首页 > 最新文献

Cell metabolism最新文献

英文 中文
Adipocyte lipolysis activates epithelial stem cells for hair regeneration through fatty acid metabolic signaling. 脂肪细胞脂解通过脂肪酸代谢信号激活上皮干细胞再生毛发。
IF 30.9 Pub Date : 2025-11-04 Epub Date: 2025-10-22 DOI: 10.1016/j.cmet.2025.09.012
Kang-Yu Tai, Chih-Lung Chen, Sabrina Mai-Yi Fan, Chen-Hsiang Kuan, Chun-Kai Lin, Hsin-Wen Huang, Hao-Wei Lee, Shiou-Han Wang, Nai-Wen Chang, Jian-Da Lin, Che-Feng Chang, Kai-Chien Yang, Maksim V Plikus, Sung-Jan Lin

Adipocytes as vital energy reservoirs respond to systemic metabolic demands by storing or releasing lipids. Whether they can promote tissue regeneration through local metabolic communication remains unclear. We found that after skin injury, macrophages quickly infiltrate dermal adipose tissue, where they promote free fatty acid release from adipocytes via serum amyloid A3-dependent lipolysis, which, in turn, promotes hair regrowth. Epithelial hair follicle stem cells (eHFSCs) absorb the released monounsaturated fatty acids via fatty acid translocase CD36 and activate the transcriptional coactivator Pgc1-α. Downstream of Pgc1-α, increased fatty acid oxidation and mitochondrial biogenesis enhance energy production, enabling eHFSCs to exit quiescence. Topical treatment of monounsaturated fatty acids suffices to promote hair growth by activating eHFSCs. Our findings demonstrate a macrophage-to-adipocyte-to-hair follicle axis that promotes tissue-level regeneration via short-range metabolic signaling through free fatty acids. Analogous regeneration-facilitating mechanisms elicited by injury-induced panniculitis may operate in other adipose-rich organs.

脂肪细胞作为重要的能量储存库,通过储存或释放脂质来响应全身代谢需求。它们是否能通过局部代谢通讯促进组织再生尚不清楚。我们发现,皮肤损伤后,巨噬细胞迅速渗入真皮脂肪组织,通过血清淀粉样蛋白a3依赖性脂解促进脂肪细胞释放游离脂肪酸,进而促进头发再生。上皮性毛囊干细胞(eHFSCs)通过脂肪酸转位酶CD36吸收释放的单不饱和脂肪酸,并激活转录辅激活因子Pgc1-α。在Pgc1-α的下游,增加的脂肪酸氧化和线粒体生物发生增加了能量的产生,使eHFSCs摆脱了静止状态。局部治疗单不饱和脂肪酸足以通过激活eHFSCs来促进头发生长。我们的研究结果表明,巨噬细胞-脂肪细胞-毛囊轴通过游离脂肪酸的短程代谢信号促进组织水平的再生。类似的再生促进机制可能在其他富含脂肪的器官中也起作用。
{"title":"Adipocyte lipolysis activates epithelial stem cells for hair regeneration through fatty acid metabolic signaling.","authors":"Kang-Yu Tai, Chih-Lung Chen, Sabrina Mai-Yi Fan, Chen-Hsiang Kuan, Chun-Kai Lin, Hsin-Wen Huang, Hao-Wei Lee, Shiou-Han Wang, Nai-Wen Chang, Jian-Da Lin, Che-Feng Chang, Kai-Chien Yang, Maksim V Plikus, Sung-Jan Lin","doi":"10.1016/j.cmet.2025.09.012","DOIUrl":"10.1016/j.cmet.2025.09.012","url":null,"abstract":"<p><p>Adipocytes as vital energy reservoirs respond to systemic metabolic demands by storing or releasing lipids. Whether they can promote tissue regeneration through local metabolic communication remains unclear. We found that after skin injury, macrophages quickly infiltrate dermal adipose tissue, where they promote free fatty acid release from adipocytes via serum amyloid A3-dependent lipolysis, which, in turn, promotes hair regrowth. Epithelial hair follicle stem cells (eHFSCs) absorb the released monounsaturated fatty acids via fatty acid translocase CD36 and activate the transcriptional coactivator Pgc1-α. Downstream of Pgc1-α, increased fatty acid oxidation and mitochondrial biogenesis enhance energy production, enabling eHFSCs to exit quiescence. Topical treatment of monounsaturated fatty acids suffices to promote hair growth by activating eHFSCs. Our findings demonstrate a macrophage-to-adipocyte-to-hair follicle axis that promotes tissue-level regeneration via short-range metabolic signaling through free fatty acids. Analogous regeneration-facilitating mechanisms elicited by injury-induced panniculitis may operate in other adipose-rich organs.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2202-2219.e8"},"PeriodicalIF":30.9,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145357168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear hormone-sensitive lipase regulates adipose tissue mass and adipocyte metabolism. 核激素敏感脂肪酶调节脂肪组织质量和脂肪细胞代谢。
IF 30.9 Pub Date : 2025-11-04 Epub Date: 2025-10-23 DOI: 10.1016/j.cmet.2025.09.014
Jérémy Dufau, Emeline Recazens, Laura Bottin, Camille Bergoglio, Aline Mairal, Karima Chaoui, Marie-Adeline Marques, Veronica Jimenez, Miquel García, Tongtong Wang, Henrik Laurell, Jason S Iacovoni, Remy Flores-Flores, Pierre-Damien Denechaud, Khalil Acheikh Ibn Oumar, Ez-Zoubir Amri, Catherine Postic, Jean-Paul Concordet, Pierre Gourdy, Niklas Mejhert, Mikael Rydén, Odile Burlet-Schiltz, Fatima Bosch, Christian Wolfrum, Etienne Mouisel, Genevieve Tavernier, Dominique Langin

