Juvenile osteochondritis dissecans (JOCD) of the knee is a common cause of pain and dysfunction among active children and adolescents [1,2]. JOCD is defined as a pathologic process for which the blood supply to a bone area is disrupted due to excessive loading forces on some parts of the joint, causing the necrosis of the subchondral bone and cartilage [3–5]. In youths with stable JOCD of the knee, conservative management focusing on biomechanical factors and unloading is the standard of care [6]. However, it is not clear how the biomechanical factors, such as the lower limbs kinematics and kinetics during walking, are associated with JOCD [6]. The aim of this project was to identify objective biomechanical outcomes associated with JOCD to better target conservative treatment options. Thirteen (n=13) patients with unilateral medial femoral condyle JOCD and nineteen (n=19) control subjects were evaluated at the SHC-Canada. Three distinct groups were created for comparison: 1) JOCD side, 2) Unaffected contralateral side, 3) Healthy controls. JOCD patients were evaluated before conservative treatment initiation. All participants performed barefoot overground walking at a self-selected speed. Retroreflective markers were placed on specific bony landmarks according to the Plug-In-Gait marker set [7]. A 10-camera motion capture system (VICON) with 4 forceplates (AMTI) were used to collect kinematic and kinetic data. Joint angles and moments at the hip and knee was processed using Nexus 2.12.1 and averaged for three complete gait cycles. For the main outcome measures, peak joint angle and moment in the coronal plane were outputted at the hip and knee. To identify statistical differences between groups (α=0.05), the main outcome measures were compared using paired t-test between JOCD and unaffected groups, and unpaired t-test between JOCD and control groups. Data showed altered knee joint movement patterns for the JOCD side group, with significantly higher peak knee varus angle (vs. unaffected=+2.66°, p=0.002; vs. controls=+2.39°, p=0.02) and varus-thrust angle (vs. unaffected=+1.48°, p=0.02) (Fig. 1B). Data also showed altered kinetics for the JOCD side group, with significantly lower peak hip adduction moment (vs. controls=-0.19 N∙m/kg, p=0.001) and peak knee adduction moment (vs. controls=-0.12 N∙m/kg; p=0.02) (Fig. 1C&D).Download : Download high-res image (116KB)Download : Download full-size image Higher knee motion in the coronal plane for youths with JOCD suggest the presence of medio-lateral knee instability. Also, reduced knee adduction moment in the presence of JOCD suggest compensations at the ipsilateral trunk and hip to reduce medial femoral condyle loading. Potential treatment focusing on knee medio-lateral stability, such as motor control exercises and knee unloading brace, have potential at improving neutral dynamic knee alignment during walking. The current set of data will serve as a method to develop a standardized conservative protocol
膝关节幼年性骨软骨炎(JOCD)是活跃儿童和青少年疼痛和功能障碍的常见原因[1,2]。JOCD被定义为一种病理过程,由于关节某些部位的负荷过大,导致骨区血液供应中断,导致软骨下骨和软骨坏死[3-5]。对于青年膝关节稳定性JOCD患者,保守治疗的标准是关注生物力学因素和卸除[6]。然而,目前尚不清楚生物力学因素,如行走过程中的下肢运动学和动力学,如何与JOCD相关[6]。该项目的目的是确定与JOCD相关的客观生物力学结果,以更好地针对保守治疗方案。在SHC-Canada对13例(n=13)单侧股骨内侧髁JOCD患者和19例(n=19)对照组进行了评估。建立三个不同的组进行比较:1)JOCD侧,2)未受影响的对侧,3)健康对照组。JOCD患者在保守治疗开始前进行评估。所有参与者都以自己选择的速度赤脚在地上行走。根据plug - in -步态标记集将反射标记放置在特定的骨标记上[7]。采用带有4个力板(AMTI)的10摄像头运动捕捉系统(VICON)收集运动学和动力学数据。使用Nexus 2.12.1对髋关节和膝关节的关节角和力矩进行处理,并对三个完整的步态周期取平均值。主要测量指标为髋关节和膝关节冠状面关节角和力矩峰值。为确定各组间的统计学差异(α=0.05),采用配对t检验比较JOCD组与未受影响组的主要结局指标,采用非配对t检验比较JOCD组与对照组的主要结局指标。数据显示JOCD侧组的膝关节运动模式发生改变,膝关节内翻角峰值明显升高(未受影响=+2.66°,p=0.002;与对照组相比=+2.39°,p=0.02)和内翻推力角(与未受影响的相比=+1.48°,p=0.02)(图1B)。数据还显示JOCD侧组的动力学改变,髋内收峰值力矩(与对照组相比=-0.19 N∙m/kg, p=0.001)和膝关节内收峰值力矩(与对照组相比=-0.12 N∙m/kg;p=0.02)(图1C&D)。青少年JOCD患者的膝关节在冠状面有较高的运动提示膝关节中外侧不稳定。此外,JOCD存在时膝关节内收力矩减小,提示在同侧躯干和髋部进行代偿以减少股骨内侧髁负荷。潜在的治疗侧重于膝关节中外侧稳定性,如运动控制练习和膝关节卸载支架,在改善步行时中性动态膝关节对齐方面具有潜力。目前的数据集将作为一种方法来制定一个标准化的保守方案,重点关注客观的生物力学结果,以提高JOCD患者的护理质量和治疗成功率。
{"title":"Quantitative gait analysis of patients with unilateral juvenile osteochondritis dissecans of the knee: Comparison with the contralateral side and controls","authors":"Mathieu Lalumière, Thierry Pauyo, Jean-François Girouard, Reggie Charles Hamdy, Louis-Nicolas Veilleux","doi":"10.1016/j.gaitpost.2023.07.137","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.137","url":null,"abstract":"Juvenile osteochondritis dissecans (JOCD) of the knee is a common cause of pain and dysfunction among active children and adolescents [1,2]. JOCD is defined as a pathologic process for which the blood supply to a bone area is disrupted due to excessive loading forces on some parts of the joint, causing the necrosis of the subchondral bone and cartilage [3–5]. In youths with stable JOCD of the knee, conservative management focusing on biomechanical factors and unloading is the standard of care [6]. However, it is not clear how the biomechanical factors, such as the lower limbs kinematics and kinetics during walking, are associated with JOCD [6]. The aim of this project was to identify objective biomechanical outcomes associated with JOCD to better target conservative treatment options. Thirteen (n=13) patients with unilateral