Pub Date : 2024-06-04Epub Date: 2024-03-20DOI: 10.1016/j.cmet.2024.02.012
Yujiang Fang, Hexi Feng, Bowen Zhang, Shuwei Zhang, Yanjie Zhou, Pengcheng Hao, Zhongshu Zhou, Shanshan Zhou, Nan Li, Yi Hui, Lin Ma, Jie Xiong, Jinjin Wu, Ling Liu, Xiaoqing Zhang
Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.
{"title":"Cytosolic pH is a direct nexus in linking environmental cues with insulin processing and secretion in pancreatic β cells.","authors":"Yujiang Fang, Hexi Feng, Bowen Zhang, Shuwei Zhang, Yanjie Zhou, Pengcheng Hao, Zhongshu Zhou, Shanshan Zhou, Nan Li, Yi Hui, Lin Ma, Jie Xiong, Jinjin Wu, Ling Liu, Xiaoqing Zhang","doi":"10.1016/j.cmet.2024.02.012","DOIUrl":"10.1016/j.cmet.2024.02.012","url":null,"abstract":"<p><p>Pancreatic β cells actively respond to glucose fluctuations through regulating insulin processing and secretion. However, how this process is elaborately tuned in circumstance of variable microenvironments as well as β cell-intrinsic states and whether its dysfunction links to metabolic diseases remain largely elusive. Here, we show that the cytosolic pH (pHc) in β cells is increased upon glucose challenge, which can be sensed by Smad5 via its nucleocytoplasmic shuttling. Lesion of Smad5 in β cells results in hyperglycemia and glucose intolerance due to insulin processing and secretion deficiency. The role of Smad5 in regulating insulin processing and secretion attributes to its non-canonical function by regulating V-ATPase activity for granule acidification. Genetic mutation of Smad5 or administration of alkaline water to mirror cytosolic alkalization ameliorated glucose intolerance in high-fat diet (HFD)-treated mice. Collectively, our findings suggest that pHc is a direct nexus in linking environmental cues with insulin processing and secretion in β cells.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1237-1251.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-20DOI: 10.1016/j.cmet.2024.02.015
Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys
A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.
{"title":"Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.","authors":"Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys","doi":"10.1016/j.cmet.2024.02.015","DOIUrl":"10.1016/j.cmet.2024.02.015","url":null,"abstract":"<p><p>A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1105-1125.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-22DOI: 10.1016/j.cmet.2024.02.016
Hung Pham, Tara Thompson-Felix, Darina Czamara, Jerod M Rasmussen, Adam Lombroso, Sonja Entringer, Elisabeth B Binder, Pathik D Wadhwa, Claudia Buss, Kieran J O'Donnell
{"title":"The effects of pregnancy, its progression, and its cessation on human (maternal) biological aging.","authors":"Hung Pham, Tara Thompson-Felix, Darina Czamara, Jerod M Rasmussen, Adam Lombroso, Sonja Entringer, Elisabeth B Binder, Pathik D Wadhwa, Claudia Buss, Kieran J O'Donnell","doi":"10.1016/j.cmet.2024.02.016","DOIUrl":"10.1016/j.cmet.2024.02.016","url":null,"abstract":"","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"877-878"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-20DOI: 10.1016/j.cmet.2024.02.013
Katharina Willmann, Luis F Moita
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
{"title":"Physiologic disruption and metabolic reprogramming in infection and sepsis.","authors":"Katharina Willmann, Luis F Moita","doi":"10.1016/j.cmet.2024.02.013","DOIUrl":"10.1016/j.cmet.2024.02.013","url":null,"abstract":"<p><p>Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"927-946"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-07DOI: 10.1016/j.cmet.2024.02.011
Dingfeng Li, Xinyi Gao, Xiaolin Ma, Ming Wang, Chuandong Cheng, Tian Xue, Feng Gao, Yong Shen, Juan Zhang, Qiang Liu
Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.
