首页 > 最新文献

Nanoscale Horizons最新文献

英文 中文
Tunable magnetoelectricity and polarity in van der Waals antiferromagnetic CuCr1-xFexP2S6.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-11 DOI: 10.1039/d4nh00620h
Yu Xing, Haoshen Ye, Guowei Du, Xu Li, Le-Ping Miao, Junchao Zhang, Xiong Luo, Xiyu Chen, Haoran Ye, Aoli Shen, Zhicheng Wang, Yumeng You, Shuai Dong, Linglong Li

The coexistence of electric and magnetic orders with intrinsic coupling, referred to as magnetoelectric coupling in multiferroics, has been extensively studied in oxide materials but remains relatively unexplored in van der Waals materials. Among these, CuCrP2S6 (CCPS) is notable for its emergent antiferromagnetic (AFM) and antiferroelectric (AFE) characteristics. However, investigations into magnetoelectric coupling in CCPS are limited, and the effects of dopants on its magnetic properties have yet to be fully addressed. In this study, we synthesized CuCr1-xFexP2S6 (CCFPS) samples using the chemical vapor transport (CVT) method to investigate the influence of iron doping on the magnetic and nonlinear optical properties of the CCFPS system. Our results indicate that the AFM state is preserved, while the Néel temperature (TN) varies with the doping concentration. First-principles calculations were employed to assess the exchange interactions among magnetic atoms. Notably, for samples with doping concentrations x < 0.5, we observed both magnetic-dielectric coupling and second harmonic generation (SHG) effects. However, these effects were absent at higher doping levels. Furthermore, our analysis revealed a distinct odd-even dependence of SHG, suggesting the presence of interlayer symmetry-breaking coupling. These findings advance our understanding of two-dimensional (2D) multiferroic materials and lay the groundwork for designing and optimizing magnetoelectric coupling materials with enhanced performance.

{"title":"Tunable magnetoelectricity and polarity in van der Waals antiferromagnetic CuCr<sub>1-<i>x</i></sub>Fe<sub><i>x</i></sub>P<sub>2</sub>S<sub>6</sub>.","authors":"Yu Xing, Haoshen Ye, Guowei Du, Xu Li, Le-Ping Miao, Junchao Zhang, Xiong Luo, Xiyu Chen, Haoran Ye, Aoli Shen, Zhicheng Wang, Yumeng You, Shuai Dong, Linglong Li","doi":"10.1039/d4nh00620h","DOIUrl":"https://doi.org/10.1039/d4nh00620h","url":null,"abstract":"<p><p>The coexistence of electric and magnetic orders with intrinsic coupling, referred to as magnetoelectric coupling in multiferroics, has been extensively studied in oxide materials but remains relatively unexplored in van der Waals materials. Among these, CuCrP<sub>2</sub>S<sub>6</sub> (CCPS) is notable for its emergent antiferromagnetic (AFM) and antiferroelectric (AFE) characteristics. However, investigations into magnetoelectric coupling in CCPS are limited, and the effects of dopants on its magnetic properties have yet to be fully addressed. In this study, we synthesized CuCr<sub>1-<i>x</i></sub>Fe<sub><i>x</i></sub>P<sub>2</sub>S<sub>6</sub> (CCFPS) samples using the chemical vapor transport (CVT) method to investigate the influence of iron doping on the magnetic and nonlinear optical properties of the CCFPS system. Our results indicate that the AFM state is preserved, while the Néel temperature (<i>T</i><sub>N</sub>) varies with the doping concentration. First-principles calculations were employed to assess the exchange interactions among magnetic atoms. Notably, for samples with doping concentrations <i>x</i> < 0.5, we observed both magnetic-dielectric coupling and second harmonic generation (SHG) effects. However, these effects were absent at higher doping levels. Furthermore, our analysis revealed a distinct odd-even dependence of SHG, suggesting the presence of interlayer symmetry-breaking coupling. These findings advance our understanding of two-dimensional (2D) multiferroic materials and lay the groundwork for designing and optimizing magnetoelectric coupling materials with enhanced performance.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale carbon@Sb mesoporous composites activated by in situ localized electrochemical pulverization as high-rate and long-life anode materials for potassium-ion batteries.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-10 DOI: 10.1039/d4nh00621f
Jie Ren, Xiang Wang, Jihao Li, Qianzi Sun, Shaozhou Li, Ling Bai, Xianming Liu, Guilong Liu, Ziquan Li, Haijiao Zhang, Zhen-Dong Huang

