首页 > 最新文献

Cell metabolism最新文献

英文 中文
Supercharging cancer-fighting T cells with lithium carbonate. 用碳酸锂为抗癌 T 细胞充电。
Pub Date : 2024-03-05 DOI: 10.1016/j.cmet.2024.02.006
Yue Xu, Kaili Ma, Lianjun Zhang, Guideng Li

Lactate influences the behavior of various immune cell types. In a recent Nature Immunology study, Ma et al. revealed that lithium carbonate induces monocarboxylate transporter 1 translocation to mitochondria, enhancing cytoplasmic lactate transport into the mitochondria and increasing lactate mitochondrial metabolism, thereby promoting T cell effector function.

乳酸盐会影响各种免疫细胞的行为。在最近的《自然-免疫学》(Nature Immunology)研究中,Ma 等人发现碳酸锂能诱导单羧酸盐转运体 1 转位至线粒体,增强细胞质中乳酸向线粒体的转运,增加乳酸线粒体代谢,从而促进 T 细胞效应器功能。
{"title":"Supercharging cancer-fighting T cells with lithium carbonate.","authors":"Yue Xu, Kaili Ma, Lianjun Zhang, Guideng Li","doi":"10.1016/j.cmet.2024.02.006","DOIUrl":"10.1016/j.cmet.2024.02.006","url":null,"abstract":"<p><p>Lactate influences the behavior of various immune cell types. In a recent Nature Immunology study, Ma et al. revealed that lithium carbonate induces monocarboxylate transporter 1 translocation to mitochondria, enhancing cytoplasmic lactate transport into the mitochondria and increasing lactate mitochondrial metabolism, thereby promoting T cell effector function.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"36 3","pages":"463-465"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UCP1 and CKB are parallel players in BAT. UCP1 和 CKB 是 BAT 的并行参与者。
Pub Date : 2024-03-05 DOI: 10.1016/j.cmet.2024.01.016
Meng Dong, Ziyu Cheng, Wanzhu Jin

It is generally believed that the contributions of the UCP1-independent thermogenic pathways are secondary to UCP1-mediated thermogenesis in BAT. Now, Rahbani et al. demonstrate in vivo that adaptive thermogenesis in brown adipose tissue is regulated by UCP1 and CKB in parallel.

一般认为,UCP1 依赖性产热途径的贡献次于 UCP1 介导的 BAT 产热。现在,Rahbani 等人在体内证明,棕色脂肪组织的适应性产热是由 UCP1 和 CKB 同时调控的。
{"title":"UCP1 and CKB are parallel players in BAT.","authors":"Meng Dong, Ziyu Cheng, Wanzhu Jin","doi":"10.1016/j.cmet.2024.01.016","DOIUrl":"10.1016/j.cmet.2024.01.016","url":null,"abstract":"<p><p>It is generally believed that the contributions of the UCP1-independent thermogenic pathways are secondary to UCP1-mediated thermogenesis in BAT. Now, Rahbani et al. demonstrate in vivo that adaptive thermogenesis in brown adipose tissue is regulated by UCP1 and CKB in parallel.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"36 3","pages":"459-460"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB. UCP1 和 CKB 并行控制冷触发的脂肪细胞产热。
Pub Date : 2024-03-05 Epub Date: 2024-01-24 DOI: 10.1016/j.cmet.2024.01.001
Janane F Rahbani, Jakub Bunk, Damien Lagarde, Bozena Samborska, Anna Roesler, Haopeng Xiao, Abhirup Shaw, Zafir Kaiser, Jessica L Braun, Mia S Geromella, Val A Fajardo, Robert A Koza, Lawrence Kazak

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.