{"title":"Aging-induced tRNA<sup>Glu</sup>-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization.","authors":"Dingfeng Li, Xinyi Gao, Xiaolin Ma, Ming Wang, Chuandong Cheng, Tian Xue, Feng Gao, Yong Shen, Juan Zhang, Qiang Liu","doi":"10.1016/j.cmet.2024.02.011","DOIUrl":"10.1016/j.cmet.2024.02.011","url":null,"abstract":"<p><p>Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNA<sup>Glu</sup> in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNA<sup>Leu</sup> and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNA<sup>Leu</sup> aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1059-1075.e9"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.
{"title":"Transketolase promotes MAFLD by limiting inosine-induced mitochondrial activity.","authors":"Lingfeng Tong, Zhangbing Chen, Yangyang Li, Xinxia Wang, Changjie Yang, Yakui Li, Yemin Zhu, Ying Lu, Qi Liu, Nannan Xu, Sijia Shao, Lifang Wu, Ping Zhang, Guangyu Wu, Xiaoyu Wu, Xiaosong Chen, Junwei Fang, Renbing Jia, Tianle Xu, Bin Li, Liang Zheng, Junling Liu, Xuemei Tong","doi":"10.1016/j.cmet.2024.03.003","DOIUrl":"10.1016/j.cmet.2024.03.003","url":null,"abstract":"<p><p>Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1013-1029.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-11DOI: 10.1016/j.cmet.2024.02.008
Nathan H Witmer, Connor R Linzer, Ryan L Boudreau
Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.
{"title":"Fndc5 is translated from an upstream ATG start codon and cleaved to produce irisin myokine precursor protein in humans and mice.","authors":"Nathan H Witmer, Connor R Linzer, Ryan L Boudreau","doi":"10.1016/j.cmet.2024.02.008","DOIUrl":"10.1016/j.cmet.2024.02.008","url":null,"abstract":"<p><p>Witmer et al. provide genomic and molecular evidence to demonstrate that Fndc5 (irisin myokine precursor protein) is translated in humans from an overlooked upstream ATG codon.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"879-881"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-14DOI: 10.1016/j.cmet.2024.02.009
Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.
实体瘤微环境(TME)会使肿瘤浸润 T 细胞(TILs)的代谢状态受损,其特点是无法维持有效的能量合成以发挥抗肿瘤功能并维持存活。TME中的T细胞必须通过线粒体脂肪酸氧化(FAO)分解脂质,以在营养压力下提供能量,而且已经证实富含FAO的T细胞善于控制癌症。然而,内源性 TIL 和未经修饰的细胞治疗产品无法维持肿瘤中的生物能。我们发现,固态 TME 强加了乙酰辅酶 A(CoA)羧化酶(ACC)的永久活性,导致 TIL 中的脂质生物生成和储存与 FAO 相反。利用代谢、脂质组学和共聚焦成像策略,我们发现限制乙酰辅酶A重新改写了T细胞的新陈代谢,从而在TME压力下维持能量。限制胆碱酯酶的活性会增强表明 T 细胞长寿的基因和表型程序,使 T 细胞具有更高的存活率和多功能性,从而维持对癌症的控制。
{"title":"Acetyl-CoA carboxylase obstructs CD8<sup>+</sup> T cell lipid utilization in the tumor microenvironment.","authors":"Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton","doi":"10.1016/j.cmet.2024.02.009","DOIUrl":"10.1016/j.cmet.2024.02.009","url":null,"abstract":"<p><p>The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"969-983.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07Epub Date: 2024-03-05DOI: 10.1016/j.cmet.2024.02.004
Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
{"title":"Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.","authors":"Stanislaw Deja, Justin A Fletcher, Chai-Wan Kim, Blanka Kucejova, Xiaorong Fu, Monika Mizerska, Morgan Villegas, Natalia Pudelko-Malik, Nicholas Browder, Melissa Inigo-Vollmer, Cameron J Menezes, Prashant Mishra, Eric D Berglund, Jeffrey D Browning, John P Thyfault, Jamey D Young, Jay D Horton, Shawn C Burgess","doi":"10.1016/j.cmet.2024.02.004","DOIUrl":"10.1016/j.cmet.2024.02.004","url":null,"abstract":"<p><p>Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1088-1104.e12"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}