In adipocytes, hormone-sensitive lipase (HSL) plays a key role in hydrolyzing triacylglycerols that are stored in lipid droplets. Contrary to the expected phenotype, HSL-deficient mice and humans exhibit lipodystrophy. Here, we show that HSL is also present in the adipocyte nucleus. Mouse models with different HSL subcellular localizations reveal that nuclear HSL is essential for the maintenance of adipose tissue. Gene silencing in human adipocytes shows that HSL, independently of its enzymatic activity, exerts opposing effects on mitochondrial oxidative phosphorylation and the extracellular matrix. Mechanistically, we found that HSL accumulates in the nucleus by interacting with the transforming growth factor β (TGF-β) signaling mediator, mothers against decapentaplegic homolog 3 (SMAD3). Conversely, HSL phosphorylation induces nuclear export. In vivo, HSL accumulates in the nucleus of adipocytes during high-fat feeding with the converse effect during fasting. Together, our data show that as both a cytosolic enzyme and a nuclear factor, HSL plays a pivotal role in adipocyte biology and adipose tissue maintenance.

在脂肪细胞中,激素敏感脂肪酶(HSL)在水解储存在脂滴中的三酰基甘油中起关键作用。与预期的表型相反,hsl缺陷小鼠和人类表现出脂肪营养不良。在这里,我们发现HSL也存在于脂肪细胞核中。具有不同HSL亚细胞定位的小鼠模型表明,核HSL对脂肪组织的维持至关重要。人脂肪细胞中的基因沉默表明,HSL独立于其酶活性,对线粒体氧化磷酸化和细胞外基质产生相反的作用。在机制上,我们发现HSL通过与转化生长因子β (TGF-β)信号介质母体抗十足瘫痪同源物3 (SMAD3)相互作用在细胞核中积累。相反,HSL磷酸化诱导核输出。在体内,高脂肪喂养期间,HSL在脂肪细胞核中积累,而禁食期间则相反。总之,我们的数据表明,作为一种细胞质酶和核因子,HSL在脂肪细胞生物学和脂肪组织维持中起着关键作用。
{"title":"Nuclear hormone-sensitive lipase regulates adipose tissue mass and adipocyte metabolism.","authors":"Jérémy Dufau, Emeline Recazens, Laura Bottin, Camille Bergoglio, Aline Mairal, Karima Chaoui, Marie-Adeline Marques, Veronica Jimenez, Miquel García, Tongtong Wang, Henrik Laurell, Jason S Iacovoni, Remy Flores-Flores, Pierre-Damien Denechaud, Khalil Acheikh Ibn Oumar, Ez-Zoubir Amri, Catherine Postic, Jean-Paul Concordet, Pierre Gourdy, Niklas Mejhert, Mikael Rydén, Odile Burlet-Schiltz, Fatima Bosch, Christian Wolfrum, Etienne Mouisel, Genevieve Tavernier, Dominique Langin","doi":"10.1016/j.cmet.2025.09.014","DOIUrl":"10.1016/j.cmet.2025.09.014","url":null,"abstract":"<p><p>In adipocytes, hormone-sensitive lipase (HSL) plays a key role in hydrolyzing triacylglycerols that are stored in lipid droplets. Contrary to the expected phenotype, HSL-deficient mice and humans exhibit lipodystrophy. Here, we show that HSL is also present in the adipocyte nucleus. Mouse models with different HSL subcellular localizations reveal that nuclear HSL is essential for the maintenance of adipose tissue. Gene silencing in human adipocytes shows that HSL, independently of its enzymatic activity, exerts opposing effects on mitochondrial oxidative phosphorylation and the extracellular matrix. Mechanistically, we found that HSL accumulates in the nucleus by interacting with the transforming growth factor β (TGF-β) signaling mediator, mothers against decapentaplegic homolog 3 (SMAD3). Conversely, HSL phosphorylation induces nuclear export. In vivo, HSL accumulates in the nucleus of adipocytes during high-fat feeding with the converse effect during fasting. Together, our data show that as both a cytosolic enzyme and a nuclear factor, HSL plays a pivotal role in adipocyte biology and adipose tissue maintenance.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2250-2263.e9"},"PeriodicalIF":30.9,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145369151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of a metabolic switch from glucose to ketone metabolism programs ketogenic diet-induced therapeutic vulnerability in lung cancer. 诱导从葡萄糖到酮代谢的代谢转换程序生酮饮食诱导的肺癌治疗脆弱性。
IF 30.9 Pub Date : 2025-11-04 Epub Date: 2025-10-24 DOI: 10.1016/j.cmet.2025.10.001
Zhengwei Wu, Zhenxun Wang, Seow Qi Ng, Jessica Alice Lidster, Paul Schwerd-Kleine, Zi Jin Cheryl Phua, Kai Lay Esther Peh, Yin Ying Ho, Ju Yuan, S Shathishwaran, Xun Hui Yeo, Ying Zhang, Yui Hei Jasper Chiu, Li Yieng Eunice Lau, Tony Kiat Hon Lim, Angela Takano, Eng Huat Tan, Anders Jacobsen Skanderup, Vinay Tergaonkar, Weiping Han, Ying Swan Ho, Daniel Shao Weng Tan, Wai Leong Tam

