合制备了高性能 MMM。掺杂水平为 5%的 MMM 的二氧化碳渗透率高达 8003 barrer,二氧化碳/氮气选择性提高了 25%。这种提高归功于精心设计的 MMM,其中的 MOF 与 PIM-1 膜中丰富的非互联孔相匹配。这项研究标志着在为碳捕集应用扩大基于 MOF 的高性能 MMM 制备规模方面取得了重大进展。
{"title":"Scalable MOF-based mixed matrix membranes with enhanced permeation processes facilitate the scale application of membrane-based carbon capture technologies","authors":"Hao Zhang ,&nbsp;Li Sheng ,&nbsp;Jia Chen ,&nbsp;Xiaolin Wang ,&nbsp;Peipei Tao ,&nbsp;Dongsheng Ren ,&nbsp;Hao Cui ,&nbsp;Kai Yang ,&nbsp;Zhuozhuo Tang ,&nbsp;Zhijun Zhang ,&nbsp;Xiangming He ,&nbsp;Hong Xu","doi":"10.1016/j.ccst.2024.100276","DOIUrl":"10.1016/j.ccst.2024.100276","url":null,"abstract":"<div><p>Mixed-matrix membranes (MMMs) leverage the processability of polymers and selectivity of Metal-Organic Frameworks (MOFs). However, they still suffer from poor interfacial compatibility and limited scalability in preparation. In certain polymers, MOFs can bridge the pores within the polymer membrane, enhancing the CO<sub>2</sub> adsorption and solubility properties, thus selectively boosting the CO<sub>2</sub> permeability. In this study, high-performance MMMs were prepared using scalable CALF-20 in combination with PIM-1. MMMs with a 5% doping level achieved CO<sub>2</sub> permeability up to 8003 barrer with 25% improvement in CO<sub>2</sub>/N<sub>2</sub> selectivity. This enhancement was attributed to well-designed MMMs, where MOFs matched the abundant non-interconnecting pores in the PIM-1 membrane. This study represents a significant advancement towards scaling up the preparation of high-performance MOF-based MMMs for carbon capture applications.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100276"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000885/pdfft?md5=973267619c0e2fb3cba008394ac49789&pid=1-s2.0-S2772656824000885-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zr-MOF/MXene composite for enhanced photothermal catalytic CO2 reduction in atmospheric and industrial flue gas streams 用于大气和工业烟道气流中增强光热催化二氧化碳还原的 Zr-MOF/MXene 复合材料
Pub Date : 2024-08-14 DOI: 10.1016/j.ccst.2024.100274
Yang Meng , Feng Yue , Shuo Zhang , Lingji Zhang , Cong Li , Mengke Shi , Yongpeng Ma , Mario Berrettoni , Xiaojing Zhang , Hongzhong Zhang

In this study, a novel composite was engineered by integrating Zr-MOF (NH2-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO2 to CO and CH4 without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO2 directly from the air. For high-concentration CO2 in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO2 reduction efficiency with CO and CH4 production rates of 127 μmol·g-1·h-1 and 330 μmol·g-1·h-1, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO2 reduction (>300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr4+ sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO2 in air and industrial settings, advancing energy conversion and environmental management.

