首页 > 最新文献

Cell metabolism最新文献

英文 中文
The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. PNPLA3 I148M变体增加了人类的酮体生成,降低了肝脏的新生脂肪生成和线粒体功能。
Pub Date : 2023-11-07 Epub Date: 2023-10-30 DOI: 10.1016/j.cmet.2023.10.008
Panu K Luukkonen, Kimmo Porthan, Noora Ahlholm, Fredrik Rosqvist, Sylvie Dufour, Xian-Man Zhang, Tiina E Lehtimäki, Wenla Seppänen, Marju Orho-Melander, Leanne Hodson, Kitt Falk Petersen, Gerald I Shulman, Hannele Yki-Järvinen

The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.

PNPLA3 I148M变体是脂肪肝所有阶段的主要遗传风险因素,但其潜在的病理生理学尚不清楚。我们用最先进的稳定同位素技术研究了在多种生理条件下,该变体对纯合携带者和非携带者肝脏代谢的影响。禁食过夜后,与非携带者相比,携带者的血浆β-羟丁酸浓度更高,肝脏新生脂肪生成(DNL)更低。混合餐后,脂肪酸在携带者中被引导向酮体生成,这与肝脏线粒体氧化还原状态的增加有关。在生酮饮食期间,携带者表现出肝内脂解率增加,血浆β-羟丁酸浓度增加,肝线粒体柠檬酸合成酶流量降低。这些研究表明,纯合PNPLA3 I148M携带者具有肝线粒体功能障碍,导致DNL降低,并将碳引导至生酮。这些发现对理解为什么PNPLA3变体易患进行性肝病具有启示意义。
{"title":"The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans.","authors":"Panu K Luukkonen, Kimmo Porthan, Noora Ahlholm, Fredrik Rosqvist, Sylvie Dufour, Xian-Man Zhang, Tiina E Lehtimäki, Wenla Seppänen, Marju Orho-Melander, Leanne Hodson, Kitt Falk Petersen, Gerald I Shulman, Hannele Yki-Järvinen","doi":"10.1016/j.cmet.2023.10.008","DOIUrl":"10.1016/j.cmet.2023.10.008","url":null,"abstract":"<p><p>The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1887-1896.e5"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71430185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. 代谢功能障碍相关脂肪变性肝病的双向免疫串扰。
Pub Date : 2023-11-07 DOI: 10.1016/j.cmet.2023.10.009
Keisuke Sawada, Hak Chung, Samir Softic, Maria E Moreno-Fernandez, Senad Divanovic

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.

代谢功能障碍相关的脂肪变性肝病(MASLD)是没有可用治疗方法的终末期肝病的一个不减的风险因素。失调的免疫反应是MASLD发病机制的关键因素。MASLD通常研究来自免疫系统固有或适应性臂的独立贡献或它们的单向相互作用。然而,先天免疫系统和适应性免疫系统之间的双向交流及其对MASLD的影响仍然没有得到充分的了解。鉴于先天免疫细胞和适应性免疫细胞对MASLD炎症的发展和进展都是不可或缺的,阐明这两个臂之间双向相互作用的致病作用具有开发MASLD新疗法的潜力。在这里,我们回顾了影响MASLD发病机制的免疫细胞类型和双向途径,并根据目前对这种双向串扰的了解,强调了对抗MASLD的潜在药理学方法。
{"title":"The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease.","authors":"Keisuke Sawada, Hak Chung, Samir Softic, Maria E Moreno-Fernandez, Senad Divanovic","doi":"10.1016/j.cmet.2023.10.009","DOIUrl":"10.1016/j.cmet.2023.10.009","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 11","pages":"1852-1871"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone marrow immune cells stop weight regain. 骨髓免疫细胞阻止体重恢复。
Pub Date : 2023-11-07 DOI: 10.1016/j.cmet.2023.10.004
Jing Yan, Cheng Hu

Weight regain is a major challenge in the long-term management of obesity; however, the underlying mechanisms remain unclear. Zhou et al. found that bone-marrow-derived CD7+ monocytes respond to fluctuating nutritional stress and suppress weight regain by promoting beige fat thermogenesis.