medial femoral condyle JOCD and nineteen (n=19) control subjects were evaluated at the SHC-Canada. Three distinct groups were created for comparison: 1) JOCD side, 2) Unaffected contralateral side, 3) Healthy controls. JOCD patients were evaluated before conservative treatment initiation. All participants performed barefoot overground walking at a self-selected speed. Retroreflective markers were placed on specific bony landmarks according to the Plug-In-Gait marker set [7]. A 10-camera motion capture system (VICON) with 4 forceplates (AMTI) were used to collect kinematic and kinetic data. Joint angles and moments at the hip and knee was processed using Nexus 2.12.1 and averaged for three complete gait cycles. For the main outcome measures, peak joint angle and moment in the coronal plane were outputted at the hip and knee. To identify statistical differences between groups (α=0.05), the main outcome measures were compared using paired t-test between JOCD and unaffected groups, and unpaired t-test between JOCD and control groups. Data showed altered knee joint movement patterns for the JOCD side group, with significantly higher peak knee varus angle (vs. unaffected=+2.66°, p=0.002; vs. controls=+2.39°, p=0.02) and varus-thrust angle (vs. unaffected=+1.48°, p=0.02) (Fig. 1B). Data also showed altered kinetics for the JOCD side group, with significantly lower peak hip adduction moment (vs. controls=-0.19 N∙m/kg, p=0.001) and peak knee adduction moment (vs. controls=-0.12 N∙m/kg; p=0.02) (Fig. 1C&D).Download : Download high-res image (116KB)Download : Download full-size image Higher knee motion in the coronal plane for youths with JOCD suggest the presence of medio-lateral knee instability. Also, reduced knee adduction moment in the presence of JOCD suggest compensations at the ipsilateral trunk and hip to reduce medial femoral condyle loading. Potential treatment focusing on knee medio-lateral stability, such as motor control exercises and knee unloading brace, have potential at improving neutral dynamic knee alignment during walking. The current set of data will serve as a method to develop a standardized conservative protocol","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"371 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.196
Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler
Spasticity is a symptom that occurs in patients with acute or chronic damages of the central nervous system [1]. Quantification of such limitations is essential, for example for preoperative decision making. Though, objective measurement methods to assess upper limb (UL) spasticity are poorly applied in clinical practice. Due to the low interrater reliability of subjective scales (modified Ashworth scale (MAS), modified Tardieu scale (MTS) [2,3]), 3D motion analysis and synchronized surface EMG (sEMG) should be used as an alternative method to determine objective parameters. How do the results of the objective sEMG parameters during passive stretch correlate with the subjective values of MAS and MTS? Which differences exist in wrist kinematics and muscle activity during a passive stretch of the wrist flexors between healthy adults and patients with UL spasticity? 11 patients with UL spasticity (39 ± 18 years) and 5 healthy adults (10 arms, 35 ± 9 years) were included. All participants were analysed using 3D motion analysis (Qualisys, U.L.E.M.A [4]) and sEMG (Noraxon) on M. flexor carpi ulnaris and / or M. flexor carpi radialis and M. extensor carpi radialis brevis during passive stretch of the wrist (3 slow (LV) and 3 quick (HV) directed movements). sEMG data were normalised to maximum isometric contraction (MVIC) and examined over a defined period of time (200ms before reaching maximum velocity to 90% of max. extension [5]). The velocity of the passive stretch (30°/s slow, 180°/s fast) was standardized with a metronome. The maximum passive wrist extension, the sEMG parameters (EMGLV and EMGHV) as well as the sEMG difference between LV and HV (EMGchange) were compared between groups (Mann-Whitney-U-Test). MAS and MTS were clinically assessed and correlated with sEMG parameters (Spearman's rank correlation coefficient). Joint angles and sEMG parameters were significantly different between groups (Table 1a). Correlations between sEMG based parameters and the subjective values of MAS and MTS where low and not significant (Table 1b). Table 1: a): Differences between healthy adults and patients, b): Spearman's rank correlation coefficient between subjective Scales (MAS, MTS) and objective Parameters (EMGLV, EMGHV, EMGchange)Download : Download high-res image (74KB)Download : Download full-size image The objective measurement method, which has already been used for the elbow and lower limb, also shows promising results on the wrist. The comparison between healthy adults and spasticity patients clearly shows that the muscular activity of the wrist flexors during their passive stretch is high and velocity dependent in spasticity patients. Interestingly, neither MAS nor MTS values correlate to objective values at the wrist. Wrist flexor spasticity is not only caused by the wrist flexors, but also by the extrinsic finger flexors, which are not yet included in this model.