Tumor-initiating cells (TICs) preferentially reside in poorly vascularized, nutrient-stressed tumor regions, yet how they adapt to glucose limitation is unclear. We show that lung TICs, unlike bulk tumor cells, can switch from glucose to ketone utilization under glucose deprivation. Ex vivo ketone supplementation or a prolonged ketogenic diet supports TIC growth and tumor-initiating capacity. Integrated metabolomics, genomics, and flux analyses reveal that ketones fuel ketolysis, fatty acid synthesis, and de novo lipogenesis. Paradoxically, ketogenic diet intervention creates metabolic vulnerabilities in TICs, sensitizing them toward inhibition of the ketone transporter monocarboxylate transporter 1 (MCT1), regulated by its chaperone protein CD147, as well as toward pharmacological blockade of fatty acid synthase (FASN). Loss of CD147 ablates TICs under glucose limitation conditions in vitro and in vivo. These findings uncover a nutrient-responsive metabolic switch in lung TICs and provide mechanistic insight into how dietary manipulation can influence cancer progression and enhance the efficacy of targeted therapies.

肿瘤启动细胞(tic)优先存在于血管化不良、营养紧张的肿瘤区域,但它们如何适应葡萄糖限制尚不清楚。我们发现,与大部分肿瘤细胞不同,肺tic在葡萄糖剥夺的情况下可以从葡萄糖转化为酮。体外补充酮或长期生酮饮食支持TIC生长和肿瘤启动能力。综合代谢组学、基因组学和通量分析表明,酮类促进酮解、脂肪酸合成和新生脂肪生成。矛盾的是,生酮饮食干预在tic中产生代谢脆弱性,使其对酮转运蛋白单羧酸转运蛋白1 (MCT1)的抑制敏感,MCT1由其伴侣蛋白CD147调节,以及对脂肪酸合成酶(FASN)的药理学阻断。在体内和体外葡萄糖限制条件下,CD147的缺失可使tic消融。这些发现揭示了肺tic中营养反应性代谢开关,并为饮食控制如何影响癌症进展和增强靶向治疗效果提供了机制见解。
{"title":"Induction of a metabolic switch from glucose to ketone metabolism programs ketogenic diet-induced therapeutic vulnerability in lung cancer.","authors":"Zhengwei Wu, Zhenxun Wang, Seow Qi Ng, Jessica Alice Lidster, Paul Schwerd-Kleine, Zi Jin Cheryl Phua, Kai Lay Esther Peh, Yin Ying Ho, Ju Yuan, S Shathishwaran, Xun Hui Yeo, Ying Zhang, Yui Hei Jasper Chiu, Li Yieng Eunice Lau, Tony Kiat Hon Lim, Angela Takano, Eng Huat Tan, Anders Jacobsen Skanderup, Vinay Tergaonkar, Weiping Han, Ying Swan Ho, Daniel Shao Weng Tan, Wai Leong Tam","doi":"10.1016/j.cmet.2025.10.001","DOIUrl":"10.1016/j.cmet.2025.10.001","url":null,"abstract":"<p><p>Tumor-initiating cells (TICs) preferentially reside in poorly vascularized, nutrient-stressed tumor regions, yet how they adapt to glucose limitation is unclear. We show that lung TICs, unlike bulk tumor cells, can switch from glucose to ketone utilization under glucose deprivation. Ex vivo ketone supplementation or a prolonged ketogenic diet supports TIC growth and tumor-initiating capacity. Integrated metabolomics, genomics, and flux analyses reveal that ketones fuel ketolysis, fatty acid synthesis, and de novo lipogenesis. Paradoxically, ketogenic diet intervention creates metabolic vulnerabilities in TICs, sensitizing them toward inhibition of the ketone transporter monocarboxylate transporter 1 (MCT1), regulated by its chaperone protein CD147, as well as toward pharmacological blockade of fatty acid synthase (FASN). Loss of CD147 ablates TICs under glucose limitation conditions in vitro and in vivo. These findings uncover a nutrient-responsive metabolic switch in lung TICs and provide mechanistic insight into how dietary manipulation can influence cancer progression and enhance the efficacy of targeted therapies.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2233-2249.e9"},"PeriodicalIF":30.9,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145370580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The enedioic acid analog 326E alleviates metabolic dysfunction-associated steatohepatitis via dual targeting at ACLY and PPARα. 内酯酸类似物326E通过双重靶向ACLY和PPARα减轻代谢功能障碍相关的脂肪性肝炎。
IF 30.9 Pub Date : 2025-11-04 Epub Date: 2025-10-22 DOI: 10.1016/j.cmet.2025.09.011
Zhifu Xie, Long Cheng, Yue Hu, Gaolei Song, Fan Wang, Mei Zhang, Yangming Zhang, Xinwen Zhang, Chendong Zhou, Xiaoxue Zhu, Xinyu Sun, Honghong Xu, Qian Song, Yulin Yang, Jie Zheng, Shaohui Ji, Jiming Ye, Chen Zhou, Xiaoying Lai, Wei Li, Yifan Zhang, Xiaoyan Chen, Junqi Niu, Yanhua Ding, Fajun Nan, Jingya Li