Hard carbon and antimony (Sb) are two promising anode candidates for future potassium-ion batteries. Herein, we successfully solve the low-capacity problem of highly conductive carbon and poor cycling stability of high-capacity Sb through uniformly dispersing and embedding sub-nano and nanoscale Sb particles (∼36.4 wt%) inside nitrogen-doped two-dimensional hard carbon nanosheets to form a multi-scale carbon@Sb mesoporous composite, denoted as Sb3@HCNS. The electrochemical results show that the optimized Sb3@HCNS anode exhibits an exceptional potassium-ion storage performance, delivering a reversible capacity of 580.8, 413.0, and 215.5 mA h g-1 at the current density of 0.1, 1, and 4 A g-1, respectively. Furthermore, it still maintains a high capacity of 382 mA h g-1 at a high current density of 2 A g-1 after 1000 cycles. The characterization results further manifest that the in situ localized electrochemical pulverization activation of Sb during the (de)alloying process and the pseudo-capacitive effect of good electronic conductive hard carbon nanosheets are mainly responsible for the exceptional properties of Sb3@HCNS. Together with its controllable preparation strategy, the newly-developed Sb3@HCNS composite is expected to be a promising anode material for high-performance potassium-ion batteries.

{"title":"Multi-scale carbon@Sb mesoporous composites activated by <i>in situ</i> localized electrochemical pulverization as high-rate and long-life anode materials for potassium-ion batteries.","authors":"Jie Ren, Xiang Wang, Jihao Li, Qianzi Sun, Shaozhou Li, Ling Bai, Xianming Liu, Guilong Liu, Ziquan Li, Haijiao Zhang, Zhen-Dong Huang","doi":"10.1039/d4nh00621f","DOIUrl":"https://doi.org/10.1039/d4nh00621f","url":null,"abstract":"<p><p>Hard carbon and antimony (Sb) are two promising anode candidates for future potassium-ion batteries. Herein, we successfully solve the low-capacity problem of highly conductive carbon and poor cycling stability of high-capacity Sb through uniformly dispersing and embedding sub-nano and nanoscale Sb particles (∼36.4 wt%) inside nitrogen-doped two-dimensional hard carbon nanosheets to form a multi-scale carbon@Sb mesoporous composite, denoted as Sb<sub>3</sub>@HCNS. The electrochemical results show that the optimized Sb<sub>3</sub>@HCNS anode exhibits an exceptional potassium-ion storage performance, delivering a reversible capacity of 580.8, 413.0, and 215.5 mA h g<sup>-1</sup> at the current density of 0.1, 1, and 4 A g<sup>-1</sup>, respectively. Furthermore, it still maintains a high capacity of 382 mA h g<sup>-1</sup> at a high current density of 2 A g<sup>-1</sup> after 1000 cycles. The characterization results further manifest that the <i>in situ</i> localized electrochemical pulverization activation of Sb during the (de)alloying process and the pseudo-capacitive effect of good electronic conductive hard carbon nanosheets are mainly responsible for the exceptional properties of Sb<sub>3</sub>@HCNS. Together with its controllable preparation strategy, the newly-developed Sb<sub>3</sub>@HCNS composite is expected to be a promising anode material for high-performance potassium-ion batteries.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Block copolymer-assembled nanopore arrays enable ultrasensitive label-free DNA detection.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-05 DOI: 10.1039/d4nh00466c
Maximiliano Jesus Jara Fornerod, Alberto Alvarez-Fernandez, Máté Füredi, Anandapadmanabhan A Rajendran, Beatriz Prieto-Simón, Nicolas H Voelcker, Stefan Guldin