{"title":"Application of 3D motion analysis to quantify a clinical test method assessing wrist spasticity","authors":"Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler","doi":"10.1016/j.gaitpost.2023.07.196","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.196","url":null,"abstract":"Spasticity is a symptom that occurs in patients with acute or chronic damages of the central nervous system [1]. Quantification of such limitations is essential, for example for preoperative decision making. Though, objective measurement methods to assess upper limb (UL) spasticity are poorly applied in clinical practice. Due to the low interrater reliability of subjective scales (modified Ashworth scale (MAS), modified Tardieu scale (MTS) [2,3]), 3D motion analysis and synchronized surface EMG (sEMG) should be used as an alternative method to determine objective parameters. How do the results of the objective sEMG parameters during passive stretch correlate with the subjective values of MAS and MTS? Which differences exist in wrist kinematics and muscle activity during a passive stretch of the wrist flexors between healthy adults and patients with UL spasticity? 11 patients with UL spasticity (39 ± 18 years) and 5 healthy adults (10 arms, 35 ± 9 years) were included. All participants were analysed using 3D motion analysis (Qualisys, U.L.E.M.A [4]) and sEMG (Noraxon) on M. flexor carpi ulnaris and / or M. flexor carpi radialis and M. extensor carpi radialis brevis during passive stretch of the wrist (3 slow (LV) and 3 quick (HV) directed movements). sEMG data were normalised to maximum isometric contraction (MVIC) and examined over a defined period of time (200ms before reaching maximum velocity to 90% of max. extension [5]). The velocity of the passive stretch (30°/s slow, 180°/s fast) was standardized with a metronome. The maximum passive wrist extension, the sEMG parameters (EMGLV and EMGHV) as well as the sEMG difference between LV and HV (EMGchange) were compared between groups (Mann-Whitney-U-Test). MAS and MTS were clinically assessed and correlated with sEMG parameters (Spearman's rank correlation coefficient). Joint angles and sEMG parameters were significantly different between groups (Table 1a). Correlations between sEMG based parameters and the subjective values of MAS and MTS where low and not significant (Table 1b). Table 1: a): Differences between healthy adults and patients, b): Spearman's rank correlation coefficient between subjective Scales (MAS, MTS) and objective Parameters (EMGLV, EMGHV, EMGchange)Download : Download high-res image (74KB)Download : Download full-size image The objective measurement method, which has already been used for the elbow and lower limb, also shows promising results on the wrist. The comparison between healthy adults and spasticity patients clearly shows that the muscular activity of the wrist flexors during their passive stretch is high and velocity dependent in spasticity patients. Interestingly, neither MAS nor MTS values correlate to objective values at the wrist. Wrist flexor spasticity is not only caused by the wrist flexors, but also by the extrinsic finger flexors, which are not yet included in this model.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.134
Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander
Hypermobility is a physical specificity of the subject that refers to an increased range of motion in one or more joints beyond what is considered normal or expected for an individual's age, gender, and body type. The previous studies on hypermobility stated that generalized joint hypermobility (GJH) may cause joint instability and muscle weakness [1]. The knee joint structural integrity and function maintained essentially by the cruciate ligaments. The anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) work together to provide stability to the knee joint by preventing excessive movement of the tibia (shin bone) in relation to the femur (thigh bone). The more common ligament injury is ACL injury and non-contact ACL injuries remain a serious problem among athletes [2]. Activities demanding mechanical bearing on the knee joint recommended for classifying an athlete's anterior cruciate ligament injury risk [3]. Some biomechanical factors determined in these tests are associated with future injuries [4]. In order to protect the athlete from injury, it is necessary to determine the causes of biomechanical factors determined by functional tests. The aim of this study is to examine the effects of GJH on Pelvis and lower body joint biomechanics with Single Leg Landing (SLL) test. Does hypermobility alter lower extremity biomechanics? Eight healthy volunteers with no history of musculoskeletal injury or pain participated in this study (mean age: 16.6±4.2). Casual sports participants were divided into two equal groups (control ≤4, hypermobile ≥6) according to the Beighton score which measures GJH [5]. SLL tests were acquired for each subject using 3D motion analysis (6 Vantage 5 Camera, 2 Force Platforms, Vicon Motion Systems Ltd UK). Plug-in-gait model for lower extremity is utilized as marker set that described in the previous studies [4]. Three repetitive tests were evaluated for each leg side. An Independent t-test was used for statistical analysis. Participants with hypermobility exhibited higher peak angles of pelvic external rotation (p=0.01), hip adduction (p=0.03), and knee valgus (p=0.02) during the stance phase of knee-bearing activity (see Table 1). In contrast, peak values of pelvic posterior tilt angle (p=0.03), foot internal progression (p=0.05), and knee flexion moment (p=0.01) were found to be decreased in participants with hypermobility.Download : Download high-res image (113KB)Download : Download full-size image It has been determined that joint hypermobility can lead to alterations in lower extremity biomechanics during SLL test. Increase in peak hip adduction and knee valgus angles lead to both acute (ACL rupture factor) and overuse sport injuries [6]. Further studies are needed to investigate the effects of joint hypermobility using detailed marker set for better quantification of specifically knee joint movement.
活动过度是指一个或多个关节的活动范围增加,超出了个体年龄、性别和体型的正常或预期范围。以往关于关节活动过度的研究表明,广泛性关节活动过度(GJH)可引起关节不稳定和肌肉无力[1]。膝关节的结构完整性和功能主要由交叉韧带维持。前交叉韧带(ACL)和后交叉韧带(PCL)共同作用,通过防止胫骨(胫骨)相对于股骨(大腿骨)的过度运动来提供膝关节的稳定性。更常见的韧带损伤是前交叉韧带损伤,非接触性前交叉韧带损伤仍然是运动员的一个严重问题。对运动员前交叉韧带损伤风险进行分类时,建议对膝关节进行需要机械承重的活动[3]。这些试验中确定的一些生物力学因素与未来的损伤有关。为了保护运动员免受伤害,有必要通过功能测试确定生物力学因素的原因。本研究的目的是通过单腿着地(SLL)试验来研究GJH对骨盆和下肢关节生物力学的影响。活动过度会改变下肢生物力学吗?8名没有肌肉骨骼损伤或疼痛史的健康志愿者参加了这项研究(平均年龄:16.6±4.2)。根据Beighton评分(GJH[5])将休闲运动参与者分为两组(对照组≤4,超动组≥6)。使用3D运动分析(6台Vantage 5相机,2台Force平台,Vicon motion Systems Ltd UK)对每个受试者进行SLL测试。采用前人研究[4]中描述的下肢插入式步态模型作为标记集。对每侧腿进行三次重复试验。采用独立t检验进行统计分析。活动度高的参与者在负重膝关节活动的站立阶段表现出更高的骨盆外旋峰角(p=0.01)、髋关节内收(p=0.03)和膝关节外翻(p=0.02)(见表1)。相反,活动度高的参与者盆腔后倾角(p=0.03)、足部内进(p=0.05)和膝关节屈曲力矩(p=0.01)的峰值被发现降低。下载:下载高分辨率图片(113KB)下载:下载全尺寸图片在SLL测试中,已经确定关节活动过度会导致下肢生物力学的改变。髋内收峰和膝关节外翻角的增加会导致急性(前交叉韧带破裂因子)和过度使用性运动损伤[10]。需要进一步的研究来研究关节过度活动的影响,使用详细的标记集来更好地量化具体的膝关节运动。
