Hejin Yan, Hongfei Chen, Xiangyue Cui, Qiye Guan, Bowen Wang and Yongqing Cai
MoS2 and related transition metal dichalcogenides (TMDs) have recently been reported as having extensive applications in nanoelectronics and catalysis because of their unique physical and chemical properties. However, one practical challenge for MoS2-based applications arises from the easiness of oxygen contamination, which is likely to degrade performance. To this end, understanding the states and related energetics of adsorbed oxygen is critical. Herein, we identify various states of oxygen species adsorbed on the MoS2 surface with first-principles calculations. We reveal a “dissociative” mechanism through which a physisorbed oxygen molecule trapped at a sulfur vacancy can split into two chemisorbed oxygen atoms, namely a top-anchoring oxygen and a substituting oxygen, both of which show no adsorbate induced states in the bandgap. The electron and hole masses show an asymmetric effect in response to oxygen species with the hole mass being more sensitive to oxygen content due to a strong hybridization of oxygen states in the valence band edge of MoS2. Alteration of oxygen content allows modulation of the work function up to 0.5 eV, enabling reduced Schottky barriers in MoS2/metal contact. These results show that oxygen doping on MoS2 is a promising method for sulfur vacancy healing, carrier mass controlling, contact resistance reduction, and anchoring of surface electron dopants. Our study suggests that tuning the chemical composition of oxygen is viable for modulating the electronic properties of MoS2 and likely other chalcogen-incorporated TMDs, which offers promise for new optoelectronic applications.
{"title":"Unraveling energetics and states of adsorbing oxygen species with MoS2 for modulated work function†","authors":"Hejin Yan, Hongfei Chen, Xiangyue Cui, Qiye Guan, Bowen Wang and Yongqing Cai","doi":"10.1039/D4NH00441H","DOIUrl":"10.1039/D4NH00441H","url":null,"abstract":"<p >MoS<small><sub>2</sub></small> and related transition metal dichalcogenides (TMDs) have recently been reported as having extensive applications in nanoelectronics and catalysis because of their unique physical and chemical properties. However, one practical challenge for MoS<small><sub>2</sub></small>-based applications arises from the easiness of oxygen contamination, which is likely to degrade performance. To this end, understanding the states and related energetics of adsorbed oxygen is critical. Herein, we identify various states of oxygen species adsorbed on the MoS<small><sub>2</sub></small> surface with first-principles calculations. We reveal a “dissociative” mechanism through which a physisorbed oxygen molecule trapped at a sulfur vacancy can split into two chemisorbed oxygen atoms, namely a top-anchoring oxygen and a substituting oxygen, both of which show no adsorbate induced states in the bandgap. The electron and hole masses show an asymmetric effect in response to oxygen species with the hole mass being more sensitive to oxygen content due to a strong hybridization of oxygen states in the valence band edge of MoS<small><sub>2</sub></small>. Alteration of oxygen content allows modulation of the work function up to 0.5 eV, enabling reduced Schottky barriers in MoS<small><sub>2</sub></small>/metal contact. These results show that oxygen doping on MoS<small><sub>2</sub></small> is a promising method for sulfur vacancy healing, carrier mass controlling, contact resistance reduction, and anchoring of surface electron dopants. Our study suggests that tuning the chemical composition of oxygen is viable for modulating the electronic properties of MoS<small><sub>2</sub></small> and likely other chalcogen-incorporated TMDs, which offers promise for new optoelectronic applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 359-368"},"PeriodicalIF":8.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d4nh00441h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M–N4–C single-atom catalysts (MN4) have gained attention for their efficient use at the atomic level and adjustable properties in electrocatalytic reactions like the ORR, OER, and HER. Yet, understanding MN4's activity origin and enhancing its performance remains challenging. Edge-doped substituents profoundly affect MN4's activity, explored in this study by investigating their interaction with MN4 metal centers in ORR/OER/HER catalysis (Sub@MN4, Sub = B, N, O, S, CH3, NO2, NH2, OCH3, SO4; M = Fe, Co, Ni, Cu). The results show overpotential variations (0 V to 1.82 V) based on Sub and metal centers. S and SO4 groups optimize FeN4 for peak ORR activity (overpotential at 0.48 V) and reduce OER overpotentials for NiN4 (0.48 V and 0.44 V). N significantly reduces FeN4's HER overpotential (0.09 V). Correlation analysis highlights the metal center's key role, with ΔG*H and ΔG*OOH showing mutual predictability (R2 = 0.92). Eg proves a reliable predictor for Sub@CoN4 (ΔG*OOH/ΔG*H, R2 = 0.96 and 0.72). Machine learning with the KNN model aids catalyst performance prediction (R2 = 0.955 and 0.943 for ΔG*OOH/ΔG*H), emphasizing M–O/M–H and the d band center as crucial factors. This study elucidates edge-doped substituents' pivotal role in MN4 activity modulation, offering insights for electrocatalyst design and optimization.