DNA detection via nanoporous-based electrochemical biosensors is a promising method for rapid pathogen identification and disease diagnosis. These sensors detect electrical current variations caused by DNA hybridization in a nanoporous layer on an electrode. Current fabrication techniques for the typically micrometers-thick nanoporous layer often suffer from insufficient control over nanopore dimensions and involve complex fabrication steps, including handling and stacking of a brittle porous membrane. Here, we introduce a bottom-up fabrication process based on the self-assembly of high molecular weight block copolymers with sol-gel precursors to create an inorganic nanoporous thin film directly on electrode surfaces. This approach eliminates the need for elaborate manipulation of the nanoporous membrane, provides fine control over the structural features, and enables surface modification with DNA capture probes. Using this nanoarchitecture with a thickness of 150 nm, we detected DNA sequences derived from 16S rRNA gene fragments of the E. coli genome electrochemically in less than 20 minutes, achieving a limit of detection of 30 femtomolar (fM) and a limit of quantification of 500 fM. This development marks a significant step towards a portable, rapid, and accurate DNA detection system.

{"title":"Block copolymer-assembled nanopore arrays enable ultrasensitive label-free DNA detection.","authors":"Maximiliano Jesus Jara Fornerod, Alberto Alvarez-Fernandez, Máté Füredi, Anandapadmanabhan A Rajendran, Beatriz Prieto-Simón, Nicolas H Voelcker, Stefan Guldin","doi":"10.1039/d4nh00466c","DOIUrl":"10.1039/d4nh00466c","url":null,"abstract":"<p><p>DNA detection <i>via</i> nanoporous-based electrochemical biosensors is a promising method for rapid pathogen identification and disease diagnosis. These sensors detect electrical current variations caused by DNA hybridization in a nanoporous layer on an electrode. Current fabrication techniques for the typically micrometers-thick nanoporous layer often suffer from insufficient control over nanopore dimensions and involve complex fabrication steps, including handling and stacking of a brittle porous membrane. Here, we introduce a bottom-up fabrication process based on the self-assembly of high molecular weight block copolymers with sol-gel precursors to create an inorganic nanoporous thin film directly on electrode surfaces. This approach eliminates the need for elaborate manipulation of the nanoporous membrane, provides fine control over the structural features, and enables surface modification with DNA capture probes. Using this nanoarchitecture with a thickness of 150 nm, we detected DNA sequences derived from 16S rRNA gene fragments of the <i>E. coli</i> genome electrochemically in less than 20 minutes, achieving a limit of detection of 30 femtomolar (fM) and a limit of quantification of 500 fM. This development marks a significant step towards a portable, rapid, and accurate DNA detection system.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal evolution of solid solution of silica-embedded AgPt alloy NPs in the large miscibility gap.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-04 DOI: 10.1039/d4nh00509k
Hemant Jatav, Anusmita Chakravorty, Ambuj Mishra, Matthias Schwartzkopf, Andrei Chumakov, Stephan V Roth, Debdulal Kabiraj

Understanding the phase behavior of immiscible elements in bimetallic nanomaterials is essential for controlling their structure and properties. At the nanoscale, the miscibility of these immiscible elements often deviates from their behavior in bulk materials. Despite its significance, comprehensive and quantitative experimental insights into the dynamics of the immiscible-to-miscible transition, and vice versa, remain limited. In this study, we investigate the nucleation and growth kinetics of silica-embedded AgPt nanoparticles (NPs) across a wide range of annealing temperatures (25 °C to 900 °C) to elucidate temperature-dependent nanoalloy phase transitions and NP size distribution. Our findings reveal that the alloy phase persists up to 400 °C, with a corresponding average NP size of ∼2 nm. Beyond this temperature, phase instability begins to occur. We propose a three-stage process of nucleation and growth: (1) initial AgPt nanoalloy formation during deposition, (2) growth via thermal energy-assisted diffusion up to 400 °C, and (3) Ag atom emission from the nanoalloy above 500 °C, indicating Ag diffusion towards the surface, followed by partial sublimation of Ag atoms at 900 °C. These results provide crucial insights into the thermal limits for the dealloying of NPs, growth kinetics, and phase stability or instability under varying thermal conditions.