在这项研究中,通过静电自组装将 Zr-MOF (NH2-UIO-66) 与 MXene 层整合在一起,设计出了一种新型复合材料。在模拟太阳光和 80 °C 温度条件下,这种复合材料几乎完全将大气中的低浓度 CO2 转化为 CO 和 CH4,而无需额外的牺牲剂或碱性吸收液,这是少数几个直接从空气中几乎完全还原低浓度 CO2 的报告之一。对于工业烟道气中的高浓度 CO2,该复合材料利用 80 °C 的余热,无需额外的能量输入,表现出卓越的 CO2 还原效率,CO 和 CH4 生成率分别为 127 μmol-g-1-h-1 和 330 μmol-g-1-h-1,总生成率是空气中生成率的 4.76 倍。与大多数关于热催化二氧化碳还原(300 °C)的报道相比,这种材料在 100 °C以下具有显著优势。性能的提高归功于 Zr-MOF 的引入,它提供了额外的活性位点并降低了活化能。此外,MXene 的局部表面等离子体共振(LSPR)效应促进了热电荷载流子迁移到 MOF 中的 Zr4+ 位点。密度泛函理论(DFT)计算验证了这些发现。总之,Zr-MOF/MXene 复合材料有望减少空气和工业环境中的二氧化碳,促进能源转换和环境管理。
{"title":"Zr-MOF/MXene composite for enhanced photothermal catalytic CO2 reduction in atmospheric and industrial flue gas streams","authors":"Yang Meng ,&nbsp;Feng Yue ,&nbsp;Shuo Zhang ,&nbsp;Lingji Zhang ,&nbsp;Cong Li ,&nbsp;Mengke Shi ,&nbsp;Yongpeng Ma ,&nbsp;Mario Berrettoni ,&nbsp;Xiaojing Zhang ,&nbsp;Hongzhong Zhang","doi":"10.1016/j.ccst.2024.100274","DOIUrl":"10.1016/j.ccst.2024.100274","url":null,"abstract":"<div><p>In this study, a novel composite was engineered by integrating Zr-MOF (NH<sub>2</sub>-UIO-66) with MXene layers through electrostatic self-assembly. Under simulated sunlight and at 80 °C, this composite material achieved nearly complete conversion of low-concentration atmospheric CO<sub>2</sub> to CO and CH<sub>4</sub> without additional sacrificial agents or alkaline absorption liquids, marking one of the few reports demonstrating near-complete reduction of low-concentration CO<sub>2</sub> directly from the air. For high-concentration CO<sub>2</sub> in industrial flue gas, the composite utilized residual heat at 80 °C without additional energy input, exhibiting excellent CO<sub>2</sub> reduction efficiency with CO and CH4 production rates of 127 μmol·g<sup>-1</sup>·h<sup>-1</sup> and 330 μmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, resulting in a total production rate 4.76 times higher than that in the air. Compared to most reports on thermocatalytic CO<sub>2</sub> reduction (&gt;300 °C), this material shows significant advantages below 100 °C. The performance improvement is attributed to the introduction of Zr-MOF, which provides additional active sites and reduces activation energy. Additionally, the localized surface plasmon resonance (LSPR) effect of MXene facilitates the migration of thermal charge carriers to Zr<sup>4+</sup> sites within the MOF. Density Functional Theory (DFT) calculations validate these findings. Overall, Zr-MOF/MXene composite holds potential for reducing CO<sub>2</sub> in air and industrial settings, advancing energy conversion and environmental management.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100274"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000861/pdfft?md5=11d2fcb0396247f5104b80e9a544ea9d&pid=1-s2.0-S2772656824000861-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing cyclic deactivation of magnesium-calcium dual-functional materials via dispersed metal-carbonate interfaces for integrated CO2 capture and conversion 通过分散金属-碳酸盐界面抑制镁钙双功能材料的循环失活,实现二氧化碳的综合捕获和转化
Pub Date : 2024-08-14 DOI: 10.1016/j.ccst.2024.100275
Rongchang Cao, Lei Liu, Hanzi Liu, Zhiqiang Sun

The integrated CO2 capture and utilization employs chemical looping approach for suppressing the equilibrium limitations of traditional gas-solid catalytic reactions, enabling efficient conversion of dilute CO2 into high-value fuels with minimal energy consumption. However, the diminishing cyclic activity of dual-functional materials poses significant challenges to their industrial application. Herein, we tailored a series of magnesium-calcium materials, the influence of coordinated metals on the cyclic performance were quantitatively investigated. Notably, Fe2Ni2Ce2Mg5Ca20CO3 achieves a cumulative CO yield of 121.0 mmol/g over 15 cycles at 650°C, with a maximum CO yield of 8.3 mmol/g per cycle and 99.0% CO selectivity, and its CO2 capture capacity remains stable at 10.6 mmol/g over 37 adsorption/desorption cycles. Experimental results indicate that lattice phase separation is a fundamental mechanism underlying the decline in cyclic activity. The strategic incorporation of transition metal intermediates promotes the formation of dispersed metal-carbonate interfaces, providing surface hydrogenation sites and accelerating the lattice decomposition and reconstruction of CO3* within a dispersed lattice. This modification mitigates the adsorption/catalytic lattice phase separation, boosts metal migration and deoxygenation activity for cyclic nanoparticle construction. The findings offer valuable strategies for designing highly efficient and stable DFMs in CO2 capture and utilization.