{"title":"Edge-doped substituents as an emerging atomic-level strategy for enhancing M–N4–C single-atom catalysts in electrocatalysis of the ORR, OER, and HER†","authors":"Liang Xie, Wei Zhou, Zhibin Qu, Yuming Huang, Longhao Li, Chaowei Yang, Junfeng Li, Xiaoxiao Meng, Fei Sun, Jihui Gao and Guangbo Zhao","doi":"10.1039/D4NH00424H","DOIUrl":"10.1039/D4NH00424H","url":null,"abstract":"<p >M–N<small><sub>4</sub></small>–C single-atom catalysts (MN<small><sub>4</sub></small>) have gained attention for their efficient use at the atomic level and adjustable properties in electrocatalytic reactions like the ORR, OER, and HER. Yet, understanding MN<small><sub>4</sub></small>'s activity origin and enhancing its performance remains challenging. Edge-doped substituents profoundly affect MN<small><sub>4</sub></small>'s activity, explored in this study by investigating their interaction with MN<small><sub>4</sub></small> metal centers in ORR/OER/HER catalysis (Sub@MN<small><sub>4</sub></small>, Sub = B, N, O, S, CH<small><sub>3</sub></small>, NO<small><sub>2</sub></small>, NH<small><sub>2</sub></small>, OCH<small><sub>3</sub></small>, SO<small><sub>4</sub></small>; M = Fe, Co, Ni, Cu). The results show overpotential variations (0 V to 1.82 V) based on Sub and metal centers. S and SO<small><sub>4</sub></small> groups optimize FeN<small><sub>4</sub></small> for peak ORR activity (overpotential at 0.48 V) and reduce OER overpotentials for NiN<small><sub>4</sub></small> (0.48 V and 0.44 V). N significantly reduces FeN<small><sub>4</sub></small>'s HER overpotential (0.09 V). Correlation analysis highlights the metal center's key role, with Δ<em>G</em><small><sub>*H</sub></small> and Δ<em>G</em><small><sub>*OOH</sub></small> showing mutual predictability (<em>R</em><small><sup>2</sup></small> = 0.92). <em>E</em><small><sub>g</sub></small> proves a reliable predictor for Sub@CoN<small><sub>4</sub></small> (Δ<em>G</em><small><sub>*OOH</sub></small>/Δ<em>G</em><small><sub>*H</sub></small>, <em>R</em><small><sup>2</sup></small> = 0.96 and 0.72). Machine learning with the KNN model aids catalyst performance prediction (<em>R</em><small><sup>2</sup></small> = 0.955 and 0.943 for Δ<em>G</em><small><sub>*OOH</sub></small>/Δ<em>G</em><small><sub>*H</sub></small>), emphasizing M–O/M–H and the d band center as crucial factors. This study elucidates edge-doped substituents' pivotal role in MN<small><sub>4</sub></small> activity modulation, offering insights for electrocatalyst design and optimization.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 322-335"},"PeriodicalIF":8.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Durgesh Banswar, Jay Krishna Anand, Syed A Bukhari, Sonika Singh, Rahul Prajesh, Hemant Kumar, S K Makineni, Ankur Goswami
VO2 possesses a unique property of solid-state phase transition near room temperature wherein it transforms from monoclinic (M1) to tetragonal phase (R) that alters its physical properties, such as resistivity, mechanical modulus, and lattice strain, at an ultrafast time scale known as MIT. Such a phenomenon offers a distinct advantage to use VO2 in switching applications using heat flux as a stimulus. However, such alteration in properties can also be triggered under an electric field (E), which is known as E-MIT. A nanomechanical resonator coated with VO2 recently received traction where the resonance behavior can be modulated by taking advantage of its phase transition. Herein, we demonstrate that by fabricating a microstring of 400 μm (L) × 5 μm (W) × 240 nm (t) of suspended SiNx coated with VO2, the frequency (fr) of the resonator can be modulated by applying an electric field. We show that at room temperature, the fr of the microstring can be either reduced (by 0.5% at 15 V mm-1) or enhanced (by 2.2% at 25 V mm-1) or can be varied in a cycle under E-field. Using theoretical models, we establish the simulated results and explain the processes behind it, which demonstrate excellent mechanical tuning properties of the VO2-based microstring resonator, making it an attractive and alternative option for highly efficient MEMS-based switches and neuromorphic devices.