{"title":"Thermal evolution of solid solution of silica-embedded AgPt alloy NPs in the large miscibility gap.","authors":"Hemant Jatav, Anusmita Chakravorty, Ambuj Mishra, Matthias Schwartzkopf, Andrei Chumakov, Stephan V Roth, Debdulal Kabiraj","doi":"10.1039/d4nh00509k","DOIUrl":"https://doi.org/10.1039/d4nh00509k","url":null,"abstract":"<p><p>Understanding the phase behavior of immiscible elements in bimetallic nanomaterials is essential for controlling their structure and properties. At the nanoscale, the miscibility of these immiscible elements often deviates from their behavior in bulk materials. Despite its significance, comprehensive and quantitative experimental insights into the dynamics of the immiscible-to-miscible transition, and <i>vice versa</i>, remain limited. In this study, we investigate the nucleation and growth kinetics of silica-embedded AgPt nanoparticles (NPs) across a wide range of annealing temperatures (25 °C to 900 °C) to elucidate temperature-dependent nanoalloy phase transitions and NP size distribution. Our findings reveal that the alloy phase persists up to 400 °C, with a corresponding average NP size of ∼2 nm. Beyond this temperature, phase instability begins to occur. We propose a three-stage process of nucleation and growth: (1) initial AgPt nanoalloy formation during deposition, (2) growth <i>via</i> thermal energy-assisted diffusion up to 400 °C, and (3) Ag atom emission from the nanoalloy above 500 °C, indicating Ag diffusion towards the surface, followed by partial sublimation of Ag atoms at 900 °C. These results provide crucial insights into the thermal limits for the dealloying of NPs, growth kinetics, and phase stability or instability under varying thermal conditions.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphomolybdenum blue nano-photothermal agent with dual peak absorption and biodegradable properties based on ssDNA in near-infrared photothermal therapy for breast cancer.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-03 DOI: 10.1039/d4nh00464g
Baoru Fang, Siqi Geng, Ke Wang, Fang Wang, Yiqing Zhou, Jiaying Qin, Shengnan Luo, Yanping Chen, Zhangsen Yu

Photothermal therapy (PTT) stands as an emerging and promising treatment modality and is being developed for the treatment of breast cancer, prostate cancer, and a series of superficial tumors. This innovative approach harnesses photothermal agents (PTAs) that convert near-infrared light (NIR) energy into heat, efficiently heating and ablating localized lesion tissue. Notably, the low scattering of NIR-II (1000-1500 nm) band light within biological tissue ensures superior penetration depth, surpassing that of NIR I (700-900 nm) band light. Consequently, developing PTAs with excellent absorption performance and biocompatibility in the NIR-II band has attracted significant attention in photothermal therapy research. We successfully synthesized phosphomolybdenum blue (PMB) nanoparticles using single-strand DNA (ssDNA) as a template in this innovative study. Subsequently, we delved into this material's absorption characteristics and photothermal properties across the NIR-I and NIR-II spectral regions. Furthermore, we evaluated the therapeutic efficacy of PMB on 4T1 cells and tumor-bearing mouse models of breast cancer. Our findings revealed that PMB not only exhibits remarkable biocompatibility but also possesses stellar photothermal performance. Specifically, under 808 nm and 1064 nm laser irradiation, PMB achieved photothermal conversion efficiencies of 21.37% and 28.84%, respectively. Notably, compared to 808 nm laser irradiation, even when transmitting through a 2 mm thick tumor tissue homogenate, the 1064 nm laser irradiation maintained a robust tumor ablation effect. What's more, PMB possesses critical pH-responsive degradation properties. For instance, PMB nanoparticles degrade rapidly under physiological conditions (pH 7.2-7.4) while degrading slower in the acidic tumor microenvironment (pH 6.0-6.9). This unique characteristic significantly mitigates the systemic toxicity of PMB and enhances the safety of photothermal therapy implementation. Moreover, our study represents the first instance of utilizing ssDNA as a template for synthesizing a PMB nano photothermal agent and demonstrating its exceptional tumor thermal ablation efficacy. This groundbreaking work offers novel insights into the development of safe, efficient, and pH-responsive photothermal agents for cancer therapy.

