首页 > 最新文献

Cell metabolism最新文献

英文 中文
Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells. 细胞膜 pH 值是连接环境线索与胰岛β细胞胰岛素加工和分泌的直接纽带。
Pub Date : 2024-06-04 Epub Date: 2024-03-20 DOI: 10.1016/j.cmet.2024.02.012
Yujiang Fang, Hexi Feng, Bowen Zhang, Shuwei Zhang, Yanjie Zhou, Pengcheng Hao, Zhongshu Zhou, Shanshan Zhou, Nan Li, Yi Hui, Lin Ma, Jie Xiong, Jinjin Wu, Ling Liu, Xiaoqing Zhang

Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.

胰腺β细胞通过调节胰岛素的加工和分泌对葡萄糖波动做出积极反应。然而,这一过程是如何在多变的微环境和β细胞内在状态下进行精心调整的,以及其功能障碍是否与代谢性疾病有关,这些问题在很大程度上仍然令人难以捉摸。在这里,我们发现当葡萄糖挑战β细胞时,β细胞的细胞膜pH值(pHc)会升高,Smad5可通过其核胞质穿梭感应到这一点。如果β细胞中的Smad5发生病变,就会因胰岛素加工和分泌不足而导致高血糖和葡萄糖不耐受。Smad5 在调节胰岛素加工和分泌中的作用归因于其通过调节 V-ATP 酶活性实现颗粒酸化的非典型功能。对 Smad5 进行基因突变或给予碱性水以反映细胞膜碱化,可改善高脂饮食(HFD)处理小鼠的葡萄糖不耐受症。总之,我们的研究结果表明,pHc 是连接环境线索与 β 细胞中胰岛素加工和分泌的直接纽带。
{"title":"Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells.","authors":"Yujiang Fang, Hexi Feng, Bowen Zhang, Shuwei Zhang, Yanjie Zhou, Pengcheng Hao, Zhongshu Zhou, Shanshan Zhou, Nan Li, Yi Hui, Lin Ma, Jie Xiong, Jinjin Wu, Ling Liu, Xiaoqing Zhang","doi":"10.1016/j.cmet.2024.02.012","DOIUrl":"10.1016/j.cmet.2024.02.012","url":null,"abstract":"<p><p>Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1237-1251.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. 转录组学、表观基因组学和空间代谢组学细胞剖析重新定义了区域人类肾脏解剖学。
Pub Date : 2024-05-07 Epub Date: 2024-03-20 DOI: 10.1016/j.cmet.2024.02.015
Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys

A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.

目前还缺乏包括主要肾脏区域的大规模多模态图谱。在这里,我们采用了高通量单细胞ATAC/RNA测序(SHARE-seq)和空间分辨代谢组学方法,对来自不同肾脏解剖区域的54份人体样本进行了分析。我们生成了 446267 个细胞的转录组和 401875 个细胞的染色质可及性图谱,并开发了一个软件包来分析 408218 个空间解析代谢组。我们发现,同一类型的细胞,包括薄肢细胞、亨列升支粗环细胞和主细胞,会因解剖位置的不同而显示出不同的转录组、染色质可及性和代谢组特征。对代谢相关基因图谱的调查显示,肾小管节段之间的代谢特征并不重叠,患病的近端肾小管(PT)细胞脂质代谢紊乱。将多模态全息图学与临床数据相结合,发现PLEKHA1是一种疾病标志物,体外敲除PLEKHA1可增加PT分化过程中的基因表达,这表明PLEKHA1可能具有致病作用。这项研究凸显了以前未被充分反映的人类肾脏解剖学基础细胞异质性。
{"title":"Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.","authors":"Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys","doi":"10.1016/j.cmet.2024.02.015","DOIUrl":"10.1016/j.cmet.2024.02.015","url":null,"abstract":"<p><p>A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1105-1125.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of pregnancy, its progression, and its cessation on human (maternal) biological aging. 妊娠、妊娠进展和妊娠停止对人类(母体)生物衰老的影响。
Pub Date : 2024-05-07 Epub Date: 2024-03-22 DOI: 10.1016/j.cmet.2024.02.016
Hung Pham, Tara Thompson-Felix, Darina Czamara, Jerod M Rasmussen, Adam Lombroso, Sonja Entringer, Elisabeth B Binder, Pathik D Wadhwa, Claudia Buss, Kieran J O'Donnell
{"title":"The effects of pregnancy, its progression, and its cessation on human (maternal) biological aging.","authors":"Hung Pham, Tara Thompson-Felix, Darina Czamara, Jerod M Rasmussen, Adam Lombroso, Sonja Entringer, Elisabeth B Binder, Pathik D Wadhwa, Claudia Buss, Kieran J O'Donnell","doi":"10.1016/j.cmet.2024.02.016","DOIUrl":"10.1016/j.cmet.2024.02.016","url":null,"abstract":"","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"877-878"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologic disruption and metabolic reprogramming in infection and sepsis. 感染和败血症中的生理紊乱和新陈代谢重编程。
Pub Date : 2024-05-07 Epub Date: 2024-03-20 DOI: 10.1016/j.cmet.2024.02.013
Katharina Willmann, Luis F Moita

Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.

要有效应对严重的全身性感染,就必须协调两种互补的防御策略,最大限度地减少感染对宿主的负面影响:一种是旨在消灭病原体的抵抗力,另一种是限制组织损伤和保护器官功能的疾病耐受力。抵抗力和疾病耐受力主要依赖于不同的新陈代谢程序,这些程序在时间和空间上可能不会同时运行。由于进化的原因,宿主最初会优先考虑消灭病原体,从而形成占主导地位的抵抗机制,但可能会牺牲疾病耐受性,导致器官功能衰竭。在此,我们总结了我们目前对感染导致的生理扰动在免疫反应动态中的作用以及与抗性和疾病耐受机制相关的代谢程序要求的理解。然后,我们将讨论如何深入了解这些机制的相互作用,为今后旨在改善败血症预后的研究提供信息,并探讨治疗干预措施的潜力。
{"title":"Physiologic disruption and metabolic reprogramming in infection and sepsis.","authors":"Katharina Willmann, Luis F Moita","doi":"10.1016/j.cmet.2024.02.013","DOIUrl":"10.1016/j.cmet.2024.02.013","url":null,"abstract":"<p><p>Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"927-946"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging-induced tRNAGlu-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. 老化诱导的 tRNAGlu 衍生片段通过靶向线粒体翻译依赖性嵴组织来损害谷氨酸的生物合成。
Pub Date : 2024-05-07 Epub Date: 2024-03-07 DOI: 10.1016/j.cmet.2024.02.011
Dingfeng Li, Xinyi Gao, Xiaolin Ma, Ming Wang, Chuandong Cheng, Tian Xue, Feng Gao, Yong Shen, Juan Zhang, Qiang Liu

Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.

线粒体嵴是线粒体内膜的折叠部分,随着年龄的增长,其结构会发生异常变化。然而,其潜在的分子机制及其对大脑衰老的贡献在很大程度上还难以捉摸。在这里,我们观察到谷氨酸能神经元线粒体中Glu-5'tsRNA-CTC(一种转移RNA衍生的小RNA(tsRNA))的积累与年龄有关,这种小RNA来自核编码的tRNAGlu。线粒体 Glu-5'tsRNA-CTC 破坏了 mt-tRNALeu 和亮氨酰-tRNA 合成酶 2(LaRs2)的结合,损害了 mt-tRNALeu 氨基酰化和线粒体编码蛋白质的翻译。线粒体翻译缺陷破坏了嵴的组织,导致谷氨酰胺酶(GLS)依赖性谷氨酸形成受损和突触体谷氨酸水平降低。此外,Glu-5'tsRNA-CTC 的减少能保护老年大脑免受线粒体嵴组织、谷氨酸代谢、突触结构和记忆中与年龄相关的缺陷的影响。因此,除了说明正常线粒体嵴超微结构在维持谷氨酸水平中的生理作用外,我们的研究还确定了 tsRNA 在大脑衰老和与年龄相关的记忆衰退中的病理作用。
{"title":"Aging-induced tRNA<sup>Glu</sup>-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization.","authors":"Dingfeng Li, Xinyi Gao, Xiaolin Ma, Ming Wang, Chuandong Cheng, Tian Xue, Feng Gao, Yong Shen, Juan Zhang, Qiang Liu","doi":"10.1016/j.cmet.2024.02.011","DOIUrl":"10.1016/j.cmet.2024.02.011","url":null,"abstract":"<p><p>Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNA<sup>Glu</sup> in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNA<sup>Leu</sup> and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNA<sup>Leu</sup> aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1059-1075.e9"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transketolase promotes MAFLD by limiting inosine-induced mitochondrial activity. 转酮醇酶通过限制肌苷诱导的线粒体活性来促进 MAFLD。
Pub Date : 2024-05-07 Epub Date: 2024-03-27 DOI: 10.1016/j.cmet.2024.03.003
Lingfeng Tong, Zhangbing Chen, Yangyang Li, Xinxia Wang, Changjie Yang, Yakui Li, Yemin Zhu, Ying Lu, Qi Liu, Nannan Xu, Sijia Shao, Lifang Wu, Ping Zhang, Guangyu Wu, Xiaoyu Wu, Xiaosong Chen, Junwei Fang, Renbing Jia, Tianle Xu, Bin Li, Liang Zheng, Junling Liu, Xuemei Tong