{"title":"Electric field-assisted resonance frequency tuning in free standing nanomechanical devices for application in multistate switching using a phase change material.","authors":"Durgesh Banswar, Jay Krishna Anand, Syed A Bukhari, Sonika Singh, Rahul Prajesh, Hemant Kumar, S K Makineni, Ankur Goswami","doi":"10.1039/d4nh00463a","DOIUrl":"10.1039/d4nh00463a","url":null,"abstract":"<p><p>VO<sub>2</sub> possesses a unique property of solid-state phase transition near room temperature wherein it transforms from monoclinic (M1) to tetragonal phase (R) that alters its physical properties, such as resistivity, mechanical modulus, and lattice strain, at an ultrafast time scale known as MIT. Such a phenomenon offers a distinct advantage to use VO<sub>2</sub> in switching applications using heat flux as a stimulus. However, such alteration in properties can also be triggered under an electric field (<i>E</i>), which is known as E-MIT. A nanomechanical resonator coated with VO<sub>2</sub> recently received traction where the resonance behavior can be modulated by taking advantage of its phase transition. Herein, we demonstrate that by fabricating a microstring of 400 μm (<i>L</i>) × 5 μm (<i>W</i>) × 240 nm (<i>t</i>) of suspended SiN<sub><i>x</i></sub> coated with VO<sub>2</sub>, the frequency (<i>f</i><sub>r</sub>) of the resonator can be modulated by applying an electric field. We show that at room temperature, the <i>f</i><sub>r</sub> of the microstring can be either reduced (by 0.5% at 15 V mm<sup>-1</sup>) or enhanced (by 2.2% at 25 V mm<sup>-1</sup>) or can be varied in a cycle under <i>E</i>-field. Using theoretical models, we establish the simulated results and explain the processes behind it, which demonstrate excellent mechanical tuning properties of the VO<sub>2</sub>-based microstring resonator, making it an attractive and alternative option for highly efficient MEMS-based switches and neuromorphic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhe Shen, Yulin Sun, Yaoyu Liang, Xiaojian Xu, Rongxin Su, Yuefei Wang and Wei Qi
Peptide-based biofluorescents are of great interest due to their controllability and biocompatibility, as well as their potential applications in biomedical imaging and biosensing. Here, we present a simple approach to synthesizing full-color fluorescent nanomaterials with broad-spectrum fluorescence emissions, high optical stability, and long fluorescence lifetimes. By doping amino acids during the enzyme-catalyzed oxidative self-assembly of tyrosine-based peptides, we can precisely control the intermolecular interactions to obtain nanoparticles with fluorescence emission at different wavelengths. The synthesized peptide-based fluorescent nanomaterials with excellent biocompatibility and stable near-infrared fluorescence emission were shown to have potential for bioimaging applications. This research provides new ideas for the development of new bioluminescent materials that are cost-effective, environmentally friendly, and safe for biomedical use.