The rise in the prevalence of metabolic dysfunction-associated steatohepatitis (MASH) is attributed significantly to dysregulated lipid metabolism. This study discovered that the enedioic acid ATP-citrate lyase (ACLY) inhibitor 326E, an investigational new drug in a phase 2a study for hypercholesterolemia, markedly reduces hepatic lipid accumulation and alleviates MASH in mouse models of MASH. Mechanistic studies demonstrated that 326E exerts these effects not only by inhibiting ACLY to reduce de novo lipogenesis (DNL) but also as a peroxisome proliferator-activated receptor α (PPARα) allosteric regulator to increase hepatic fatty acid oxidation (FAO). The efficacy of activated PPARα for MASH is enhanced by suppressed recycling of FAO products to lipid accumulation as a result of ACLY inhibition. Subsequent studies in cynomolgus monkeys (Macaca fascicularis) confirmed the effectiveness of 326E for MASH in primate species. In a randomized phase 1b/2a clinical trial in patients with MASH (NCT06491576), 326E was well tolerated and reduced circulating gamma-glutamyl transferase (γ-GGT). Taken together, our results indicate the therapeutic potential of 326E for MASH via distinctive dual mechanisms of inhibiting ACLY while activating PPARα.

代谢功能障碍相关脂肪性肝炎(MASH)患病率的上升主要归因于脂质代谢失调。本研究发现,用于治疗高胆固醇血症的2a期研究新药烯二酸atp -柠檬酸裂解酶(ACLY)抑制剂326E在小鼠MASH模型中可显著降低肝脏脂质积累,缓解MASH。机制研究表明,326E不仅通过抑制ACLY减少新生脂肪生成(DNL)发挥这些作用,而且还作为过氧化物酶体增殖物激活受体α (PPARα)变抗调节剂增加肝脏脂肪酸氧化(FAO)。激活的PPARα对MASH的功效通过抑制FAO产品的再循环来提高脂质积累,这是ACLY抑制的结果。随后对食蟹猴(Macaca fascicularis)的研究证实了326E对灵长类动物MASH的有效性。在一项针对MASH患者(NCT06491576)的随机1b/2a期临床试验中,326E耐受性良好,可降低循环γ-谷氨酰转移酶(γ-GGT)。综上所述,我们的研究结果表明326E通过抑制ACLY和激活PPARα的双重机制对MASH具有治疗潜力。
{"title":"The enedioic acid analog 326E alleviates metabolic dysfunction-associated steatohepatitis via dual targeting at ACLY and PPARα.","authors":"Zhifu Xie, Long Cheng, Yue Hu, Gaolei Song, Fan Wang, Mei Zhang, Yangming Zhang, Xinwen Zhang, Chendong Zhou, Xiaoxue Zhu, Xinyu Sun, Honghong Xu, Qian Song, Yulin Yang, Jie Zheng, Shaohui Ji, Jiming Ye, Chen Zhou, Xiaoying Lai, Wei Li, Yifan Zhang, Xiaoyan Chen, Junqi Niu, Yanhua Ding, Fajun Nan, Jingya Li","doi":"10.1016/j.cmet.2025.09.011","DOIUrl":"10.1016/j.cmet.2025.09.011","url":null,"abstract":"<p><p>The rise in the prevalence of metabolic dysfunction-associated steatohepatitis (MASH) is attributed significantly to dysregulated lipid metabolism. This study discovered that the enedioic acid ATP-citrate lyase (ACLY) inhibitor 326E, an investigational new drug in a phase 2a study for hypercholesterolemia, markedly reduces hepatic lipid accumulation and alleviates MASH in mouse models of MASH. Mechanistic studies demonstrated that 326E exerts these effects not only by inhibiting ACLY to reduce de novo lipogenesis (DNL) but also as a peroxisome proliferator-activated receptor α (PPARα) allosteric regulator to increase hepatic fatty acid oxidation (FAO). The efficacy of activated PPARα for MASH is enhanced by suppressed recycling of FAO products to lipid accumulation as a result of ACLY inhibition. Subsequent studies in cynomolgus monkeys (Macaca fascicularis) confirmed the effectiveness of 326E for MASH in primate species. In a randomized phase 1b/2a clinical trial in patients with MASH (NCT06491576), 326E was well tolerated and reduced circulating gamma-glutamyl transferase (γ-GGT). Taken together, our results indicate the therapeutic potential of 326E for MASH via distinctive dual mechanisms of inhibiting ACLY while activating PPARα.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2149-2166.e9"},"PeriodicalIF":30.9,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145357222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary urbanization destabilizes host-gut microbiome homeostasis and informs precision nutrition for human health. 饮食城市化破坏了宿主肠道微生物群的稳态,为人类健康提供了精确的营养。
IF 30.9 Pub Date : 2025-11-04 Epub Date: 2025-10-23 DOI: 10.1016/j.cmet.2025.09.013
Fen Zhang, Guicheng Zhou, Matthias Schewe, Sabine E Kulling, Yu Ding, Dariush Mozaffarian, Tao Zuo