{"title":"Impact of subject’s physical properties on joint biomechanics: Hypermobility alters lower extremity biomechanics during knee-bearing activity","authors":"Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander","doi":"10.1016/j.gaitpost.2023.07.134","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.134","url":null,"abstract":"Hypermobility is a physical specificity of the subject that refers to an increased range of motion in one or more joints beyond what is considered normal or expected for an individual's age, gender, and body type. The previous studies on hypermobility stated that generalized joint hypermobility (GJH) may cause joint instability and muscle weakness [1]. The knee joint structural integrity and function maintained essentially by the cruciate ligaments. The anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) work together to provide stability to the knee joint by preventing excessive movement of the tibia (shin bone) in relation to the femur (thigh bone). The more common ligament injury is ACL injury and non-contact ACL injuries remain a serious problem among athletes [2]. Activities demanding mechanical bearing on the knee joint recommended for classifying an athlete's anterior cruciate ligament injury risk [3]. Some biomechanical factors determined in these tests are associated with future injuries [4]. In order to protect the athlete from injury, it is necessary to determine the causes of biomechanical factors determined by functional tests. The aim of this study is to examine the effects of GJH on Pelvis and lower body joint biomechanics with Single Leg Landing (SLL) test. Does hypermobility alter lower extremity biomechanics? Eight healthy volunteers with no history of musculoskeletal injury or pain participated in this study (mean age: 16.6±4.2). Casual sports participants were divided into two equal groups (control ≤4, hypermobile ≥6) according to the Beighton score which measures GJH [5]. SLL tests were acquired for each subject using 3D motion analysis (6 Vantage 5 Camera, 2 Force Platforms, Vicon Motion Systems Ltd UK). Plug-in-gait model for lower extremity is utilized as marker set that described in the previous studies [4]. Three repetitive tests were evaluated for each leg side. An Independent t-test was used for statistical analysis. Participants with hypermobility exhibited higher peak angles of pelvic external rotation (p=0.01), hip adduction (p=0.03), and knee valgus (p=0.02) during the stance phase of knee-bearing activity (see Table 1). In contrast, peak values of pelvic posterior tilt angle (p=0.03), foot internal progression (p=0.05), and knee flexion moment (p=0.01) were found to be decreased in participants with hypermobility.Download : Download high-res image (113KB)Download : Download full-size image It has been determined that joint hypermobility can lead to alterations in lower extremity biomechanics during SLL test. Increase in peak hip adduction and knee valgus angles lead to both acute (ACL rupture factor) and overuse sport injuries [6]. Further studies are needed to investigate the effects of joint hypermobility using detailed marker set for better quantification of specifically knee joint movement.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.269
Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote
Children with cerebral palsy (CP) often have balance impairments, but little is known about the relation between joint hyper-resistance (i.e., the most common symptom in spastic CP) and balance impairments (1). Both during clinical tests of joint hyper-resistance and when standing balance is perturbed, muscles are stretched. In children with CP, the stretch reflex in response to passive joint rotations is often hyper-excitable and reduced reciprocal inhibition has been observed in the antagonistic muscle (2). Furthermore, children with CP often have increased muscle co-activation during standing balance perturbations (3). Recently, we demonstrated that this increased muscle co-activation is not a useful compensation strategy and might therefore be a consequence of reduced reciprocal inhibition (4). Here, we investigated whether a reduction in reciprocal inhibition between plantarflexors and dorsiflexors in response to a passive stretching of the plantarflexors was related to higher levels of co-activation in response to toe-up rotational perturbations of standing balance. Twenty children with spastic CP participated in the study. We performed an instrumented spasticity assessment of the plantarflexors (5) followed by a standing balance assessment (Fig. 1, row1-2). During the instrumented spasticity assessment, the ankle was rotated as fast as possible from a plantar flexed position until the end of range of motion towards dorsiflexion. At least 7 seconds of rest were provided between different trials, five in total. Reactive standing balance was tested on a moving platform. Participants were instructed to maintain balance without stepping and the platform was rotated such that ankle dorsiflexion was elicited. Perturbations were repeated 8 times. Electromyography (EMG) from gastrocnemius lateralis (LG) and medialis (MG), soleus (SOL) and tibialis anterior (TA) was collected during both assessments. EMG was filtered and normalized to the maximal value across assessments (Fig. 1, row 3). We calculated the co-contraction index (CCI) as the overlap between TA and respectively LG, MG, and SOL EMG (6). We tested the relation between the CCI during passive joint rotations and reactive standing balance. The CCI between the plantarflexors and tibialis anterior during spasticity assessment was moderately correlated with the CCI during reactive balance responses (LG-TA: r=0.55; p= 0.02; MG-TA: r= 0.57, p=0.01; SOL-TA: r=0.54, p=0.02; Fig. 1, row 4). Fig. 1: Correlation between co-contraction index during instrumented spasticity assessment and perturbations of standing balance.Download : Download high-res image (242KB)Download : Download full-size image Our results suggest that deficits in spinal pathways governing the stretch reflex, and more specifically reduced reciprocal inhibition, might hinder reactive balance control. Successful postural control might therefore rely on compensations in supraspinal pathways to generate net balance correcting ankle momen