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.

代谢功能障碍相关性脂肪肝(MAFLD)在全球的发病率约为 25%,目前还没有获得批准的治疗方法。通过代谢组学和蛋白质组学分析,我们发现肝脏转酮醇酶 (TKT) 在人类和小鼠 MAFLD 中的高表达,TKT 是磷酸戊糖途径的一种代谢酶。高胰岛素血症通过胰岛素受体-CCAAT/增强子结合蛋白α轴促进了TKT的表达。利用肝脏特异性 TKT 过表达和基因敲除小鼠模型,我们证明了 TKT 是 MAFLD 进展所必需的。进一步的代谢通量分析表明,Tkt缺失会增加肝脏肌苷水平,从而激活蛋白激酶A-CAMP反应元件结合蛋白级联,促进磷脂酰胆碱合成,改善线粒体功能。此外,胰岛素还能诱导肝脏 TKT,限制依赖于肌苷的线粒体活性。重要的是,以肝脏TKT为靶点的N-乙酰半乳糖胺(GalNAc)-siRNA共轭物对小鼠MAFLD具有良好的治疗效果。我们的研究揭示了高胰岛素血症是如何调节 TKT 协调的肌苷代谢和线粒体功能的,并为预防和治疗 MAFLD 提供了一种新的治疗策略。
{"title":"Transketolase promotes MAFLD by limiting inosine-induced mitochondrial activity.","authors":"Lingfeng Tong, Zhangbing Chen, Yangyang Li, Xinxia Wang, Changjie Yang, Yakui Li, Yemin Zhu, Ying Lu, Qi Liu, Nannan Xu, Sijia Shao, Lifang Wu, Ping Zhang, Guangyu Wu, Xiaoyu Wu, Xiaosong Chen, Junwei Fang, Renbing Jia, Tianle Xu, Bin Li, Liang Zheng, Junling Liu, Xuemei Tong","doi":"10.1016/j.cmet.2024.03.003","DOIUrl":"10.1016/j.cmet.2024.03.003","url":null,"abstract":"<p><p>Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1013-1029.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fndc5 is translated from an upstream ATG start codon and cleaved to produce irisin myokine precursor protein in humans and mice. 在人和小鼠体内,Fndc5 从上游 ATG 起始密码子翻译并裂解产生鸢尾素肌动蛋白前体蛋白。
Pub Date : 2024-05-07 Epub Date: 2024-03-11 DOI: 10.1016/j.cmet.2024.02.008
Nathan H Witmer, Connor R Linzer, Ryan L Boudreau

Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.

Witmer 等人提供了基因组和分子证据,证明 Fndc5(鸢尾素肌动蛋白前体蛋白)在人类中是通过被忽略的上游 ATG 密码子翻译的。
{"title":"Fndc5 is translated from an upstream ATG start codon and cleaved to produce irisin myokine precursor protein in humans and mice.","authors":"Nathan H Witmer, Connor R Linzer, Ryan L Boudreau","doi":"10.1016/j.cmet.2024.02.008","DOIUrl":"10.1016/j.cmet.2024.02.008","url":null,"abstract":"<p><p>Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"879-881"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetyl-CoA carboxylase obstructs CD8+ T cell lipid utilization in the tumor microenvironment. 乙酰-CoA羧化酶阻碍 CD8+ T 细胞在肿瘤微环境中利用脂质
Pub Date : 2024-05-07 Epub Date: 2024-03-14 DOI: 10.1016/j.cmet.2024.02.009
Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.