Since the industrial revolution, human dietary habits have invariably trended toward dietary urbanization, during which the human gut microbiota has rapidly changed. However, the human genome cannot change substantially over one generation, leaving it potentially ill-equipped to adapt to evolving microbial functions associated with rising non-communicable diseases (NCDs). In this review, we map the chronological alterations in dietary patterns and incidences of NCDs during global urbanization while emphasizing the gut microbiome as the centerpiece. We then illustrate losses and acquisitions of gut microbes during worldwide urbanization and delineate the mechanisms by which urbanized diets may disrupt host-microbiome interactions, linking to the onset of NCDs. Building on this, we further propose a microbiome-directed precision-nutrition framework that integrates both inter-population and intra-population variations to promote diet-fueled host-microbiome synergism and hence to counteract urbanization-associated diseases. These insights will instruct future microbiome-targeted diets to thwart NCDs.

自工业革命以来,人类的饮食习惯一直趋向于饮食城市化,在此期间,人类肠道微生物群发生了迅速的变化。然而,人类基因组不可能在一代人的时间内发生重大变化,因此可能无法适应与不断增加的非传染性疾病(NCDs)相关的微生物功能的进化。在这篇综述中,我们绘制了全球城市化期间饮食模式和非传染性疾病发病率的时间变化图,同时强调肠道微生物群是核心。然后,我们说明了全球城市化过程中肠道微生物的损失和获得,并描述了城市化饮食可能破坏宿主-微生物组相互作用的机制,这些相互作用与非传染性疾病的发生有关。在此基础上,我们进一步提出了一个以微生物组为导向的精确营养框架,该框架整合了种群间和种群内的差异,以促进饮食驱动的宿主-微生物组协同作用,从而对抗城市化相关疾病。这些见解将指导未来以微生物组为目标的饮食来阻止非传染性疾病。
{"title":"Dietary urbanization destabilizes host-gut microbiome homeostasis and informs precision nutrition for human health.","authors":"Fen Zhang, Guicheng Zhou, Matthias Schewe, Sabine E Kulling, Yu Ding, Dariush Mozaffarian, Tao Zuo","doi":"10.1016/j.cmet.2025.09.013","DOIUrl":"10.1016/j.cmet.2025.09.013","url":null,"abstract":"<p><p>Since the industrial revolution, human dietary habits have invariably trended toward dietary urbanization, during which the human gut microbiota has rapidly changed. However, the human genome cannot change substantially over one generation, leaving it potentially ill-equipped to adapt to evolving microbial functions associated with rising non-communicable diseases (NCDs). In this review, we map the chronological alterations in dietary patterns and incidences of NCDs during global urbanization while emphasizing the gut microbiome as the centerpiece. We then illustrate losses and acquisitions of gut microbes during worldwide urbanization and delineate the mechanisms by which urbanized diets may disrupt host-microbiome interactions, linking to the onset of NCDs. Building on this, we further propose a microbiome-directed precision-nutrition framework that integrates both inter-population and intra-population variations to promote diet-fueled host-microbiome synergism and hence to counteract urbanization-associated diseases. These insights will instruct future microbiome-targeted diets to thwart NCDs.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2128-2148"},"PeriodicalIF":30.9,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145369127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. 丝氨酸和甘氨酸生理学可逆地调节视网膜和周围神经功能。
Pub Date : 2024-10-01 Epub Date: 2024-08-26 DOI: 10.1016/j.cmet.2024.07.021
Esther W Lim, Regis J Fallon, Caleb Bates, Yoichiro Ideguchi, Takayuki Nagasaki, Michal K Handzlik, Emeline Joulia, Roberto Bonelli, Courtney R Green, Brendan R E Ansell, Maki Kitano, Ilham Polis, Amanda J Roberts, Shigeki Furuya, Rando Allikmets, Martina Wallace, Martin Friedlander, Christian M Metallo, Marin L Gantner

Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.