{"title":"Reduced reciprocal inhibition during passive spasticity assessments is related with increased muscle co-activation during perturbations of standing balance","authors":"Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote","doi":"10.1016/j.gaitpost.2023.07.269","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.269","url":null,"abstract":"Children with cerebral palsy (CP) often have balance impairments, but little is known about the relation between joint hyper-resistance (i.e., the most common symptom in spastic CP) and balance impairments (1). Both during clinical tests of joint hyper-resistance and when standing balance is perturbed, muscles are stretched. In children with CP, the stretch reflex in response to passive joint rotations is often hyper-excitable and reduced reciprocal inhibition has been observed in the antagonistic muscle (2). Furthermore, children with CP often have increased muscle co-activation during standing balance perturbations (3). Recently, we demonstrated that this increased muscle co-activation is not a useful compensation strategy and might therefore be a consequence of reduced reciprocal inhibition (4). Here, we investigated whether a reduction in reciprocal inhibition between plantarflexors and dorsiflexors in response to a passive stretching of the plantarflexors was related to higher levels of co-activation in response to toe-up rotational perturbations of standing balance. Twenty children with spastic CP participated in the study. We performed an instrumented spasticity assessment of the plantarflexors (5) followed by a standing balance assessment (Fig. 1, row1-2). During the instrumented spasticity assessment, the ankle was rotated as fast as possible from a plantar flexed position until the end of range of motion towards dorsiflexion. At least 7 seconds of rest were provided between different trials, five in total. Reactive standing balance was tested on a moving platform. Participants were instructed to maintain balance without stepping and the platform was rotated such that ankle dorsiflexion was elicited. Perturbations were repeated 8 times. Electromyography (EMG) from gastrocnemius lateralis (LG) and medialis (MG), soleus (SOL) and tibialis anterior (TA) was collected during both assessments. EMG was filtered and normalized to the maximal value across assessments (Fig. 1, row 3). We calculated the co-contraction index (CCI) as the overlap between TA and respectively LG, MG, and SOL EMG (6). We tested the relation between the CCI during passive joint rotations and reactive standing balance. The CCI between the plantarflexors and tibialis anterior during spasticity assessment was moderately correlated with the CCI during reactive balance responses (LG-TA: r=0.55; p= 0.02; MG-TA: r= 0.57, p=0.01; SOL-TA: r=0.54, p=0.02; Fig. 1, row 4). Fig. 1: Correlation between co-contraction index during instrumented spasticity assessment and perturbations of standing balance.Download : Download high-res image (242KB)Download : Download full-size image Our results suggest that deficits in spinal pathways governing the stretch reflex, and more specifically reduced reciprocal inhibition, might hinder reactive balance control. Successful postural control might therefore rely on compensations in supraspinal pathways to generate net balance correcting ankle momen","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.164
Babette Mooijekind, Lynn Bar-On, Marjolein M. van der Krogt, Wouter Schallig, Melinda M. Witbreuk, Annemieke I. Buizer
To improve gait in children with spastic cerebral palsy (CP), the calf muscle can be surgically elongated, for instance with an incision at the muscle-tendon junction [1,2]. Previous studies showed that this procedure results in a larger ankle range of motion [1,2]. However, it is unclear whether the elongation originates from lengthening of the tendon, the muscle belly, or a combination of both. What is the effect of surgical elongation on the morphology of the medial gastrocnemius (MG) in a child with CP and how does the MG morphology of the child with CP relate to MG morphology of typically developing children (TD) before and after the surgery? Muscle-tendon unit (MTU), muscle belly, tendon, and fascicle lengths, pennation angle of the fascicles as well as muscle volume were determined with 3D ultrasound for a boy with spastic CP (13 years, GMFCS I) one week before and 21 weeks after surgery (including a period of intensive physiotherapy), and compared to reference data of 20 TD children (10±3 years). Morphological variables were collected with the foot positioned at an angle corresponding to a moment of 0 Nm. Lengths were normalized to tibia length and volume to body weight. One-sample t-tests were conducted to compare the CP case with TD reference data. Before surgery, ankle angle at 0 Nm, MTU length, muscle belly length, and muscle volume were significantly lower and tendon length longer in the child with CP compared to TD references (Fig. 1). Fascicle length and pennation angle were similar to TD. After surgery, the ankle angle at 0 Nm increased with 18° achieved by an increase in MTU, muscle belly and tendon length with 11%, 1% and 18% respectively. Fascicle length decreased with 16% and muscle volume and pennation angle increased with 8% and 62% respectively. After surgery, only MTU length was similar in CP compared to TD. In this case, the surgical elongation resulted more ankle dorsiflexion mainly due to tendon elongation. Despite the better overall MTU length, there was overall more atypical MG morphology. The simultaneous increase in muscle volume and reduced fascicle length could be explained by the combined effect of fascicle hypertrophy and increase in pennation angle. The increased ankle dorsiflexion and longer MTU length may have improved the child’s function during daily life and physiotherapy, thereby facilitating fascicle hypertrophy shown by the increase in muscle volume. Our results should be verified in a larger sample size and related to his gait pattern and capacity. Additionally, more insight in the healing process can be obtained with recurring follow-up measurements planned 1 year post-surgery. Fig. 1. Adaptations following surgical elongation of the medial gastrocnemius.Download : Download high-res image (87KB)Download : Download full-size image
{"title":"Medial gastrocnemius morphology after orthopedic surgery in a child with spastic cerebral palsy","authors":"Babette Mooijekind, Lynn Bar-On, Marjolein M. van der Krogt, Wouter Schallig, Melinda M. Witbreuk, Annemieke I. Buizer","doi":"10.1016/j.gaitpost.2023.07.164","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.164","url":null,"abstract":"To improve gait in children with spastic cerebral palsy (CP), the calf muscle can be surgically elongated, for instance with an incision at the muscle-tendon junction [1,2]. Previous studies showed that this procedure results in a larger ankle range of motion [1,2]. However, it is unclear whether the elongation originates from lengthening of the tendon, the muscle belly, or a combination of both. What is the effect of surgical elongation on the morphology of the medial gastrocnemius (MG) in a child with CP and how does the MG morphology of the child with CP relate to MG morphology of typically developing children (TD) before and after the surgery? Muscle-tendon unit (MTU), muscle belly, tendon, and fascicle lengths, pennation angle of the fascicles as well as muscle volume were determined with 3D ultrasound for a boy with spastic CP (13 years, GMFCS I) one week before and 21 weeks after surgery (including a period of intensive physiotherapy), and compared to reference data of 20 TD children (10±3 years). Morphological variables were collected with the foot positioned at an angle corresponding to a moment of 0 Nm. Lengths were normalized to tibia length and volume to body weight. One-sample t-tests were conducted to compare the CP case with TD reference data. Before surgery, ankle angle at 0 Nm, MTU length, muscle belly length, and muscle volume were significantly lower and tendon length longer in the child with CP compared to TD references (Fig. 1). Fascicle length and pennation angle were similar