体重恢复是长期管理肥胖的一大挑战;然而,其根本机制仍不清楚。周等。发现骨髓来源的CD7+单核细胞对波动的营养应激作出反应,并通过促进米色脂肪产热来抑制体重恢复。
{"title":"Bone marrow immune cells stop weight regain.","authors":"Jing Yan, Cheng Hu","doi":"10.1016/j.cmet.2023.10.004","DOIUrl":"10.1016/j.cmet.2023.10.004","url":null,"abstract":"<p><p>Weight regain is a major challenge in the long-term management of obesity; however, the underlying mechanisms remain unclear. Zhou et al. found that bone-marrow-derived CD7<sup>+</sup> monocytes respond to fluctuating nutritional stress and suppress weight regain by promoting beige fat thermogenesis.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 11","pages":"1845-1846"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. CD36在基质分离和肿瘤进展过程中通过选择性摄取单不饱和脂肪酸来维持脂质稳态。
Pub Date : 2023-11-07 Epub Date: 2023-10-17 DOI: 10.1016/j.cmet.2023.09.012
Alexander R Terry, Veronique Nogueira, Hyunsoo Rho, Gopalakrishnan Ramakrishnan, Jing Li, Soeun Kang, Koralege C Pathmasiri, Sameer Ahmed Bhat, Liping Jiang, Shafi Kuchay, Stephanie M Cologna, Nissim Hay

A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.

高脂肪饮食(HFD)通过增加饱和脂肪酸(SFAs)的摄取来促进转移。脂肪酸转运蛋白CD36参与了这一过程,但缺乏对CD36功能的详细了解。在基质脱离过程中,内质网(ER)应激降低SCD1蛋白,导致脂质饱和度增加。随后,CD36以p38和AMPK依赖的方式被诱导,以促进单不饱和脂肪酸(MUFA)的优先摄取,从而维持SFAs和MUFA之间的平衡。在附着的细胞中,CD36棕榈酰化是MUFA摄取和保护免受棕榈酸诱导的脂毒性所必需的。在癌症小鼠模型中,CD36缺乏诱导了ER应激,同时减少了HFD的促增殖作用,只有棕榈酰化有效的CD36挽救了这种作用。最后,AMPK缺陷型肿瘤的CD36表达减少,并且转移受损,但异位CD36表达恢复了其转移潜力。我们的研究结果表明,CD36不是促进HFD驱动的肿瘤发生,而是通过预防SFA诱导的脂毒性发挥支持作用。
{"title":"CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression.","authors":"Alexander R Terry, Veronique Nogueira, Hyunsoo Rho, Gopalakrishnan Ramakrishnan, Jing Li, Soeun Kang, Koralege C Pathmasiri, Sameer Ahmed Bhat, Liping Jiang, Shafi Kuchay, Stephanie M Cologna, Nissim Hay","doi":"10.1016/j.cmet.2023.09.012","DOIUrl":"10.1016/j.cmet.2023.09.012","url":null,"abstract":"<p><p>A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2060-2076.e9"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate. 高膳食果糖通过微生物群衍生的乙酸盐增强O-GlcNAcylation,从而促进肝细胞癌的进展。
Pub Date : 2023-11-07 Epub Date: 2023-10-04 DOI: 10.1016/j.cmet.2023.09.009
Peng Zhou, Wen-Yi Chang, De-Ao Gong, Jie Xia, Wei Chen, Lu-Yi Huang, Rui Liu, Yi Liu, Chang Chen, Kai Wang, Ni Tang, Ai-Long Huang