{"title":"Full-color peptide-based fluorescent nanomaterials assembled under the control of amino acid doping†","authors":"Yuhe Shen, Yulin Sun, Yaoyu Liang, Xiaojian Xu, Rongxin Su, Yuefei Wang and Wei Qi","doi":"10.1039/D4NH00400K","DOIUrl":"10.1039/D4NH00400K","url":null,"abstract":"<p >Peptide-based biofluorescents are of great interest due to their controllability and biocompatibility, as well as their potential applications in biomedical imaging and biosensing. Here, we present a simple approach to synthesizing full-color fluorescent nanomaterials with broad-spectrum fluorescence emissions, high optical stability, and long fluorescence lifetimes. By doping amino acids during the enzyme-catalyzed oxidative self-assembly of tyrosine-based peptides, we can precisely control the intermolecular interactions to obtain nanoparticles with fluorescence emission at different wavelengths. The synthesized peptide-based fluorescent nanomaterials with excellent biocompatibility and stable near-infrared fluorescence emission were shown to have potential for bioimaging applications. This research provides new ideas for the development of new bioluminescent materials that are cost-effective, environmentally friendly, and safe for biomedical use.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 1","pages":" 158-164"},"PeriodicalIF":8.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spencer Gellerup, Reece Emery, Scott T. Retterer, Steven J. Randolph and Philip D. Rack
In this work, we explore focused electron beam induced etching (FEBIE) of niobium thin films with the XeF2 precursor as a route to edit, on-the-fly, superconducting devices. We report the effect of XeF2 pressure, electron beam current, beam energy, and dwell time on the Nb etch rate. To understand the mass transport and reaction rate limiting mechanisms, we compare the relative electron and XeF2 gas flux and reveal the process is reaction rate limited at low current/short dwell times, but shifts to mass transport limited regimes as both are increased. The electron stimulated etching yield is surprisingly high, up to 3 Nb atoms/electron, and for the range studied has a maximum at 1 keV. It was revealed that spontaneous etching accompanies the electron stimulated process, which was confirmed by varying the etched box size. An optimized etch resolution of 17 nm was achieved. Given that the Nb superconducting coherence length is 38 nm and scales with thickness, this work opens the possibility to direct write Nb superconducting devices via low-damage FEBIE.
{"title":"XeF2 gas assisted focused electron beam induced etching of niobium thin films: towards direct write editing of niobium superconducting devices†","authors":"Spencer Gellerup, Reece Emery, Scott T. Retterer, Steven J. Randolph and Philip D. Rack","doi":"10.1039/D4NH00407H","DOIUrl":"10.1039/D4NH00407H","url":null,"abstract":"<p >In this work, we explore focused electron beam induced etching (FEBIE) of niobium thin films with the XeF<small><sub>2</sub></small> precursor as a route to edit, on-the-fly, superconducting devices. We report the effect of XeF<small><sub>2</sub></small> pressure, electron beam current, beam energy, and dwell time on the Nb etch rate. To understand the mass transport and reaction rate limiting mechanisms, we compare the relative electron and XeF<small><sub>2</sub></small> gas flux and reveal the process is reaction rate limited at low current/short dwell times, but shifts to mass transport limited regimes as both are increased. The electron stimulated etching yield is surprisingly high, up to 3 Nb atoms/electron, and for the range studied has a maximum at 1 keV. It was revealed that spontaneous etching accompanies the electron stimulated process, which was confirmed by varying the etched box size. An optimized etch resolution of 17 nm was achieved. Given that the Nb superconducting coherence length is 38 nm and scales with thickness, this work opens the possibility to direct write Nb superconducting devices <em>via</em> low-damage FEBIE.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 369-378"},"PeriodicalIF":8.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessio Zuliani, Victor Ramos, Alberto Escudero and Noureddine Khiar
The unique features of metal–organic frameworks (MOFs) such as biodegradability, reduced toxicity and high surface area offer the possibility of developing smart nanosystems for biomedical applications through the simultaneous functionalization of their structure with biologically relevant ligands and the loading of biologically active cargos, ranging from small drugs to large biomacromolecules, into their pores. Aiming to develop efficient, naturally inspired biocompatible systems, recent research has combined organic and materials chemistry to design innovative composites that exploit carbohydrate chemistry for the functionalization and structural modification of MOFs. Scientific investigation in the field has seen a significant rise in the past five years, and it is becoming crucial to acknowledge both the limits and benefits of this approach for future investigation. In this review, the latest research results merging carbohydrates and MOFs are discussed, with a particular emphasis on the advances in the field and the remaining challenges, including addressing sustainability and real-case applicability.