to TD. After surgery, the ankle angle at 0 Nm increased with 18° achieved by an increase in MTU, muscle belly and tendon length with 11%, 1% and 18% respectively. Fascicle length decreased with 16% and muscle volume and pennation angle increased with 8% and 62% respectively. After surgery, only MTU length was similar in CP compared to TD. In this case, the surgical elongation resulted more ankle dorsiflexion mainly due to tendon elongation. Despite the better overall MTU length, there was overall more atypical MG morphology. The simultaneous increase in muscle volume and reduced fascicle length could be explained by the combined effect of fascicle hypertrophy and increase in pennation angle. The increased ankle dorsiflexion and longer MTU length may have improved the child’s function during daily life and physiotherapy, thereby facilitating fascicle hypertrophy shown by the increase in muscle volume. Our results should be verified in a larger sample size and related to his gait pattern and capacity. Additionally, more insight in the healing process can be obtained with recurring follow-up measurements planned 1 year post-surgery. Fig. 1. Adaptations following surgical elongation of the medial gastrocnemius.Download : Download high-res image (87KB)Download : Download full-size image","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135297870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.113
Patrycja Bobowik, Ida Wiszomirska, Jan Gajewski, Michalina Błażkiewicz, Katarzyna Kaczmarczyk
The WHO declared COVID-19 a global pandemic [1], but the long-term consequences and aftermath of the disease remain unclear. The SARS-CoV-2 virus infects the respiratory system and probably also affects many other systems, including the musculoskeletal system [2–4]. In clinical practice, it has been observed that after recovering from COVID-19, a large number of seniors report prolonged general weakness and muscle fatigue. Falls, for instance, are a well-known consequence of reduced muscle strength [5,6]. Is COVID-19 infection associated with long-term reductions in muscle strength and balance ability in older women? The Study Group included 25 women, aged 65+, who declared they had recovered from SARS-CoV-2 infection. The Control Group consisted of women (n=30) of similar age, tested prior to the SARS-CoV-2 pandemic. Muscle torques were measured for the knee flexors (KF), knee extensors (KE), trunk flexors (TF), trunk extensors (TE), and elbow flexors (EF) under isometric conditions using a JBA Staniak® isometric torquemeter, by the maximum voluntary contraction method. Balance was assessed using a Biodex Balance System SD (BBS) platform. A static Postural Stability Test (PST) was performed using the stability platform with eyes open and eyes closed. A dynamic Fall Risk Test (FRT) was performed with eyes open at various levels of platform instability, and on this basis a fall risk index (FRI 6-2) was determined for each subject. Differences between the groups were assessed using the Mann-Whitney U test. A significance level of α=0.05 was assumed. Muscle torque values were normalized to the body weight of each subject. Statistical analysis showed higher values of EF, TF and TE for the Control Group. No statistical differences were found in static stabilographic parameters between groups. The Post-COVID Group did show higher results of the dynamic stabilographic index (FRI6-2) compared to the Control Group, which is indicative of poorer balance abilities. Results are presented in Table 1. Table 1 The results of the muscle toques of various muscle groups and fall risk in Post-COVID Group and Control GroupDownload : Download high-res image (88KB)Download : Download full-size image EF– elbow flexors torque; KF– knee flexors torque; KE– knee extensor torque; TF– trunk flexors torque; TE– trunk extensors torque; FRI– fall risk index; *n=24 We found FRI6-2 to be correlated with TE (r= -0.38) and TF (r= -0.37) for all participants, but this correlation was larger in the Post-COVID Group (r= -0.68 for TE and r= -0.55 for TF). Results indicate that post-COVID women exhibit impaired strength of various muscle groups and body balance in dynamic conditions. Post-COVID physiotherapy should therefore take into account not only respiratory problems but also musculoskeletal and equilibrium disorders, e.g. by using resistance training to improve muscle strength.
{"title":"Muscle strength and equilibrium-maintaining ability in post-COVID women","authors":"Patrycja Bobowik, Ida Wiszomirska, Jan Gajewski, Michalina Błażkiewicz, Katarzyna Kaczmarczyk","doi":"10.1016/j.gaitpost.2023.07.113","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.113","url":null,"abstract":"The WHO declared COVID-19 a global pandemic [1], but the long-term consequences and aftermath of the disease remain unclear. The SARS-CoV-2 virus infects the respiratory system and probably also affects many other systems, including the musculoskeletal system [2–4]. In clinical practice, it has been observed that after recovering from COVID-19, a large number of seniors report prolonged general weakness and muscle fatigue. Falls, for instance, are a well-known consequence of reduced muscle strength [5,6]. Is COVID-19 infection associated with long-term reductions in muscle strength and balance ability in older women? The Study Group included 25 women, aged 65+, who declared they had recovered from SARS-CoV-2 infection. The Control Group consisted of women (n=30) of similar age, tested prior to the SARS-CoV-2 pandemic. Muscle torques were measured for the knee flexors (KF), knee extensors (KE), trunk flexors (TF), trunk extensors (TE), and elbow flexors (EF) under isometric conditions using a JBA Staniak® isometric torquemeter, by the maximum voluntary contraction method. Balance was assessed using a Biodex Balance System SD (BBS) platform. A static Postural Stability Test (PST) was performed using the stability platform with eyes open and eyes closed. A dynamic Fall Risk Test (FRT) was performed with eyes open at various levels of platform instability, and on this basis a fall risk index (FRI 6-2) was determined for each subject. Differences between the groups were assessed using the Mann-Whitney U test. A significance level of α=0.05 was assumed. Muscle torque values were normalized to the body weight of each subject. Statistical analysis showed higher values of EF, TF and TE for the Control Group. No statistical differences were found in static stabilographic parameters between groups. The Post-COVID Group did show higher results of the dynamic stabilographic index (FRI6-2) compared to the Control Group, which is indicative of poorer balance abilities. Results are presented in Table 1. Table 1 The results of the muscle toques of various muscle groups and fall risk in Post-COVID Group and Control GroupDownload : Download high-res image (88KB)Download : Download full-size image EF– elbow flexors torque; KF– knee flexors torque; KE– knee extensor torque; TF– trunk flexors torque; TE– trunk extensors torque; FRI– fall risk index; *n=24 We found FRI6-2 to be correlated with TE (r= -0.38) and TF (r= -0.37) for all participants, but this correlation was larger in the Post-COVID Group (r= -0.68 for TE and r= -0.55 for TF). Results indicate that post-COVID women exhibit impaired strength of various muscle groups and body balance in dynamic conditions. Post-COVID physiotherapy should therefore take into account not only respiratory problems but also musculoskeletal and equilibrium disorders, e.g. by using resistance training to improve muscle strength.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.273