Emerging studies have addressed the tumor-promoting role of fructose in different cancers. The effects and pathological mechanisms of high dietary fructose on hepatocellular carcinoma (HCC) remain unclear. Here, we examined the effects of fructose supplementation on HCC progression in wild-type C57BL/6 mice using a spontaneous and chemically induced HCC mouse model. We show that elevated uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and O-GlcNAcylation levels induced by high dietary fructose contribute to HCC progression. Non-targeted metabolomics and stable isotope tracing revealed that under fructose treatment, microbiota-derived acetate upregulates glutamine and UDP-GlcNAc levels and enhances protein O-GlcNAcylation in HCC. Global profiling of O-GlcNAcylation revealed that hyper-O-GlcNAcylation of eukaryotic elongation factor 1A1 promotes cell proliferation and tumor growth. Targeting glutamate-ammonia ligase or O-linked N-acetylglucosamine transferase (OGT) remarkably impeded HCC progression in mice with high fructose intake. We propose that high dietary fructose promotes HCC progression through microbial acetate-induced hyper-O-GlcNAcylation.

新出现的研究已经解决了果糖在不同癌症中的促肿瘤作用。高果糖对肝细胞癌(HCC)的影响和病理机制尚不清楚。在这里,我们使用自发和化学诱导的HCC小鼠模型研究了补充果糖对野生型C57BL/6小鼠HCC进展的影响。我们发现,高果糖诱导的尿苷二磷酸-N-乙酰葡糖胺(UDP-GlcNAc)和O-GlcNAcylation水平升高有助于HCC的进展。非靶向代谢组学和稳定同位素追踪显示,在果糖治疗下,微生物群衍生的乙酸盐上调谷氨酰胺和UDP-GlcNAc水平,并增强HCC中的蛋白质O-GlcNAcylation。O-GlcNAcylation的全局分析显示,真核延伸因子1A1的高O-GlcNA cylation促进细胞增殖和肿瘤生长。在高果糖摄入的小鼠中,靶向谷氨酸氨连接酶或O-连接的N-乙酰葡糖胺转移酶(OGT)显著阻碍HCC的进展。我们提出,高膳食果糖通过微生物乙酸盐诱导的高-O-GlcNA酰化来促进HCC的进展。
{"title":"High dietary fructose promotes hepatocellular carcinoma progression by enhancing O-GlcNAcylation via microbiota-derived acetate.","authors":"Peng Zhou, Wen-Yi Chang, De-Ao Gong, Jie Xia, Wei Chen, Lu-Yi Huang, Rui Liu, Yi Liu, Chang Chen, Kai Wang, Ni Tang, Ai-Long Huang","doi":"10.1016/j.cmet.2023.09.009","DOIUrl":"10.1016/j.cmet.2023.09.009","url":null,"abstract":"<p><p>Emerging studies have addressed the tumor-promoting role of fructose in different cancers. The effects and pathological mechanisms of high dietary fructose on hepatocellular carcinoma (HCC) remain unclear. Here, we examined the effects of fructose supplementation on HCC progression in wild-type C57BL/6 mice using a spontaneous and chemically induced HCC mouse model. We show that elevated uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and O-GlcNAcylation levels induced by high dietary fructose contribute to HCC progression. Non-targeted metabolomics and stable isotope tracing revealed that under fructose treatment, microbiota-derived acetate upregulates glutamine and UDP-GlcNAc levels and enhances protein O-GlcNAcylation in HCC. Global profiling of O-GlcNAcylation revealed that hyper-O-GlcNAcylation of eukaryotic elongation factor 1A1 promotes cell proliferation and tumor growth. Targeting glutamate-ammonia ligase or O-linked N-acetylglucosamine transferase (OGT) remarkably impeded HCC progression in mice with high fructose intake. We propose that high dietary fructose promotes HCC progression through microbial acetate-induced hyper-O-GlcNAcylation.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1961-1975.e6"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regenerating the heart by metabolically reprogramming the cardiomyocyte epigenome. 通过对心肌细胞表观基因组进行代谢重新编程来再生心脏。
Pub Date : 2023-11-07 DOI: 10.1016/j.cmet.2023.10.007
Xiaoqiang Tang

In mammal adolescence, cardiomyocytes rapidly exit the cell cycle, and heart regeneration in adults is limited after cardiac injury. Recent work by Li et al. in Nature revealed that inhibition of fatty acid oxidation can rewire cell metabolism and lead to epigenetic reprogramming of cardiomyocytes to an immature state that facilitates cardiomyocyte cell-cycle reentry and heart regeneration in adult animals.