解偶联蛋白 1(UCP1)是脂肪细胞产热的唯一介质,这是一种传统观点,主要是从遗传性缺乏 Ucp1 的小鼠(种系 Ucp1-/-)出生后产热减少推断出来的。然而,种系 Ucp1-/- 小鼠的棕色脂肪组织存在继发性变化。为了减轻这些可能造成混淆的辅助变化,我们构建了具有诱导性脂肪细胞选择性 Ucp1 干扰的小鼠。我们发现,虽然种系 Ucp1-/- 小鼠会因寒冷诱导的低体温症而死亡,但大多数诱导性缺失 Ucp1 的小鼠在寒冷环境中仍能保持体温。然而,诱导性脂肪细胞选择性共缺失 Ucp1 和肌酸激酶 b(Ckb,一种 UCP1 依赖性产热的效应物)会加剧不耐寒性。在成熟脂肪细胞中删除 UCP1 或 UCP1/CKB 共同删除后,适度的冷暴露会触发成熟棕色脂肪细胞的再生,从而协调恢复 UCP1 和 CKB 的表达。我们的研究结果表明,发热脂肪细胞利用非同类蛋白冗余--通过UCP1和CKB--促进冷诱导的能量耗散。
{"title":"Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB.","authors":"Janane F Rahbani, Jakub Bunk, Damien Lagarde, Bozena Samborska, Anna Roesler, Haopeng Xiao, Abhirup Shaw, Zafir Kaiser, Jessica L Braun, Mia S Geromella, Val A Fajardo, Robert A Koza, Lawrence Kazak","doi":"10.1016/j.cmet.2024.01.001","DOIUrl":"10.1016/j.cmet.2024.01.001","url":null,"abstract":"<p><p>That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1<sup>-/-</sup>). However, germline Ucp1<sup>-/-</sup> mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1<sup>-/-</sup> mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"526-540.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysine acetyltransferase 6A maintains CD4+ T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity. 赖氨酸乙酰转移酶 6A 通过对自身免疫中的葡萄糖代谢进行表观遗传学重编程来维持 CD4+ T 细胞反应。
Pub Date : 2024-03-05 Epub Date: 2024-01-17 DOI: 10.1016/j.cmet.2023.12.016
Jia-Yao Fu, Shi-Jia Huang, Bao-Li Wang, Jun-Hao Yin, Chang-Yu Chen, Jia-Bao Xu, Yan-Lin Chen, Shuo Xu, Ting Dong, Hao-Nan Zhou, Xin-Yi Ma, Yi-Ping Pu, Hui Li, Xiu-Juan Yang, Li-Song Xie, Zhi-Jun Wang, Qi Luo, Yan-Xiong Shao, Lei Ye, Zi-Rui Zong, Xin-Di Wei, Wan-Wen Xiao, Shu-Tong Niu, Yi-Ming Liu, He-Ping Xu, Chuang-Qi Yu, Sheng-Zhong Duan, Ling-Yan Zheng

Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.

自身免疫中 CD4+ T 细胞反应增强的特点是广泛的代谢重编程。然而,驱动 CD4+ T 细胞代谢适应的表观遗传分子在很大程度上仍然未知。在这里,我们发现赖氨酸乙酰转移酶 6A (KAT6A)--一种临床上与自身免疫相关的表观遗传调控因子--协调了 CD4+ T 细胞中葡萄糖的代谢重编程。体外促炎性 CD4+ T 细胞亚群的增殖和分化需要 KAT6A,CD4+ T 细胞缺乏 KAT6A 的小鼠对实验性自身免疫性脑脊髓炎和结肠炎的易感性较低。从机理上讲,KAT6A 可协调多个糖酵解基因所在染色质的组蛋白乙酰化丰度,从而影响葡萄糖代谢重编程和随后的 CD4+ T 细胞反应。在小鼠模型中使用 KAT6A 小分子抑制剂治疗显示,针对自身免疫中的 KAT6A 有很高的治疗价值。我们的研究为免疫代谢的表观遗传编程提供了新的见解,并为自身免疫患者提出了潜在的治疗目标。
{"title":"Lysine acetyltransferase 6A maintains CD4<sup>+</sup> T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity.","authors":"Jia-Yao Fu, Shi-Jia Huang, Bao-Li Wang, Jun-Hao Yin, Chang-Yu Chen, Jia-Bao Xu, Yan-Lin Chen, Shuo Xu, Ting Dong, Hao-Nan Zhou, Xin-Yi Ma, Yi-Ping Pu, Hui Li, Xiu-Juan Yang, Li-Song Xie, Zhi-Jun Wang, Qi Luo, Yan-Xiong Shao, Lei Ye, Zi-Rui Zong, Xin-Di Wei, Wan-Wen Xiao, Shu-Tong Niu, Yi-Ming Liu, He-Ping Xu, Chuang-Qi Yu, Sheng-Zhong Duan, Ling-Yan Zheng","doi":"10.1016/j.cmet.2023.12.016","DOIUrl":"10.1016/j.cmet.2023.12.016","url":null,"abstract":"<p><p>Augmented CD4<sup>+</sup> T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4<sup>+</sup> T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4<sup>+</sup> T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4<sup>+</sup> T cell subsets in vitro, and mice with KAT6A-deficient CD4<sup>+</sup> T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4<sup>+</sup> T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"557-574.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER. 抑制 DGAT2 可阻止 SREBP-1 的裂解,并通过增加 ER 中的磷脂酰乙醇胺来改善肝脏脂肪变性。
Pub Date : 2024-03-05 Epub Date: 2024-02-09 DOI: 10.1016/j.cmet.2024.01.011
Shunxing Rong, Mingfeng Xia, Goncalo Vale, Simeng Wang, Chai-Wan Kim, Shili Li, Jeffrey G McDonald, Arun Radhakrishnan, Jay D Horton

Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.

二酰甘油酰基转移酶 2(DGAT2)催化甘油三酯(TG)合成的最后一步。小鼠体内的 DGAT2 基因缺失会降低肝脏中的 TG,目前正在研究 DGAT2 抑制剂用于治疗脂肪肝。在这里,我们发现抑制 DGAT2 还能抑制 SREBP-1 的裂解,减少脂肪酸的合成,降低肝脏中 TG 的积累和分泌。抑制DGAT2会增加内质网(ER)中磷脂酰乙醇胺(PE)的含量并抑制SREBP-1的裂解,而过表达DGAT2会降低ER中PE的浓度并增加体内SREBP-1的裂解。用PE富集ER可阻止SREBP-1的裂解,而与Insigs无关,Insigs是通常将SREBPs保留在ER中的ER蛋白。因此,抑制 DGAT2 可将二酰甘油分流到磷脂合成中,增加 ER 中的 PE 含量,从而减少 SREBP-1 的裂解,减轻肝脏脂肪变性。这项研究揭示了一种调节 SREBP-1 激活和脂肪生成的新机制,它与肝脏中的固醇和 SREBP-2 无关。
{"title":"DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER.","authors":"Shunxing Rong, Mingfeng Xia, Goncalo Vale, Simeng Wang, Chai-Wan Kim, Shili Li, Jeffrey G McDonald, Arun Radhakrishnan, Jay D Horton","doi":"10.1016/j.cmet.2024.01.011","DOIUrl":"10.1016/j.cmet.2024.01.011","url":null,"abstract":"<p><p>Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"617-629.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carnosine facilitates lysosomal release of inhibitors of T cell surveillance. 肉碱能促进溶酶体释放 T 细胞监视抑制剂。
Pub Date : 2024-03-05 DOI: 10.1016/j.cmet.2024.02.003
Pawel Swietach, Marja Jäättelä, Shari Pillon-Thomas, Ebbe Boedtkjer

Cancer metabolism produces large fluxes of lactate and H+, which are extruded by membrane transporters. However, H+ production and extrusion must be coupled by diffusion, facilitated by mobile buffers. Yan et al. propose that carnosine, generated by CARNS2, provides this mobile buffering and enables lysosomal functions that block T cell surveillance.

癌症新陈代谢会产生大量乳酸和 H+,并通过膜转运体排出体外。然而,H+的产生和排出必须通过扩散耦合,并由移动缓冲器促进。Yan 等人提出,由 CARNS2 生成的肌肽提供了这种移动缓冲,并使溶酶体功能得以实现,从而阻碍了 T 细胞的监控。
{"title":"Carnosine facilitates lysosomal release of inhibitors of T cell surveillance.","authors":"Pawel Swietach, Marja Jäättelä, Shari Pillon-Thomas, Ebbe Boedtkjer","doi":"10.1016/j.cmet.2024.02.003","DOIUrl":"10.1016/j.cmet.2024.02.003","url":null,"abstract":"<p><p>Cancer metabolism produces large fluxes of lactate and H<sup>+</sup>, which are extruded by membrane transporters. However, H<sup>+</sup> production and extrusion must be coupled by diffusion, facilitated by mobile buffers. Yan et al. propose that carnosine, generated by CARNS2, provides this mobile buffering and enables lysosomal functions that block T cell surveillance.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"36 3","pages":"461-462"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. 猕猴下丘脑对肥胖和糖尿病的特定区域转录组反应
Pub Date : 2024-02-06 DOI: 10.1016/j.cmet.2024.01.003
Ying Lei, Xian Liang, Yunong Sun, Ting Yao, Hongyu Gong, Zhenhua Chen, Yuanqing Gao, Hui Wang, Ru Wang, Yunqi Huang, Tao Yang, Miao Yu, Longqi Liu, Chun-Xia Yi, Qing-Feng Wu, Xingxing Kong, Xun Xu, Shiping Liu, Zhi Zhang, Tiemin Liu

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.