{"title":"“Sweet MOFs”: exploring the potential and restraints of integrating carbohydrates with metal–organic frameworks for biomedical applications","authors":"Alessio Zuliani, Victor Ramos, Alberto Escudero and Noureddine Khiar","doi":"10.1039/D4NH00525B","DOIUrl":"10.1039/D4NH00525B","url":null,"abstract":"<p >The unique features of metal–organic frameworks (MOFs) such as biodegradability, reduced toxicity and high surface area offer the possibility of developing smart nanosystems for biomedical applications through the simultaneous functionalization of their structure with biologically relevant ligands and the loading of biologically active cargos, ranging from small drugs to large biomacromolecules, into their pores. Aiming to develop efficient, naturally inspired biocompatible systems, recent research has combined organic and materials chemistry to design innovative composites that exploit carbohydrate chemistry for the functionalization and structural modification of MOFs. Scientific investigation in the field has seen a significant rise in the past five years, and it is becoming crucial to acknowledge both the limits and benefits of this approach for future investigation. In this review, the latest research results merging carbohydrates and MOFs are discussed, with a particular emphasis on the advances in the field and the remaining challenges, including addressing sustainability and real-case applicability.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 258-278"},"PeriodicalIF":8.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d4nh00525b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interaction between nanoparticles on mirror (NPoM) nanostructures and molecules is of great significance for the development of plasmon-enhanced spectroscopy (PES) techniques. However, the coupling mechanism between resonantly excited molecules and plasmonics has not been fully understood. In this work, we took viologen molecules within an Au plasmonic nanocavity (AuNC) as an example to illustrate how resonant molecules influence the near-field distributions. We found that the near-fields are highly enhanced and the near-field distributions are altered when the monocationic viologen (V+˙) is in resonance. In the AuNC, the near-field enhancement of a molecule is significantly enhanced by the adjacent molecules. However, the average near-field enhancements experienced by each molecule decrease with the increasing coverage of the molecular monolayer. Furthermore, the contributions of molecules to the near-field enhancement initially increase and then decrease as coverage increases. The interactions between the molecules and the nanocavity exhibit negative contributions to near-field enhancement. Overall, this work offers valuable insights into the impact of resonantly excited molecules on near-field enhancements in nanocavities and offers guidance for tuning excitation wavelength. We propose that the resonance state and coverage of molecules are critical to improving the sensitivity and specificity of PES techniques.
镜面纳米粒子(NPoM)纳米结构与分子之间的相互作用对等离子体增强光谱(PES)技术的发展具有重要意义。然而,人们对共振激发分子与等离子体之间的耦合机制尚未完全了解。在这项工作中,我们以金等离子纳米腔(AuNC)中的紫胶烯分子为例,说明共振分子如何影响近场分布。我们发现,当单位紫精子(V+˙)处于共振状态时,近场高度增强,近场分布也发生了改变。在 AuNC 中,相邻分子会显著增强一个分子的近场增强。然而,每个分子的平均近场增强效果会随着分子单层覆盖范围的增大而减弱。此外,分子对近场增强的贡献最初会增加,然后随着覆盖率的增加而减少。分子与纳米腔体之间的相互作用对近场增强的贡献为负。总之,这项研究就共振激发的分子对纳米腔体近场增强的影响提供了宝贵的见解,并为调整激发波长提供了指导。我们提出,分子的共振状态和覆盖范围对于提高 PES 技术的灵敏度和特异性至关重要。
{"title":"The near field response of molecules coupled with plasmons at atomistic resolution†","authors":"Huijie He, Xueyang Zhen, Shuang Li, Sibing Chen and Xing Chen","doi":"10.1039/D4NH00451E","DOIUrl":"10.1039/D4NH00451E","url":null,"abstract":"<p >The interaction between nanoparticles on mirror (NPoM) nanostructures and molecules is of great significance for the development of plasmon-enhanced spectroscopy (PES) techniques. However, the coupling mechanism between resonantly excited molecules and plasmonics has not been fully understood. In this work, we took viologen molecules within an Au plasmonic nanocavity (AuNC) as an example to illustrate how resonant molecules influence the near-field distributions. We found that the near-fields are highly enhanced and the near-field distributions are altered when the monocationic