在哺乳动物的青春期,心肌细胞迅速退出细胞周期,成人心脏损伤后心脏再生受到限制。李等人最近的工作。《自然》杂志揭示,抑制脂肪酸氧化可以重新连接细胞代谢,并导致心肌细胞的表观遗传学重编程到未成熟状态,从而促进成年动物的心肌细胞周期重新进入和心脏再生。
{"title":"Regenerating the heart by metabolically reprogramming the cardiomyocyte epigenome.","authors":"Xiaoqiang Tang","doi":"10.1016/j.cmet.2023.10.007","DOIUrl":"10.1016/j.cmet.2023.10.007","url":null,"abstract":"<p><p>In mammal adolescence, cardiomyocytes rapidly exit the cell cycle, and heart regeneration in adults is limited after cardiac injury. Recent work by Li et al. in Nature revealed that inhibition of fatty acid oxidation can rewire cell metabolism and lead to epigenetic reprogramming of cardiomyocytes to an immature state that facilitates cardiomyocyte cell-cycle reentry and heart regeneration in adult animals.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 11","pages":"1849-1851"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive quantification of metabolic flux during acute cold stress in mice. 小鼠急性冷应激期间代谢通量的综合量化。
Pub Date : 2023-11-07 Epub Date: 2023-10-05 DOI: 10.1016/j.cmet.2023.09.002
Marc R Bornstein, Michael D Neinast, Xianfeng Zeng, Qingwei Chu, Jessie Axsom, Chelsea Thorsheim, Kristina Li, Megan C Blair, Joshua D Rabinowitz, Zoltan Arany

Cold-induced thermogenesis (CIT) is widely studied as a potential avenue to treat obesity, but a thorough understanding of the metabolic changes driving CIT is lacking. Here, we present a comprehensive and quantitative analysis of the metabolic response to acute cold exposure, leveraging metabolomic profiling and minimally perturbative isotope tracing studies in unanesthetized mice. During cold exposure, brown adipose tissue (BAT) primarily fueled the tricarboxylic acid (TCA) cycle with fat in fasted mice and glucose in fed mice, underscoring BAT's metabolic flexibility. BAT minimally used branched-chain amino acids or ketones, which were instead avidly consumed by muscle during cold exposure. Surprisingly, isotopic labeling analyses revealed that BAT uses glucose largely for TCA anaplerosis via pyruvate carboxylation. Finally, we find that cold-induced hepatic gluconeogenesis is critical for CIT during fasting, demonstrating a key functional role for glucose metabolism. Together, these findings provide a detailed map of the metabolic rewiring driving acute CIT.