{"title":"A phosphomolybdenum blue nano-photothermal agent with dual peak absorption and biodegradable properties based on ssDNA in near-infrared photothermal therapy for breast cancer.","authors":"Baoru Fang, Siqi Geng, Ke Wang, Fang Wang, Yiqing Zhou, Jiaying Qin, Shengnan Luo, Yanping Chen, Zhangsen Yu","doi":"10.1039/d4nh00464g","DOIUrl":"https://doi.org/10.1039/d4nh00464g","url":null,"abstract":"<p><p>Photothermal therapy (PTT) stands as an emerging and promising treatment modality and is being developed for the treatment of breast cancer, prostate cancer, and a series of superficial tumors. This innovative approach harnesses photothermal agents (PTAs) that convert near-infrared light (NIR) energy into heat, efficiently heating and ablating localized lesion tissue. Notably, the low scattering of NIR-II (1000-1500 nm) band light within biological tissue ensures superior penetration depth, surpassing that of NIR I (700-900 nm) band light. Consequently, developing PTAs with excellent absorption performance and biocompatibility in the NIR-II band has attracted significant attention in photothermal therapy research. We successfully synthesized phosphomolybdenum blue (PMB) nanoparticles using single-strand DNA (ssDNA) as a template in this innovative study. Subsequently, we delved into this material's absorption characteristics and photothermal properties across the NIR-I and NIR-II spectral regions. Furthermore, we evaluated the therapeutic efficacy of PMB on 4T1 cells and tumor-bearing mouse models of breast cancer. Our findings revealed that PMB not only exhibits remarkable biocompatibility but also possesses stellar photothermal performance. Specifically, under 808 nm and 1064 nm laser irradiation, PMB achieved photothermal conversion efficiencies of 21.37% and 28.84%, respectively. Notably, compared to 808 nm laser irradiation, even when transmitting through a 2 mm thick tumor tissue homogenate, the 1064 nm laser irradiation maintained a robust tumor ablation effect. What's more, PMB possesses critical pH-responsive degradation properties. For instance, PMB nanoparticles degrade rapidly under physiological conditions (pH 7.2-7.4) while degrading slower in the acidic tumor microenvironment (pH 6.0-6.9). This unique characteristic significantly mitigates the systemic toxicity of PMB and enhances the safety of photothermal therapy implementation. Moreover, our study represents the first instance of utilizing ssDNA as a template for synthesizing a PMB nano photothermal agent and demonstrating its exceptional tumor thermal ablation efficacy. This groundbreaking work offers novel insights into the development of safe, efficient, and pH-responsive photothermal agents for cancer therapy.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rounding up Rh nanoparticles for ultraviolet plasmonic sensing.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-03 DOI: 10.1039/d5nh90005k
Yikai Xu

This article highlights the recent work of D. M. Arboleda and V. Amendola et al. (Nanoscale Horiz., 2025, 10, 336-348, https://doi.org/10.1039/D4NH00449C) on the synthesis of rhodium nanospheres for ultraviolet and visible plasmonics.

{"title":"Rounding up Rh nanoparticles for ultraviolet plasmonic sensing.","authors":"Yikai Xu","doi":"10.1039/d5nh90005k","DOIUrl":"https://doi.org/10.1039/d5nh90005k","url":null,"abstract":"<p><p>This article highlights the recent work of D. M. Arboleda and V. Amendola <i>et al.</i> (<i>Nanoscale Horiz.</i>, 2025, <b>10</b>, 336-348, https://doi.org/10.1039/D4NH00449C) on the synthesis of rhodium nanospheres for ultraviolet and visible plasmonics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foundational insights for theranostic applications of magnetoelectric nanoparticles.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-02-03 DOI: 10.1039/d4nh00560k
Victoria Andre, Mostafa Abdel-Mottaleb, Max Shotbolt, Shawnus Chen, Zeinab Ramezini, Elric Zhang, Skye Conlan, Ozzie Telisman, Ping Liang, John M Bryant, Roman Chomko, Sakhrat Khizroev

Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an ab initio analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.