二氧化碳捕获和综合利用采用化学循环方法来抑制传统气固催化反应的平衡限制,从而以最小的能耗将稀薄的二氧化碳高效转化为高价值燃料。然而,双功能材料的循环活性不断降低,给其工业应用带来了巨大挑战。在此,我们定制了一系列镁钙材料,定量研究了配位金属对其循环性能的影响。值得注意的是,Fe2Ni2Ce2Mg5Ca20CO3 在 650°C 下循环 15 次,累计 CO 产率达到 121.0 mmol/g,每次循环的最大 CO 产率为 8.3 mmol/g,CO 选择性达到 99.0%,并且在 37 次吸附/解吸循环中,其 CO2 捕获能力稳定在 10.6 mmol/g。实验结果表明,晶格相分离是导致循环活性下降的基本机制。过渡金属中间体的战略性加入促进了分散金属-碳酸盐界面的形成,提供了表面氢化位点,加速了分散晶格内 CO3* 的晶格分解和重构。这种改性减轻了吸附/催化晶格相分离,提高了金属迁移和脱氧活性,从而构建了循环纳米粒子。这些发现为在二氧化碳捕获和利用中设计高效稳定的 DFMs 提供了宝贵的策略。
{"title":"Suppressing cyclic deactivation of magnesium-calcium dual-functional materials via dispersed metal-carbonate interfaces for integrated CO2 capture and conversion","authors":"Rongchang Cao,&nbsp;Lei Liu,&nbsp;Hanzi Liu,&nbsp;Zhiqiang Sun","doi":"10.1016/j.ccst.2024.100275","DOIUrl":"10.1016/j.ccst.2024.100275","url":null,"abstract":"<div><p>The integrated CO<sub>2</sub> capture and utilization employs chemical looping approach for suppressing the equilibrium limitations of traditional gas-solid catalytic reactions, enabling efficient conversion of dilute CO<sub>2</sub> into high-value fuels with minimal energy consumption. However, the diminishing cyclic activity of dual-functional materials poses significant challenges to their industrial application. Herein, we tailored a series of magnesium-calcium materials, the influence of coordinated metals on the cyclic performance were quantitatively investigated. Notably, Fe<sub>2</sub>Ni<sub>2</sub>Ce<sub>2</sub>Mg<sub>5</sub>Ca<sub>20</sub>CO<sub>3</sub> achieves a cumulative CO yield of 121.0 mmol/g over 15 cycles at 650°C, with a maximum CO yield of 8.3 mmol/g per cycle and 99.0% CO selectivity, and its CO<sub>2</sub> capture capacity remains stable at 10.6 mmol/g over 37 adsorption/desorption cycles. Experimental results indicate that lattice phase separation is a fundamental mechanism underlying the decline in cyclic activity. The strategic incorporation of transition metal intermediates promotes the formation of dispersed metal-carbonate interfaces, providing surface hydrogenation sites and accelerating the lattice decomposition and reconstruction of CO<sub>3</sub>* within a dispersed lattice. This modification mitigates the adsorption/catalytic lattice phase separation, boosts metal migration and deoxygenation activity for cyclic nanoparticle construction. The findings offer valuable strategies for designing highly efficient and stable DFMs in CO<sub>2</sub> capture and utilization.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100275"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000873/pdfft?md5=825fff2bf9fee572d40a1f50428a96f9&pid=1-s2.0-S2772656824000873-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The advancement of porous bimetal nanostructures for electrochemical CO2 utilization to valuable products: Experimental and theoretical insights 开发多孔双金属纳米结构,用于电化学利用二氧化碳生产有价值的产品:实验和理论见解
Pub Date : 2024-08-12 DOI: 10.1016/j.ccst.2024.100266
Adewale K. Ipadeola , M.-Sadeeq Balogun , Aboubakr, M. Abdullah

The growth of coherently engineered porous bimetal (PBM) nanostructures shows great progress in electrochemical carbon dioxide (CO2) utilization. This is due to their remarkable catalytic and physicochemical merits that present an encouraging approach for CO2 conversion into valuable products (i.e., fuels and chemicals). Hence, this review presents recent advances in experimental, in-situ analysis and theoretical studies of PBM electrocatalysts, including PBM Cu-based and PBM Cu-free electrocatalysts, toward CO2 reduction reaction (CO2RR) and comprehend its fundamental mechanisms. Various synthesis strategies were utilized to construct PBM nanostructures with distinct compositions, morphology, and synergism for excellent CO2RR activity, stability and product selectivity. As corroborated by theoretical calculations that revealed beneficial electronic features and reaction routes with facile adsorption energies for reactant (CO2) and intermediate species on the various active sites of PBM nanostructures in easing the CO2RR. Future research efforts should establish robust framework for experimental, in-situ analysis, theoretical simulations and automated machine learning in developing next-generation electrochemical CO2 utilization technologies with PBM nanostructures. Finally, this study emphasizes the potential of PBM nanostructures for efficient electrochemical CO2 utilization and provides a pathway to sustainable and inexpensively viable carbon-neutrality.