viologen (V<small><sup>+</sup></small>˙) is in resonance. In the AuNC, the near-field enhancement of a molecule is significantly enhanced by the adjacent molecules. However, the average near-field enhancements experienced by each molecule decrease with the increasing coverage of the molecular monolayer. Furthermore, the contributions of molecules to the near-field enhancement initially increase and then decrease as coverage increases. The interactions between the molecules and the nanocavity exhibit negative contributions to near-field enhancement. Overall, this work offers valuable insights into the impact of resonantly excited molecules on near-field enhancements in nanocavities and offers guidance for tuning excitation wavelength. We propose that the resonance state and coverage of molecules are critical to improving the sensitivity and specificity of PES techniques.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 1","pages":" 165-171"},"PeriodicalIF":8.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Muñeton Arboleda, Vito Coviello, Arianna Palumbo, Roberto Pilot and Vincenzo Amendola
The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20–40 nm range. Due to the high cohesive energy of this metal, synthesis and experimental investigations of Rh nanospheres in this size range have not been reported; yet, it becomes possible here using a green and one-step laser ablation in liquid method. The localized surface plasmon (LSP) of Rh NPs falls in the ultraviolet spectral range (195–255 nm), but the absorption tail in the visible region increases significantly upon clustering of the nanospheres. The surface binding ability of Rh NPs towards thiolated molecules is equivalent to that of Au and Ag NPs, while their chemical and physical stability at high temperatures and in the presence of strong acids such as aqua regia is superior to those of Au and Ag NPs. The plasmonic features are well described by classical electrodynamics, and the results are comparable to Au and Ag NPs in terms of extinction cross-section and local field enhancement, although blue shifted. This allowed, for instance, their use as an optical nanosensor for the detection of ions of toxic metals in aqueous solution and for the surface enhanced Raman scattering of various compounds under blue light excitation. This study explores the prospects of Rh NPs in the realms of UV and visible plasmonics, while also envisaging a multitude of opportunities for other underexplored applications related to plasmon-enhanced catalysis and chiroplasmonics.
开发和了解替代性等离子材料是利用新等离子技术的关键步骤。尽管对金和银纳米结构进行了深入研究,但对铑极具前景的等离子、化学和物理属性的研究仍然很少。在此,我们报告了尺寸在 20-40 纳米范围内的球形铑纳米粒子(NPs)的合成和等离子响应。由于这种金属的内聚能很高,目前还没有关于这种尺寸范围的 Rh 纳米球的合成和实验研究的报道。Rh NPs 的局部表面等离子体(LSP)位于紫外光谱范围(195-255 nm),但纳米球聚集后,其在可见光区域的吸收尾迹显著增加。Rh NPs 与硫醇分子的表面结合能力与 Au 和 Ag NPs 相当,而其在高温和王水等强酸存在下的化学和物理稳定性则优于 Au 和 Ag NPs。经典电动力学很好地描述了它们的等离子特征,就消光截面和局部场增强而言,其结果与金和银 NPs 相当,但有蓝移。这使得它们可以用作水溶液中有毒金属离子检测的光学纳米传感器,以及蓝光激发下各种化合物的表面增强拉曼散射。本研究探讨了 Rh NPs 在紫外和可见光等离子体领域的应用前景,同时也为与等离子体增强催化和气动等离子体有关的其他未充分开发的应用提供了大量机会。
{"title":"Rhodium nanospheres for ultraviolet and visible plasmonics†","authors":"David Muñeton Arboleda, Vito Coviello, Arianna Palumbo, Roberto Pilot and Vincenzo Amendola","doi":"10.1039/D4NH00449C","DOIUrl":"10.1039/D4NH00449C","url":null,"abstract":"<p >The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20–40 nm range. Due to the high cohesive energy of this metal, synthesis and experimental investigations of Rh nanospheres in this size range have not been reported; yet, it becomes possible here using a green and one-step laser ablation in liquid method. The localized surface plasmon (LSP) of Rh NPs falls in the ultraviolet spectral range (195–255 nm), but the absorption tail in the visible region increases significantly upon clustering of the nanospheres. The surface binding ability of Rh NPs towards thiolated molecules is equivalent to that of Au and Ag NPs, while their chemical and physical stability at high temperatures and in the presence of strong acids such as aqua regia is superior to those of Au and Ag NPs. The plasmonic features are well described by classical electrodynamics, and the results are comparable to Au and Ag NPs in terms of extinction cross-section and local field enhancement, although blue shifted. This allowed, for instance, their use as an optical nanosensor for the detection of ions of toxic metals in aqueous solution and for the surface enhanced Raman scattering of various compounds under blue light excitation. This study explores the prospects of Rh NPs in the realms of UV and visible plasmonics, while also envisaging a multitude of opportunities for other underexplored applications related to plasmon-enhanced catalysis and chiroplasmonics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 336-348"},"PeriodicalIF":8.