代谢平衡是通过冗余途径来维持的,以确保在禁食和其他压力下有充足的营养供应。这些途径通过肝脏、肾脏和血液循环在组织局部和全身进行调节。在这里,我们描述了丝氨酸、甘氨酸和一碳(SGOC)代谢如何通过眼睛、肝脏和肾脏的通路维持视网膜氨基酸水平和功能。黄斑毛细血管扩张症(MacTel)是一种与年龄有关的视网膜疾病,循环中的丝氨酸和甘氨酸减少。这种单倍体缺陷的 Phgdh+/- 小鼠模型在限制饮食中的丝氨酸/甘氨酸时会加速视网膜缺陷,这突显了原本无声的单倍体缺陷是如何影响视网膜健康的。我们证明,丝氨酸相关视网膜病变和周围神经病变是可逆的,因为补充丝氨酸后,小鼠的视网膜病变和周围神经病变均可恢复。这些数据从分子角度揭示了神经-视网膜功能障碍的遗传和代谢驱动因素,同时强调了改善这种发病机制的治疗机会。
{"title":"Serine and glycine physiology reversibly modulate retinal and peripheral nerve function.","authors":"Esther W Lim, Regis J Fallon, Caleb Bates, Yoichiro Ideguchi, Takayuki Nagasaki, Michal K Handzlik, Emeline Joulia, Roberto Bonelli, Courtney R Green, Brendan R E Ansell, Maki Kitano, Ilham Polis, Amanda J Roberts, Shigeki Furuya, Rando Allikmets, Martina Wallace, Martin Friedlander, Christian M Metallo, Marin L Gantner","doi":"10.1016/j.cmet.2024.07.021","DOIUrl":"10.1016/j.cmet.2024.07.021","url":null,"abstract":"<p><p>Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh<sup>+/</sup><sup>-</sup> mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2315-2328.e6"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. 肥胖会强化性别特异性干扰素信号,从而选择性地恶化女性中枢神经系统自身免疫。
IF 30.9 Pub Date : 2024-10-01 Epub Date: 2024-08-20 DOI: 10.1016/j.cmet.2024.07.017
Brendan Cordeiro, Jeeyoon Jennifer Ahn, Saurabh Gawde, Carmen Ucciferri, Nuria Alvarez-Sanchez, Xavier S Revelo, Natalie Stickle, Kaylea Massey, David G Brooks, Joel M Guthridge, Gabriel Pardo, Daniel A Winer, Robert C Axtell, Shannon E Dunn

Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4+ T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.

肥胖与女性自身免疫性疾病的增加有关。我们报告说,在人类女性中,肥胖会诱导一种与T辅助细胞1(Th1)、白细胞介素(IL)-17和多发性硬化(MS)信号通路相关的血清蛋白特征。饮食诱导超重/肥胖(DIO)的雌性小鼠(而非雄性小鼠)在实验性自身免疫性脑脊髓炎(一种多发性硬化症模型)期间表现出中枢神经系统Th1/IL-17炎症上调。这与残疾恶化和外周淋巴器官中髓鞘特异性 Th1 细胞的扩增有关。此外,在稳定状态下,DIO能提高雌性小鼠血清中干扰素(IFN)-α的水平,并增强STAT1的表达和天真CD4+ T细胞产生的IFN-γ。这种T细胞表型是由脂肪增加驱动的,切除卵巢或敲除T细胞中的I型IFN受体可阻止这种表型。我们的发现从机理上解释了肥胖如何增强自身免疫力。
{"title":"Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females.","authors":"Brendan Cordeiro, Jeeyoon Jennifer Ahn, Saurabh Gawde, Carmen Ucciferri, Nuria Alvarez-Sanchez, Xavier S Revelo, Natalie Stickle, Kaylea Massey, David G Brooks, Joel M Guthridge, Gabriel Pardo, Daniel A Winer, Robert C Axtell, Shannon E Dunn","doi":"10.1016/j.cmet.2024.07.017","DOIUrl":"10.1016/j.cmet.2024.07.017","url":null,"abstract":"<p><p>Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4<sup>+</sup> T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2298-2314.e11"},"PeriodicalIF":30.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. 细胞膜钙通过 CAMKII 激活调节肝线粒体氧化、肝内脂肪分解和葡萄糖生成。
IF 30.9 Pub Date : 2024-10-01 Epub Date: 2024-08-16 DOI: 10.1016/j.cmet.2024.07.016
Traci E LaMoia, Brandon T Hubbard, Mateus T Guerra, Ali Nasiri, Ikki Sakuma, Mario Kahn, Dongyan Zhang, Russell P Goodman, Michael H Nathanson, Yasemin Sancak, Mark Perelis, Vamsi K Mootha, Gerald I Shulman

To examine the roles of mitochondrial calcium Ca2+ ([Ca2+]mt) and cytosolic Ca2+ ([Ca2+]cyt) in the regulation of hepatic mitochondrial fat oxidation, we studied a liver-specific mitochondrial calcium uniporter knockout (MCU KO) mouse model with reduced [Ca2+]mt and increased [Ca2+]cyt content. Despite decreased [Ca2+]mt, deletion of hepatic MCU increased rates of isocitrate dehydrogenase flux, α-ketoglutarate dehydrogenase flux, and succinate dehydrogenase flux in vivo. Rates of [14C16]palmitate oxidation and intrahepatic lipolysis were increased in MCU KO liver slices, which led to decreased hepatic triacylglycerol content. These effects were recapitulated with activation of CAMKII and abrogated with CAMKII knockdown, demonstrating that [Ca2+]cyt activation of CAMKII may be the primary mechanism by which MCU deletion promotes increased hepatic mitochondrial oxidation. Together, these data demonstrate that hepatic mitochondrial oxidation can be dissociated from [Ca2+]mt and reveal a key role for [Ca2+]cyt in the regulation of hepatic fat mitochondrial oxidation, intrahepatic lipolysis, gluconeogenesis, and lipid accumulation.