Shiyang Yan, Yihong Zhao, Longbin Zhang, Luming Yang
Excessive weight-bearing positively affects the overloaded foot, which can induce multiple foot deformities [1]. Previous studies normalized maximum force to eliminate the influence of body weight on the mechanical loading of the foot [2]. To explore body weight itself to the change of the plantar pressure distribution, this study adopts a strategy of body weight scale to compare loading patterns between normal-weighted and obese children. It can acquire the exceeded foot loading data accurately for obese children compared to normal-weighted children, which could lead to finding the pressure threshold in obese children. Is there a method to grade the pressure thresholds of plantar overload in obese children? A cross-sectional study with a large sample size of 1170 participants aged 7-11 years was used to divide normal-weighted (n = 812) and obese children (n = 358) into eight groups based on the same weight class strategy: group 1 (25.5-30.4 kg), group 2 (30.5-35.4 kg), group 3 (35.5-40.4 kg), group 4 (40.5-45.4 kg), group 5 (45.5-50.4 kg), group 6 (50.5-55.4 kg), group 7 (55.5-60.4 kg), group 8 (60.5-65.4 kg). Dynamic plantar pressure data were collected using a Footscan® plantar pressure system (RSscan International, Belgium). Maximum forces were extracted from the main plantar region using principal component analysis. The change of obese children with the same weight grade compared with normal-weighted children was divided into six grades, to define the pressure threshold of obese children's plantar pressure compared with normal-weighted children. The assessment criteria of the pressure threshold level are set at 10 N (trivial effect), 10-20 N (very weak effect), 20-30 N (weak effect), 30-40 N (moderate effect), 40-50 N (strong effect) and 50-60 N (very strong effect). Table 1 shows the levels of the pressure threshold in obese children compared to normal-weighted children with the same weight class.Download : Download high-res image (64KB)Download : Download full-size image The results showed that the maximum force of obese children with 25.5-35.4 kg did not cause significant damage to the main stress area of the plantar, and there was no need for clinical intervention or other related foot decompression strategies. When the weight of obese children is greater than 35.5 kg, it is necessary to pay attention to the influence of excessive foot load on the development and health of obese children's feet. This study can provide data support for foot decompression protocols such as shoes or insoles and weight loss training.
{"title":"An approach to establishing the thresholds of plantar loading in obese children","authors":"Shiyang Yan, Yihong Zhao, Longbin Zhang, Luming Yang","doi":"10.1016/j.gaitpost.2023.07.273","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.273","url":null,"abstract":"Excessive weight-bearing positively affects the overloaded foot, which can induce multiple foot deformities [1]. Previous studies normalized maximum force to eliminate the influence of body weight on the mechanical loading of the foot [2]. To explore body weight itself to the change of the plantar pressure distribution, this study adopts a strategy of body weight scale to compare loading patterns between normal-weighted and obese children. It can acquire the exceeded foot loading data accurately for obese children compared to normal-weighted children, which could lead to finding the pressure threshold in obese children. Is there a method to grade the pressure thresholds of plantar overload in obese children? A cross-sectional study with a large sample size of 1170 participants aged 7-11 years was used to divide normal-weighted (n = 812) and obese children (n = 358) into eight groups based on the same weight class strategy: group 1 (25.5-30.4 kg), group 2 (30.5-35.4 kg), group 3 (35.5-40.4 kg), group 4 (40.5-45.4 kg), group 5 (45.5-50.4 kg), group 6 (50.5-55.4 kg), group 7 (55.5-60.4 kg), group 8 (60.5-65.4 kg). Dynamic plantar pressure data were collected using a Footscan® plantar pressure system (RSscan International, Belgium). Maximum forces were extracted from the main plantar region using principal component analysis. The change of obese children with the same weight grade compared with normal-weighted children was divided into six grades, to define the pressure threshold of obese children's plantar pressure compared with normal-weighted children. The assessment criteria of the pressure threshold level are set at 10 N (trivial effect), 10-20 N (very weak effect), 20-30 N (weak effect), 30-40 N (moderate effect), 40-50 N (strong effect) and 50-60 N (very strong effect). Table 1 shows the levels of the pressure threshold in obese children compared to normal-weighted children with the same weight class.Download : Download high-res image (64KB)Download : Download full-size image The results showed that the maximum force of obese children with 25.5-35.4 kg did not cause significant damage to the main stress area of the plantar, and there was no need for clinical intervention or other related foot decompression strategies. When the weight of obese children is greater than 35.5 kg, it is necessary to pay attention to the influence of excessive foot load on the development and health of obese children's feet. This study can provide data support for foot decompression protocols such as shoes or insoles and weight loss training.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.165
Babette Mooijekind, Louise S. van Muijlwijk, Annemieke I. Buizer, Marjolein M. van der Krogt, Lynn Bar-On
3D ultrasound (3DUS) can be used to visualize the gross morphology of the medial gastrocnemius (MG), including muscle belly, tendon and fascicle lengths, pennation angle and muscle volume [1]. Such information can be used to indicate, and evaluate the effects of treatments that target these structures, for example in children with cerebral palsy [2]. It is essential that 3DUS is sufficiently reliable to quantify changes due to treatment at the individual level. The test-retest reliability of MG 3DUS, particularly of the fascicles, is not well established. What is the test-retest reliability of 3DUS applied on the MG of healthy adults? The MG of 16 healthy adults (27.30±6 years, 10 women, 6 men) was visualized with 3DUS with the foot in an overhanging position (Fig. 1). Two scans were carried out and participants were asked to walk approximately 50 m between scans. Muscle belly, tendon and fascicle lengths, pennation angle and muscle volume were determined from 3D reconstructions using custom-made scripts [1]. Test-retest reliability was analyzed with Bland Altmann plots to visually determine systematic differences