冷诱导产热(CIT)作为治疗肥胖的一种潜在途径被广泛研究,但对驱动CIT的代谢变化缺乏全面的了解。在这里,我们对急性冷暴露的代谢反应进行了全面和定量的分析,利用代谢组学分析和未麻醉小鼠的最小干扰同位素追踪研究。在寒冷暴露期间,棕色脂肪组织(BAT)主要通过禁食小鼠的脂肪和喂食小鼠的葡萄糖来促进三羧酸(TCA)循环,这突出了BAT的代谢灵活性。BAT很少使用支链氨基酸或酮,而这些氨基酸或酮在寒冷暴露期间会被肌肉大量消耗。令人惊讶的是,同位素标记分析显示,BAT主要通过丙酮酸羧化作用使用葡萄糖进行TCA再合成。最后,我们发现,在禁食期间,冷诱导的肝脏糖异生对CIT至关重要,这表明了葡萄糖代谢的关键功能作用。总之,这些发现提供了驱动急性CIT的代谢重组的详细地图。
{"title":"Comprehensive quantification of metabolic flux during acute cold stress in mice.","authors":"Marc R Bornstein, Michael D Neinast, Xianfeng Zeng, Qingwei Chu, Jessie Axsom, Chelsea Thorsheim, Kristina Li, Megan C Blair, Joshua D Rabinowitz, Zoltan Arany","doi":"10.1016/j.cmet.2023.09.002","DOIUrl":"10.1016/j.cmet.2023.09.002","url":null,"abstract":"<p><p>Cold-induced thermogenesis (CIT) is widely studied as a potential avenue to treat obesity, but a thorough understanding of the metabolic changes driving CIT is lacking. Here, we present a comprehensive and quantitative analysis of the metabolic response to acute cold exposure, leveraging metabolomic profiling and minimally perturbative isotope tracing studies in unanesthetized mice. During cold exposure, brown adipose tissue (BAT) primarily fueled the tricarboxylic acid (TCA) cycle with fat in fasted mice and glucose in fed mice, underscoring BAT's metabolic flexibility. BAT minimally used branched-chain amino acids or ketones, which were instead avidly consumed by muscle during cold exposure. Surprisingly, isotopic labeling analyses revealed that BAT uses glucose largely for TCA anaplerosis via pyruvate carboxylation. Finally, we find that cold-induced hepatic gluconeogenesis is critical for CIT during fasting, demonstrating a key functional role for glucose metabolism. Together, these findings provide a detailed map of the metabolic rewiring driving acute CIT.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"2077-2092.e6"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic support by macrophages sustains colonic epithelial homeostasis. 巨噬细胞的代谢支持维持结肠上皮稳态。
Pub Date : 2023-11-07 Epub Date: 2023-10-06 DOI: 10.1016/j.cmet.2023.09.010
Stephanie Deborah Fritsch, Nyamdelger Sukhbaatar, Karine Gonzales, Alishan Sahu, Loan Tran, Andrea Vogel, Mario Mazic, Jayne Louise Wilson, Stephan Forisch, Hannah Mayr, Raimund Oberle, Jakob Weiszmann, Martin Brenner, Roeland Vanhoutte, Melanie Hofmann, Sini Pirnes-Karhu, Christoph Magnes, Torben Kühnast, Wolfram Weckwerth, Christoph Bock, Kristaps Klavins, Markus Hengstschläger, Christine Moissl-Eichinger, Gernot Schabbauer, Gerda Egger, Eija Pirinen, Steven H L Verhelst, Thomas Weichhart

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.

肠上皮具有高周转率,并通过肠隐窝细胞的增殖不断更新自身,这依赖于来自微环境的特征不充分的信号。在这里,我们发现结肠巨噬细胞直接位于小鼠的上皮隐窝细胞附近,在那里它们以mTORC1依赖的方式代谢支持上皮细胞增殖。具体而言,巨噬细胞中结节性硬化复合物2(Tsc2)的缺失激活了mTORC1信号传导,该信号传导可防止结肠炎诱导的肠道损伤,并诱导多胺亚精胺和精胺的合成。上皮细胞摄入这些多胺并重新连接其细胞代谢以优化增殖和防御。值得注意的是,精胺直接刺激结肠上皮细胞和结肠类器官的增殖。巨噬细胞中多胺产生的遗传干扰改变了结肠中的整体多胺水平,并改变了上皮细胞的增殖。我们的研究结果表明,巨噬细胞充当“共生体”,提供代谢支持,促进结肠上皮的有效自我更新。
{"title":"Metabolic support by macrophages sustains colonic epithelial homeostasis.","authors":"Stephanie Deborah Fritsch, Nyamdelger Sukhbaatar, Karine Gonzales, Alishan Sahu, Loan Tran, Andrea Vogel, Mario Mazic, Jayne Louise Wilson, Stephan Forisch, Hannah Mayr, Raimund Oberle, Jakob Weiszmann, Martin Brenner, Roeland Vanhoutte, Melanie Hofmann, Sini Pirnes-Karhu, Christoph Magnes, Torben Kühnast, Wolfram Weckwerth, Christoph Bock, Kristaps Klavins, Markus Hengstschläger, Christine Moissl-Eichinger, Gernot Schabbauer, Gerda Egger, Eija Pirinen, Steven H L Verhelst, Thomas Weichhart","doi":"10.1016/j.cmet.2023.09.010","DOIUrl":"10.1016/j.cmet.2023.09.010","url":null,"abstract":"<p><p>The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as \"commensals\" that provide metabolic support to promote efficient self-renewal of the colon epithelium.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1931-1943.e8"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. 骨骼肌衍生的细胞外小泡运输糖酵解酶以介导肌骨串扰。
Pub Date : 2023-11-07 DOI: 10.1016/j.cmet.2023.10.013
Shixing Ma, Xiaotao Xing, Haisen Huang, Xin Gao, Xun Xu, Jian Yang, Chengcheng Liao, Xuanhao Zhang, Jinglun Liu, Weidong Tian, Li Liao

Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.