为了研究线粒体钙 Ca2+ ([Ca2+]mt)和细胞膜 Ca2+ ([Ca2+]cyt)在调节肝线粒体脂肪氧化中的作用,我们研究了一种肝特异性线粒体钙单运体基因敲除(MCU KO)小鼠模型,该模型的[Ca2+]mt含量降低,而[Ca2+]cyt含量增加。尽管[Ca2+]mt 减少了,但肝脏 MCU 的缺失增加了体内异柠檬酸脱氢酶通量、α-酮戊二酸脱氢酶通量和琥珀酸脱氢酶通量的速率。MCU KO肝脏切片中[14C16]棕榈酸酯氧化速率和肝内脂肪分解速率增加,导致肝脏三酰甘油含量降低。激活 CAMKII 可再现这些效应,而敲除 CAMKII 则可消除这些效应,这表明 CAMKII 的[Ca2+]cyt 激活可能是 MCU 缺失促进肝线粒体氧化增加的主要机制。总之,这些数据证明肝线粒体氧化可与[Ca2+]mt分离,并揭示了[Ca2+]cyt在调节肝脂肪线粒体氧化、肝内脂肪分解、葡萄糖生成和脂质积累中的关键作用。
{"title":"Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation.","authors":"Traci E LaMoia, Brandon T Hubbard, Mateus T Guerra, Ali Nasiri, Ikki Sakuma, Mario Kahn, Dongyan Zhang, Russell P Goodman, Michael H Nathanson, Yasemin Sancak, Mark Perelis, Vamsi K Mootha, Gerald I Shulman","doi":"10.1016/j.cmet.2024.07.016","DOIUrl":"10.1016/j.cmet.2024.07.016","url":null,"abstract":"<p><p>To examine the roles of mitochondrial calcium Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>mt</sub>) and cytosolic Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>cyt</sub>) in the regulation of hepatic mitochondrial fat oxidation, we studied a liver-specific mitochondrial calcium uniporter knockout (MCU KO) mouse model with reduced [Ca<sup>2+</sup>]<sub>mt</sub> and increased [Ca<sup>2+</sup>]<sub>cyt</sub> content. Despite decreased [Ca<sup>2+</sup>]<sub>mt</sub>, deletion of hepatic MCU increased rates of isocitrate dehydrogenase flux, α-ketoglutarate dehydrogenase flux, and succinate dehydrogenase flux in vivo. Rates of [<sup>14</sup>C<sub>16</sub>]palmitate oxidation and intrahepatic lipolysis were increased in MCU KO liver slices, which led to decreased hepatic triacylglycerol content. These effects were recapitulated with activation of CAMKII and abrogated with CAMKII knockdown, demonstrating that [Ca<sup>2+</sup>]<sub>cyt</sub> activation of CAMKII may be the primary mechanism by which MCU deletion promotes increased hepatic mitochondrial oxidation. Together, these data demonstrate that hepatic mitochondrial oxidation can be dissociated from [Ca<sup>2+</sup>]<sub>mt</sub> and reveal a key role for [Ca<sup>2+</sup>]<sub>cyt</sub> in the regulation of hepatic fat mitochondrial oxidation, intrahepatic lipolysis, gluconeogenesis, and lipid accumulation.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2329-2340.e4"},"PeriodicalIF":30.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetate enables metabolic fitness and cognitive performance during sleep disruption. 醋酸盐能在睡眠中断时促进新陈代谢,提高认知能力。
Pub Date : 2024-09-03 Epub Date: 2024-08-19 DOI: 10.1016/j.cmet.2024.07.019
Qinqin He, Liwei Ji, Yanyan Wang, Yarong Zhang, Haiyan Wang, Junyan Wang, Qing Zhu, Maodi Xie, Wei Ou, Jun Liu, Kuo Tang, Kening Lu, Qingmei Liu, Jian Zhou, Rui Zhao, Xintian Cai, Nanfang Li, Yang Cao, Tao Li

Sleep is essential for overall health, and its disruption is linked to increased risks of metabolic, cognitive, and cardiovascular dysfunctions; however, the molecular mechanisms remain poorly understood. This study investigated how sleep disturbances contribute to metabolic imbalance and cognition impairment using a chronic sleep fragmentation (SF) mouse model. SF mice exhibited impaired cognition, glucose metabolism, and insulin sensitivity compared with controls. We identified increased acetate levels in hypothalamic astrocytes as a defensive response in SF mice. Through acetate infusion or astrocyte-specific Acss1 deletion to elevate acetate levels, we observed mitigated metabolic and cognitive impairments in SF mice. Mechanistically, acetate binds and activates pyruvate carboxylase, thereby restoring glycolysis and the tricarboxylic acid cycle. Among individuals most commonly affected by SF, patients with obstructive sleep apnea exhibited elevated acetate levels when coupled with type 2 diabetes. Our study uncovers the protective effect of acetate against sleep-induced metabolic and cognitive impairments.