下丘脑在肥胖和糖尿病的发展过程中起着至关重要的作用;然而,其结构的复杂性和细胞的异质性阻碍了靶向治疗。在这里,我们分析了肥胖猕猴和散发性2型糖尿病猕猴下丘脑的单细胞和空间转录组,揭示了簇和基因的灵长类特异性分布以及空间区域、细胞类型和基因特征的特异性变化。绒毛膜下核(INF)和室旁核(PVN)最容易受到代谢紊乱的影响,而室旁核对糖尿病更为敏感。在 INF 中,肥胖会导致突触可塑性和能量感应能力降低,而糖尿病则会导致分子重编程,这与澹细胞屏障受损、小胶质细胞活化和神经元炎症反应有关。在PVN中,糖尿病猕猴的细胞代谢和神经活动受到抑制。空间转录组数据显示,在糖尿病患者中,小胶质细胞更喜欢第三脑室的实质组织。我们的研究结果提供了一个与肥胖和糖尿病相关的分子变化的全面视角。
{"title":"Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus.","authors":"Ying Lei, Xian Liang, Yunong Sun, Ting Yao, Hongyu Gong, Zhenhua Chen, Yuanqing Gao, Hui Wang, Ru Wang, Yunqi Huang, Tao Yang, Miao Yu, Longqi Liu, Chun-Xia Yi, Qing-Feng Wu, Xingxing Kong, Xun Xu, Shiping Liu, Zhi Zhang, Tiemin Liu","doi":"10.1016/j.cmet.2024.01.003","DOIUrl":"10.1016/j.cmet.2024.01.003","url":null,"abstract":"<p><p>The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"36 2","pages":"438-453.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating. 肠道和大脑分别强化脂肪和糖分的回路,共同促进了暴饮暴食。
Pub Date : 2024-02-06 Epub Date: 2024-01-18 DOI: 10.1016/j.cmet.2023.12.014
Molly McDougle, Alan de Araujo, Arashdeep Singh, Mingxin Yang, Isadora Braga, Vincent Paille, Rebeca Mendez-Hernandez, Macarena Vergara, Lauren N Woodie, Abhishek Gour, Abhisheak Sharma, Nikhil Urs, Brandon Warren, Guillaume de Lartigue

Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.

食物是一种强大的天然强化剂,能引导进食决策。迷走神经从肠道向大脑传递有关营养价值的内部感觉信息;然而,人们对宏量营养素特异性奖励回路的细胞和分子基础知之甚少。在这里,我们通过监测体内钙离子的动态变化,为检测食物中的脂肪和糖提供了独立迷走神经传感途径的直接证据。通过对肠道注入营养物质时激活的迷走神经元进行活动依赖性基因捕获,我们证明了存在独立的肠道-大脑脂肪和糖感知回路,这些回路对于营养特异性强化是必要且充分的。即使控制了卡路里,脂肪和糖回路的联合激活也会增加黑质纹状体多巴胺的释放,并增加暴饮暴食。这项研究为了解介导动机行为的复杂感官回路提供了新的视角,并表明潜意识中摄入致肥饮食(如高脂肪和高糖饮食)的内驱力可能会阻碍有意识的节食努力。
{"title":"Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating.","authors":"Molly McDougle, Alan de Araujo, Arashdeep Singh, Mingxin Yang, Isadora Braga, Vincent Paille, Rebeca Mendez-Hernandez, Macarena Vergara, Lauren N Woodie, Abhishek Gour, Abhisheak Sharma, Nikhil Urs, Brandon Warren, Guillaume de Lartigue","doi":"10.1016/j.cmet.2023.12.014","DOIUrl":"10.1016/j.cmet.2023.12.014","url":null,"abstract":"<p><p>Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"393-407.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ketone flux through BDH1 supports metabolic remodeling of skeletal and cardiac muscles in response to intermittent time-restricted feeding. 通过 BDH1 的酮通量支持骨骼肌和心肌对间歇性限时进食的代谢重塑。
Pub Date : 2024-02-06 DOI: 10.1016/j.cmet.2024.01.007
Ashley S Williams, Scott B Crown, Scott P Lyons, Timothy R Koves, Rebecca J Wilson, Jordan M Johnson, Dorothy H Slentz, Daniel P Kelly, Paul A Grimsrud, Guo-Fang Zhang, Deborah M Muoio

Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.