相干工程多孔双金属(PBM)纳米结构的生长在电化学二氧化碳(CO2)利用方面取得了重大进展。这是因为它们具有显著的催化和物理化学优点,为将二氧化碳转化为有价值的产品(如燃料和化学品)提供了一种令人鼓舞的方法。因此,本综述介绍了 PBM 电催化剂(包括 PBM 铜基和 PBM 无铜电催化剂)在二氧化碳还原反应(CO2RR)方面的实验、原位分析和理论研究的最新进展,并对其基本机制进行了理解。研究人员利用各种合成策略构建了具有不同成分、形态和协同作用的 PBM 纳米结构,从而获得了优异的 CO2RR 活性、稳定性和产物选择性。理论计算证实,在 PBM 纳米结构的各种活性位点上,反应物(CO2)和中间产物的吸附能量与有益的电子特征和反应路线相吻合,从而简化了 CO2RR。未来的研究工作应建立健全的实验、原位分析、理论模拟和自动机器学习框架,利用 PBM 纳米结构开发下一代二氧化碳电化学利用技术。最后,本研究强调了 PBM 纳米结构在高效电化学二氧化碳利用方面的潜力,并为实现可持续、低成本的碳中性提供了一条途径。
{"title":"The advancement of porous bimetal nanostructures for electrochemical CO2 utilization to valuable products: Experimental and theoretical insights","authors":"Adewale K. Ipadeola ,&nbsp;M.-Sadeeq Balogun ,&nbsp;Aboubakr, M. Abdullah","doi":"10.1016/j.ccst.2024.100266","DOIUrl":"10.1016/j.ccst.2024.100266","url":null,"abstract":"<div><p>The growth of coherently engineered porous bimetal (PBM) nanostructures shows great progress in electrochemical carbon dioxide (CO<sub>2</sub>) utilization. This is due to their remarkable catalytic and physicochemical merits that present an encouraging approach for CO<sub>2</sub> conversion into valuable products (i.e., fuels and chemicals). Hence, this review presents recent advances in experimental, <em>in-situ</em> analysis and theoretical studies of PBM electrocatalysts, including PBM Cu-based and PBM Cu-free electrocatalysts, toward CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) and comprehend its fundamental mechanisms. Various synthesis strategies were utilized to construct PBM nanostructures with distinct compositions, morphology, and synergism for excellent CO<sub>2</sub>RR activity, stability and product selectivity. As corroborated by theoretical calculations that revealed beneficial electronic features and reaction routes with facile adsorption energies for reactant (CO<sub>2</sub>) and intermediate species on the various active sites of PBM nanostructures in easing the CO<sub>2</sub>RR. Future research efforts should establish robust framework for experimental, <em>in-situ</em> analysis, theoretical simulations and automated machine learning in developing next-generation electrochemical CO<sub>2</sub> utilization technologies with PBM nanostructures. Finally, this study emphasizes the potential of PBM nanostructures for efficient electrochemical CO<sub>2</sub> utilization and provides a pathway to sustainable and inexpensively viable carbon-neutrality.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100266"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000782/pdfft?md5=5a085c56b579010b51ebd9502999ceb9&pid=1-s2.0-S2772656824000782-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Capture Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1