睡眠对整体健康至关重要,睡眠中断与代谢、认知和心血管功能障碍的风险增加有关;然而,人们对其分子机制仍然知之甚少。本研究利用慢性睡眠片段(SF)小鼠模型研究了睡眠紊乱如何导致代谢失衡和认知功能障碍。与对照组相比,SF 小鼠的认知能力、糖代谢和胰岛素敏感性均受损。我们发现下丘脑星形胶质细胞中乙酸盐含量的增加是 SF 小鼠的一种防御反应。通过注入醋酸盐或删除星形胶质细胞特异性 Acss1 来提高醋酸盐水平,我们观察到 SF 小鼠的代谢和认知障碍得到了缓解。从机理上讲,乙酸盐能结合并激活丙酮酸羧化酶,从而恢复糖酵解和三羧酸循环。在最常受 SF 影响的人群中,阻塞性睡眠呼吸暂停患者在合并 2 型糖尿病时表现出乙酸盐水平升高。我们的研究揭示了醋酸盐对睡眠引起的代谢和认知障碍的保护作用。
{"title":"Acetate enables metabolic fitness and cognitive performance during sleep disruption.","authors":"Qinqin He, Liwei Ji, Yanyan Wang, Yarong Zhang, Haiyan Wang, Junyan Wang, Qing Zhu, Maodi Xie, Wei Ou, Jun Liu, Kuo Tang, Kening Lu, Qingmei Liu, Jian Zhou, Rui Zhao, Xintian Cai, Nanfang Li, Yang Cao, Tao Li","doi":"10.1016/j.cmet.2024.07.019","DOIUrl":"10.1016/j.cmet.2024.07.019","url":null,"abstract":"<p><p>Sleep is essential for overall health, and its disruption is linked to increased risks of metabolic, cognitive, and cardiovascular dysfunctions; however, the molecular mechanisms remain poorly understood. This study investigated how sleep disturbances contribute to metabolic imbalance and cognition impairment using a chronic sleep fragmentation (SF) mouse model. SF mice exhibited impaired cognition, glucose metabolism, and insulin sensitivity compared with controls. We identified increased acetate levels in hypothalamic astrocytes as a defensive response in SF mice. Through acetate infusion or astrocyte-specific Acss1 deletion to elevate acetate levels, we observed mitigated metabolic and cognitive impairments in SF mice. Mechanistically, acetate binds and activates pyruvate carboxylase, thereby restoring glycolysis and the tricarboxylic acid cycle. Among individuals most commonly affected by SF, patients with obstructive sleep apnea exhibited elevated acetate levels when coupled with type 2 diabetes. Our study uncovers the protective effect of acetate against sleep-induced metabolic and cognitive impairments.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1998-2014.e15"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. TNF 会损害肠道胆汁酸耐受性,导致结肠炎恶化和英夫利西单抗反应受限。
Pub Date : 2024-09-03 Epub Date: 2024-07-05 DOI: 10.1016/j.cmet.2024.06.008
Mengqi Zheng, Yunjiao Zhai, Yanbo Yu, Jing Shen, Shuzheng Chu, Enrico Focaccia, Wenyu Tian, Sui Wang, Xuesong Liu, Xi Yuan, Yue Wang, Lixiang Li, Bingcheng Feng, Zhen Li, Xiaohuan Guo, Ju Qiu, Cuijuan Zhang, Jiajie Hou, Yiyuan Sun, Xiaoyun Yang, Xiuli Zuo, Mathias Heikenwalder, Yanqing Li, Detian Yuan, Shiyang Li

The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.

肠道不断遇到并适应由各种饮食营养成分形成的外部环境。然而,人们对溃疡性结肠炎患者肠道对饮食挑战的适应性是否以及如何受到损害尚不完全清楚。在这里,我们发现,由于炎症损害了胆汁酸耐受性,短暂的高脂肪饮食会加重结肠炎。从机理上讲,结肠炎发病时产生的过量肿瘤坏死因子(TNF)会通过肠上皮细胞中与受体相互作用的丝氨酸/苏氨酸蛋白激酶 1/ 细胞外信号调节激酶途径干扰胆汁酸解毒,导致胆汁酸在内质网中超载并随之凋亡。与胆汁酸和 TNF 在促进肠道上皮细胞损伤方面的协同作用相一致,肠道胆汁酸过高与英夫利昔单抗的不良反应相关,而胆汁酸清除可提高英夫利昔单抗在实验性结肠炎中的疗效。这项研究发现胆汁酸是肠道中的一种 "机会性致病因子",是溃疡性结肠炎预防/治疗的一个有希望的靶点和分层标准。
{"title":"TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response.","authors":"Mengqi Zheng, Yunjiao Zhai, Yanbo Yu, Jing Shen, Shuzheng Chu, Enrico Focaccia, Wenyu Tian, Sui Wang, Xuesong Liu, Xi Yuan, Yue Wang, Lixiang Li, Bingcheng Feng, Zhen Li, Xiaohuan Guo, Ju Qiu, Cuijuan Zhang, Jiajie Hou, Yiyuan Sun, Xiaoyun Yang, Xiuli Zuo, Mathias Heikenwalder, Yanqing Li, Detian Yuan, Shiyang Li","doi":"10.1016/j.cmet.2024.06.008","DOIUrl":"10.1016/j.cmet.2024.06.008","url":null,"abstract":"<p><p>The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an \"opportunistic pathogenic factor\" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2086-2103.e9"},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1