限时进食(TRF)作为一种促进新陈代谢健康的膳食方案已受到人们的关注。本研究对间歇性 TRF(iTRF)计划的健康益处是否需要骨骼肌和心肌中的酮通量提出了质疑。值得注意的是,我们发现β-羟丁酸脱氢酶1(BDH1)独特地富集在来自心脏和红色/氧化骨骼肌的分离线粒体中,而这些肌肉也具有很高的脂肪酸氧化(FAO)能力。利用横纹肌中 BDH1 缺乏的小鼠,我们发现这种酶能优化脂肪酸氧化效率和急性禁食期间的运动耐受性。此外,iTRF 还会导致肌肉组织发生强有力的分子重塑,而肌肉 BDH1 通量确实在赋予这种疗法全面的适应性益处方面发挥了重要作用,包括增加瘦肉质量、线粒体激素生成和丙酮酸代谢重塑。总之,酮通量可增强线粒体生物能,支持 iTRF 诱导的骨骼肌和心脏重塑。
{"title":"Ketone flux through BDH1 supports metabolic remodeling of skeletal and cardiac muscles in response to intermittent time-restricted feeding.","authors":"Ashley S Williams, Scott B Crown, Scott P Lyons, Timothy R Koves, Rebecca J Wilson, Jordan M Johnson, Dorothy H Slentz, Daniel P Kelly, Paul A Grimsrud, Guo-Fang Zhang, Deborah M Muoio","doi":"10.1016/j.cmet.2024.01.007","DOIUrl":"10.1016/j.cmet.2024.01.007","url":null,"abstract":"<p><p>Time-restricted feeding (TRF) has gained attention as a dietary regimen that promotes metabolic health. This study questioned if the health benefits of an intermittent TRF (iTRF) schedule require ketone flux specifically in skeletal and cardiac muscles. Notably, we found that the ketolytic enzyme beta-hydroxybutyrate dehydrogenase 1 (BDH1) is uniquely enriched in isolated mitochondria derived from heart and red/oxidative skeletal muscles, which also have high capacity for fatty acid oxidation (FAO). Using mice with BDH1 deficiency in striated muscles, we discover that this enzyme optimizes FAO efficiency and exercise tolerance during acute fasting. Additionally, iTRF leads to robust molecular remodeling of muscle tissues, and muscle BDH1 flux does indeed play an essential role in conferring the full adaptive benefits of this regimen, including increased lean mass, mitochondrial hormesis, and metabolic rerouting of pyruvate. In sum, ketone flux enhances mitochondrial bioenergetics and supports iTRF-induced remodeling of skeletal muscle and heart.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"36 2","pages":"422-437.e8"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism. 线粒体脂肪酸合成是哺乳动物氧化代谢的一个新兴中心调节因子。
Pub Date : 2024-01-02 Epub Date: 2023-12-20 DOI: 10.1016/j.cmet.2023.11.017
Riley J Wedan, Jacob Z Longenecker, Sara M Nowinski

Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.

与众所周知的营养物质分解功能相反,线粒体也是重要的生物合成枢纽,并表达进化保守的线粒体脂肪酸合成(mtFAS)途径。mtFAS 生成硫辛酸和更长的饱和脂肪酸,但其确切产物、在细胞中的最终目的地以及该途径的细胞意义都是目前研究的热点问题。此外,尽管线粒体具有明确的输入脂肪酸的能力,但为什么线粒体需要 mtFAS,目前仍不清楚。mtFAS 基因先天性代谢错误患者的发现引发了对该途径的新的研究兴趣。新的哺乳动物模型揭示了 mtFAS 如何协调线粒体氧化代谢的许多方面,并提出了它在肥胖、糖尿病和心力衰竭等疾病中的作用问题。在这篇综述中,我们将讨论 mtFAS 的产物、它们的功能以及 mtFAS 在各种模型和代谢性疾病中受损的后果。
{"title":"Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism.","authors":"Riley J Wedan, Jacob Z Longenecker, Sara M Nowinski","doi":"10.1016/j.cmet.2023.11.017","DOIUrl":"10.1016/j.cmet.2023.11.017","url":null,"abstract":"<p><p>Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"36-47"},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138833524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1