{"title":"Foundational insights for theranostic applications of magnetoelectric nanoparticles.","authors":"Victoria Andre, Mostafa Abdel-Mottaleb, Max Shotbolt, Shawnus Chen, Zeinab Ramezini, Elric Zhang, Skye Conlan, Ozzie Telisman, Ping Liang, John M Bryant, Roman Chomko, Sakhrat Khizroev","doi":"10.1039/d4nh00560k","DOIUrl":"10.1039/d4nh00560k","url":null,"abstract":"<p><p>Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an <i>ab initio</i> analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-refractive-index 2D photonic structures for robust low-threshold multiband lasing.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-28 DOI: 10.1039/d4nh00574k
Ana Conde-Rubio, Juan R Deop-Ruano, Luis Cerdán, Alejandro Manjavacas, Agustín Mihi

High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance. Here, we employ a scalable soft nanoimprinting lithography method to create a series of two-dimensional (2D) periodic square hole arrays in polymeric films (SU-8), which are coated with an HRI dielectric layer (TiO2). These structures exhibit low-threshold lasing from an organic dye-doped SU-8 layer deposited on top. We study arrays with different lattice parameters and a sample with a random distribution of holes, finding that the optimal laser performance occurs when the optical resonances of the array align with the emission wavelength range of the dye. Furthermore, we observe that the anisotropy in the TiO2 coating breaks the polarization degeneracy of the square arrays, leading to the emergence of new modes and enabling the simultaneous appearance of multiple lasing peaks. Our work shows that, despite the simplicity of their fabrication process, the HRI structures studied here exhibit a high degree of complexity, leading to a rich optical response and enabling multiband lasing. This offers an innovative approach to building robust HRI platforms for lasing with improved control over their emission properties.

高折射率(HRI)电介质作为紧凑型激光器的构件,正受到越来越多的关注。与等离子体平台相比,高折射率介质能够同时支持电模式和磁模式,因此具有更大的通用性。此外,它们的吸收损耗降低,最大限度地减少了热量产生,从而进一步提高了性能。在这里,我们采用了一种可扩展的软纳米压印光刻方法,在聚合物薄膜(SU-8)上创建了一系列二维(2D)周期性方孔阵列,并在其上涂覆了一层 HRI 介电层(TiO2)。这些结构通过上面沉积的掺杂有机染料的 SU-8 层表现出低阈值激光。我们研究了具有不同晶格参数的阵列和具有随机孔分布的样品,发现当阵列的光学共振与染料的发射波长范围一致时,激光性能最佳。此外,我们还观察到,TiO2 涂层中的各向异性打破了方形阵列的偏振变性,从而导致新模式的出现,并使多个激光峰同时出现。我们的工作表明,尽管制作工艺简单,但本文研究的 HRI 结构却具有高度的复杂性,从而产生了丰富的光学响应,实现了多波段激光。这为构建稳健的 HRI 激光平台提供了一种创新方法,可改善对其发射特性的控制。
{"title":"High-refractive-index 2D photonic structures for robust low-threshold multiband lasing.","authors":"Ana Conde-Rubio, Juan R Deop-Ruano, Luis Cerdán, Alejandro Manjavacas, Agustín Mihi","doi":"10.1039/d4nh00574k","DOIUrl":"https://doi.org/10.1039/d4nh00574k","url":null,"abstract":"<p><p>High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance. Here, we employ a scalable soft nanoimprinting lithography method to create a series of two-dimensional (2D) periodic square hole arrays in polymeric films (SU-8), which are coated with an HRI dielectric layer (TiO<sub>2</sub>). These structures exhibit low-threshold lasing from an organic dye-doped SU-8 layer deposited on top. We study arrays with different lattice parameters and a sample with a random distribution of holes, finding that the optimal laser performance occurs when the optical resonances of the array align with the emission wavelength range of the dye. Furthermore, we observe that the anisotropy in the TiO<sub>2</sub> coating breaks the polarization degeneracy of the square arrays, leading to the emergence of new modes and enabling the simultaneous appearance of multiple lasing peaks. Our work shows that, despite the simplicity of their fabrication process, the HRI structures studied here exhibit a high degree of complexity, leading to a rich optical response and enabling multiband lasing. This offers an innovative approach to building robust HRI platforms for lasing with improved control over their emission properties.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the effects of adduct functionalization on C60 nanocages for the hydrogen evolution reaction.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-27 DOI: 10.1039/d4nh00586d
Joy Spears, Mina Shawky Adly, Edison Castro, Alain R Puente Santiago, Luis Echegoyen, Tianwei He, Christopher J Dares, Mohamed Noufal

In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C60 fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C60 has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential (η10) of 75 mV vs. RHE and a very low onset potential of -45 mV vs. RHE. This work addresses fundamental questions about how functionalization on C60 changes the electron density on fullerene cages for high-performance HER electrocatalysis.