识别源自骨骼肌的控制骨骼形成的线索对于理解肌肉和骨骼之间的串扰以及开发退行性骨病的治疗方法至关重要。在这里,我们发现骨骼肌分泌多个细胞外小泡(Mu-EVs)。这些Mu-EV通过血液到达骨骼,在那里它们被骨髓间充质干细胞/基质细胞(BMSC)吞噬。Mu-EVs促进BMSCs的成骨分化,并对小鼠废用性骨质疏松症具有保护作用。Mu-EVs的数量和生物活性与骨骼肌的功能密切相关。蛋白质组学分析显示Mu-EVs中有许多蛋白质,其中一些可能调节骨代谢,尤其是糖酵解。随后的研究表明,Mu-EVs通过将乳酸脱氢酶A输送到这些细胞中来促进BMSCs的糖酵解。总之,这些发现表明Mu-EVs在BMSC代谢调节和骨形成刺激中发挥着至关重要的作用,为治疗废用性骨质疏松症提供了一种有前景的方法。
{"title":"Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk.","authors":"Shixing Ma, Xiaotao Xing, Haisen Huang, Xin Gao, Xun Xu, Jian Yang, Chengcheng Liao, Xuanhao Zhang, Jinglun Liu, Weidong Tian, Li Liao","doi":"10.1016/j.cmet.2023.10.013","DOIUrl":"10.1016/j.cmet.2023.10.013","url":null,"abstract":"<p><p>Identification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs). Mu-EVs promoted osteogenic differentiation of BMSCs and protected against disuse osteoporosis in mice. The quantity and bioactivity of Mu-EVs were tightly correlated with the function of skeletal muscle. Proteomic analysis revealed numerous proteins in Mu-EVs, some potentially regulating bone metabolism, especially glycolysis. Subsequent investigations indicated that Mu-EVs promoted the glycolysis of BMSCs by delivering lactate dehydrogenase A into these cells. In summary, these findings reveal that Mu-EVs play a vital role in BMSC metabolism regulation and bone formation stimulation, offering a promising approach for treating disuse osteoporosis.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 11","pages":"2028-2043.e7"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colonic macrophages eat and feed. 结肠巨噬细胞进食和进食。
Pub Date : 2023-11-07 DOI: 10.1016/j.cmet.2023.10.006
Jan Van den Bossche

Macrophages not only secure host defense via phagocytosis but also play a key role in tissue homeostasis. A comprehensive study by Fritsch et al. reveals a novel mechanism by which macrophages in the colon deliver polyamines to epithelial cells to support self-renewal of the epithelium during periods of high proliferation.

巨噬细胞不仅通过吞噬作用确保宿主防御,而且在组织稳态中发挥着关键作用。Fritsch等人的综合研究。揭示了一种新的机制,通过这种机制,结肠中的巨噬细胞将多胺输送到上皮细胞,以支持上皮在高增殖期的自我更新。
{"title":"Colonic macrophages eat and feed.","authors":"Jan Van den Bossche","doi":"10.1016/j.cmet.2023.10.006","DOIUrl":"10.1016/j.cmet.2023.10.006","url":null,"abstract":"<p><p>Macrophages not only secure host defense via phagocytosis but also play a key role in tissue homeostasis. A comprehensive study by Fritsch et al. reveals a novel mechanism by which macrophages in the colon deliver polyamines to epithelial cells to support self-renewal of the epithelium during periods of high proliferation.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":"35 11","pages":"1847-1848"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1