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d4nh00449c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
{"title":"On the design of cell membrane-coated nanoparticles to treat inflammatory conditions","authors":"Andreia Marinho, Salette Reis and Cláudia Nunes","doi":"10.1039/D4NH00457D","DOIUrl":"10.1039/D4NH00457D","url":null,"abstract":"<p >Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 1","pages":" 38-55"},"PeriodicalIF":8.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Zhao, Ninggui Ma, Tairan Wang, Yuhang Wang, Bochun Liang, Yaqin Zhang, Shuang Luo, Yu Xiong, Qianqian Wang and Jun Fan
Aqueous batteries and supercapacitors are promising electrochemical energy storage systems (EESSs) due to their low cost, environmental friendliness, and high safety. However, aqueous EESS development faces challenges like narrow electrochemical windows, irreversible dendrite growth, corrosion, and low energy density. Recently, two-dimensional (2D) transition metal carbide and nitride (MXene) have attracted more attention due to their excellent physicochemical properties and potential applications in aqueous EESSs. Understanding the atomic-level working mechanism of MXene in energy storage through theoretical calculations is necessary to advance aqueous EESS development. This review comprehensively summarizes the theoretical insights into MXene in aqueous batteries and supercapacitors. First, the basic properties of MXene, including structural composition, experimental and theoretical synthesis, and advantages in EESSs are introduced. Then, the energy storage mechanism of MXene in aqueous batteries and supercapacitors is summarized from a theoretical calculation perspective. Additionally, the theoretical insights into the side reactions and stability issues of MXene in aqueous EESSs are emphasized. Finally, the prospects of designing MXene for aqueous EESSs through computational methods are given.
{"title":"Theoretical insights and design of MXene for aqueous batteries and supercapacitors: status, challenges, and perspectives","authors":"Jun Zhao, Ninggui Ma, Tairan Wang, Yuhang Wang, Bochun Liang, Yaqin Zhang, Shuang Luo, Yu Xiong, Qianqian Wang and Jun Fan","doi":"10.1039/D4NH00305E","DOIUrl":"10.1039/D4NH00305E","url":null,"abstract":"<p >Aqueous batteries and supercapacitors are promising electrochemical energy storage systems (EESSs) due to their low cost, environmental friendliness, and high safety. However, aqueous EESS development faces challenges like narrow electrochemical windows, irreversible dendrite growth, corrosion, and low energy density. Recently, two-dimensional (2D) transition metal carbide and nitride (MXene) have attracted more attention due to their excellent physicochemical properties and potential applications in aqueous EESSs. Understanding the atomic-level working mechanism of MXene in energy storage through theoretical calculations is necessary to advance aqueous EESS development. This review comprehensively summarizes the theoretical insights into MXene in aqueous batteries and supercapacitors. First, the basic properties of MXene, including structural composition, experimental and theoretical synthesis, and advantages in EESSs are introduced. Then, the energy storage mechanism of MXene in aqueous batteries and supercapacitors is summarized from a theoretical calculation perspective. Additionally, the theoretical insights into the side reactions and stability issues of MXene in aqueous EESSs are emphasized. Finally, the prospects of designing MXene for aqueous EESSs through computational methods are given.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 1","pages":" 78-103"},"PeriodicalIF":8.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}