实体瘤微环境(TME)会使肿瘤浸润 T 细胞(TILs)的代谢状态受损,其特点是无法维持有效的能量合成以发挥抗肿瘤功能并维持存活。TME中的T细胞必须通过线粒体脂肪酸氧化(FAO)分解脂质,以在营养压力下提供能量,而且已经证实富含FAO的T细胞善于控制癌症。然而,内源性 TIL 和未经修饰的细胞治疗产品无法维持肿瘤中的生物能。我们发现,固态 TME 强加了乙酰辅酶 A(CoA)羧化酶(ACC)的永久活性,导致 TIL 中的脂质生物生成和储存与 FAO 相反。利用代谢、脂质组学和共聚焦成像策略,我们发现限制乙酰辅酶A重新改写了T细胞的新陈代谢,从而在TME压力下维持能量。限制胆碱酯酶的活性会增强表明 T 细胞长寿的基因和表型程序,使 T 细胞具有更高的存活率和多功能性,从而维持对癌症的控制。
{"title":"Acetyl-CoA carboxylase obstructs CD8<sup>+</sup> T cell lipid utilization in the tumor microenvironment.","authors":"Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton","doi":"10.1016/j.cmet.2024.02.009","DOIUrl":"10.1016/j.cmet.2024.02.009","url":null,"abstract":"<p><p>The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"969-983.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+T cells. 肿瘤分泌的 FGF21 可通过重新连接 CD8+T 细胞的胆固醇代谢来发挥免疫抑制作用。
Pub Date : 2024-05-07 Epub Date: 2024-03-26 DOI: 10.1016/j.cmet.2024.03.013
Cegui Hu, Wen Qiao, Xiang Li, Zhi-Kun Ning, Jiang Liu, Sumiya Dalangood, Hanjun Li, Xiang Yu, Zhen Zong, Zhenke Wen, Jun Gui
{"title":"Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8<sup>+</sup>T cells.","authors":"Cegui Hu, Wen Qiao, Xiang Li, Zhi-Kun Ning, Jiang Liu, Sumiya Dalangood, Hanjun Li, Xiang Yu, Zhen Zong, Zhenke Wen, Jun Gui","doi":"10.1016/j.cmet.2024.03.013","DOIUrl":"10.1016/j.cmet.2024.03.013","url":null,"abstract":"","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1168"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. 肝脏丙二酰-CoA 的合成通过抑制脂肪氧化、丙酮酸羧化和氨基酸供应来抑制葡萄糖生成。
Pub Date : 2024-05-07 Epub Date: 2024-03-05 DOI: 10.1016/j.cmet.2024.02.004
Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.

乙酰-CoA羧化酶(ACC)通过产生丙二酰-CoA(一种新脂肪生成的底物和 CPT-1 介导的脂肪氧化的抑制剂)来促进肝脏的膳食代谢。我们报告说,抑制 ACC 还会对新陈代谢产生意想不到的副作用。肝脏特异性双 ACC1/2 基因敲除(LDKO)或药物抑制 ACC 可通过激活肝脏 CPT-1 和丙酮酸羧化酶通量,在进食状态下增加无胰岛素生成、三羧酸(TCA)循环中间产物和葡萄糖生成。禁食本应使 ACC 的作用边缘化,但 LDKO 小鼠在禁食期间保持了 TCA 循环中间产物的升高和血糖的稳定。伴随这些影响的是蛋白质分解的代偿性诱导和葡萄糖生成所需的氨基酸供应的增加,而这又被进食时蛋白质合成的增加所抵消。这种适应性可能与 Nrf2 活性有关,Nrf2 活性由 ACC 抑制诱导,并与禁食氨基酸相关。这些发现揭示了丙二酰-CoA合成在肝脏中的意想不到的作用,并为药物ACC抑制的更广泛影响提供了见解。
{"title":"Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.","authors":"Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess","doi":"10.1016/j.cmet.2024.02.004","DOIUrl":"10.1016/j.cmet.2024.02.004","url":null,"abstract":"<p><p>Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1088-1104.e12"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1