在这项工作中,我们利用实验和理论技术研究了两种吡啶基-吡咯烷官能化 C60 富勒烯增强氢进化反应催化活性的原因。值得注意的是,C60 的单(吡啶基-吡咯烷)五加合物作为一种无金属催化剂表现出了显著的氢进化反应催化活性,与 RHE 相比,过电位 (η10) 为 75 mV,起始电位非常低,为 -45 mV。这项研究解决了有关 C60 功能化如何改变富勒烯笼上电子密度以实现高性能 HER 电催化的基本问题。
{"title":"Understanding the effects of adduct functionalization on C<sub>60</sub> nanocages for the hydrogen evolution reaction.","authors":"Joy Spears, Mina Shawky Adly, Edison Castro, Alain R Puente Santiago, Luis Echegoyen, Tianwei He, Christopher J Dares, Mohamed Noufal","doi":"10.1039/d4nh00586d","DOIUrl":"https://doi.org/10.1039/d4nh00586d","url":null,"abstract":"<p><p>In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C<sub>60</sub> fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C<sub>60</sub> has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential (<i>η</i><sub>10</sub>) of 75 mV <i>vs.</i> RHE and a very low onset potential of -45 mV <i>vs.</i> RHE. This work addresses fundamental questions about how functionalization on C<sub>60</sub> changes the electron density on fullerene cages for high-performance HER electrocatalysis.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of Co3O4/NiO microspheres.
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-27 DOI: 10.1039/d4nh00504j
Guozhen Zhu, Xinsong Xu, Yiyao Zhang, Jiale Lian, Yuhan Li, Zhen Yang, Renchao Che

A porous hedgehog-like Co3O4/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin Co3O4/NiO nanosheets with a large specific surface area, abundant pores distributed between the Co3O4/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The Co3O4/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity. The pores distributed between the Co3O4/NiO nanosheets created numerous diffusion pathways for lithium ions and relieved stress from the charging/discharging process. Meanwhile, GO supported the PHCNO microspheres, enhancing their cycling stability. A high reversible specific capacity of 383.9 mA h g-1 was maintained after 1000 cycles at 3000 mA g-1. In addition, GO improved the conductivity of PHCNO microspheres and then achieved a good rate performance; a high reversible specific capacity of 526.7 mA h g-1 was obtained at 5000 mA g-1. This work provided a reference for synthesizing high-performance lithium-ion battery anode materials.

{"title":"Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of Co<sub>3</sub>O<sub>4</sub>/NiO microspheres.","authors":"Guozhen Zhu, Xinsong Xu, Yiyao Zhang, Jiale Lian, Yuhan Li, Zhen Yang, Renchao Che","doi":"10.1039/d4nh00504j","DOIUrl":"https://doi.org/10.1039/d4nh00504j","url":null,"abstract":"<p><p>A porous hedgehog-like Co<sub>3</sub>O<sub>4</sub>/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin Co<sub>3</sub>O<sub>4</sub>/NiO nanosheets with a large specific surface area, abundant pores distributed between the Co<sub>3</sub>O<sub>4</sub>/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The Co<sub>3</sub>O<sub>4</sub>/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity. The pores distributed between the Co<sub>3</sub>O<sub>4</sub>/NiO nanosheets created numerous diffusion pathways for lithium ions and relieved stress from the charging/discharging process. Meanwhile, GO supported the PHCNO microspheres, enhancing their cycling stability. A high reversible specific capacity of 383.9 mA h g<sup>-1</sup> was maintained after 1000 cycles at 3000 mA g<sup>-1</sup>. In addition, GO improved the conductivity of PHCNO microspheres and then achieved a good rate performance; a high reversible specific capacity of 526.7 mA h g<sup>-1</sup> was obtained at 5000 mA g<sup>-1</sup>. This work provided a reference for synthesizing high-performance lithium-ion battery anode materials.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanoscale Horizons
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1