between scans and by calculating the intraclass correlation coefficient (ICC), the relative standard error of measurement ((SEM/mean)*100%) and the relative smallest detectable difference ((SDD/mean)*100%). An intraclass correlation coefficient <0.50 was interpreted as poor, 0.50–0.75 as moderate, 0.75–0.90 as good, and >0.90 as excellent reliability [3]. No systematic differences for the morphological variables were observed between scans based on the absence of clusters in the Bland Altmann plots. ICC values were excellent (0.91-1.00) for muscle belly, tendon, and fascicle lengths, and muscle volume and good for the pennation angle (0.82). The test re-test reliability of the tendon length was found to be most reliable (ICC 1.00) with a relative SEM and SDD of 0.99% and 2.75%, respectively. Muscle belly length (%SEM 2.45%, %SDD 6.78%) and volume (%SEM 3.83%, %SDD 10.62%) were found to have better reliability than fascicle length (%SEM 5.76%, %SDD 15.97%) and pennation angle (%SEM 7.61%, %SDD 21.08%). Based on previous literature [2], the SDD values of the current study may be small enough to detect the effects of MG surgical elongation on muscle belly length and volume in children with cerebral palsy using 3DUS. However, to further elucidate the sensitivity of 3DUS, reliability and sensitivity studies should be carried out on children with cerebral palsy. Further improvements could be made to increase the accuracy of fascicle length and pennation angle determination in 3D. Fig. 1. Schematic representation of measurement set-up and analysis.Download : Download high-res image (92KB)Download : Download full-size image
{"title":"Test-retest reliability of 3D ultrasound to visualize the gross structures of the medial gastrocnemius","authors":"Babette Mooijekind, Louise S. van Muijlwijk, Annemieke I. Buizer, Marjolein M. van der Krogt, Lynn Bar-On","doi":"10.1016/j.gaitpost.2023.07.165","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.165","url":null,"abstract":"3D ultrasound (3DUS) can be used to visualize the gross morphology of the medial gastrocnemius (MG), including muscle belly, tendon and fascicle lengths, pennation angle and muscle volume [1]. Such information can be used to indicate, and evaluate the effects of treatments that target these structures, for example in children with cerebral palsy [2]. It is essential that 3DUS is sufficiently reliable to quantify changes due to treatment at the individual level. The test-retest reliability of MG 3DUS, particularly of the fascicles, is not well established. What is the test-retest reliability of 3DUS applied on the MG of healthy adults? The MG of 16 healthy adults (27.30±6 years, 10 women, 6 men) was visualized with 3DUS with the foot in an overhanging position (Fig. 1). Two scans were carried out and participants were asked to walk approximately 50 m between scans. Muscle belly, tendon and fascicle lengths, pennation angle and muscle volume were determined from 3D reconstructions using custom-made scripts [1]. Test-retest reliability was analyzed with Bland Altmann plots to visually determine systematic differences between scans and by calculating the intraclass correlation coefficient (ICC), the relative standard error of measurement ((SEM/mean)*100%) and the relative smallest detectable difference ((SDD/mean)*100%). An intraclass correlation coefficient <0.50 was interpreted as poor, 0.50–0.75 as moderate, 0.75–0.90 as good, and >0.90 as excellent reliability [3]. No systematic differences for the morphological variables were observed between scans based on the absence of clusters in the Bland Altmann plots. ICC values were excellent (0.91-1.00) for muscle belly, tendon, and fascicle lengths, and muscle volume and good for the pennation angle (0.82). The test re-test reliability of the tendon length was found to be most reliable (ICC 1.00) with a relative SEM and SDD of 0.99% and 2.75%, respectively. Muscle belly length (%SEM 2.45%, %SDD 6.78%) and volume (%SEM 3.83%, %SDD 10.62%) were found to have better reliability than fascicle length (%SEM 5.76%, %SDD 15.97%) and pennation angle (%SEM 7.61%, %SDD 21.08%). Based on previous literature [2], the SDD values of the current study may be small enough to detect the effects of MG surgical elongation on muscle belly length and volume in children with cerebral palsy using 3DUS. However, to further elucidate the sensitivity of 3DUS, reliability and sensitivity studies should be carried out on children with cerebral palsy. Further improvements could be made to increase the accuracy of fascicle length and pennation angle determination in 3D. Fig. 1. Schematic representation of measurement set-up and analysis.Download : Download high-res image (92KB)Download : Download full-size image","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.191
Eirini Papageorgiou, Els Ortibus, Guy Molenaers, Anja Van Campenhout, Kaat Desloovere
Botulinum neurotoxin type A (BoNT) injections and selective dorsal rhizotomy (SDR) are often applied tone reduction procedures in children with spastic cerebral palsy (CP).[1,2] BoNT is focal and temporary, whereas SDR is generalized and non-reversible. Previous studies have investigated the changes inflicted by these treatments in generic CP-groups.[3,4] It is not yet clear whether specific gait patterns would respond differently to each treatment. What are the short-term, gait pattern-specific changes inflicted by BoNT injections or SDR in children with CP? Retrospective samples that had been treated either BoNT injections (NBoNT=117; baseline ageBoNT= 6y4mo±2y4mo; GMFCS I/II/III: 70/31/16) or SDR (NSDR=89; baseline ageSDR=9y5mo±2y3mo; GMFCS I/II/III: 18/54/17) were selected. All patients underwent three-dimensional gait analysis (3DGA) sessions at baseline and post-treatment (on average 1 y post-SDR and 2mo post-BoNT). The baseline 3DGA was used to classify the gait patterns of the patients, using the gait pattern classification system for children with spastic CP (GaP-CP).[5] For children with bilateral CP, both lower limbs were considered in case of asymmetric patterns between the two lower limbs, Their most affected side was selected when they displayed symmetric gait patterns, similar to the affected lower limb for children with unilateral CP. Gait-related changes focused on sagittal plane kinematics, which were compared with statistical non-parametric mapping (vector of four components, paired Hotellings T2 test, α=0.05 and post-hoc component-level comparisons, paired t-tests, α=0.0125). The comparisons were conducted in the total cohorts, as well as in gait pattern-specific subgroups. Thereafter, statistical clusters were deemed clinically relevant if their duration exceeded 3% of the gait cycle and the respective standard errors of measurement (SEM).[6,7] Changes in neuromuscular impairments were evaluated using the composite spasticity, weakness and selectivity scores of the muscles acting in the sagittal plane,[8] based on the clinical examination. Apparent equinus and jump gait were the best BoNT-responders, followed by dropfoot, where improvements were only observed in the ankle joint. In these three gait patterns, spasticity was improved, but not at the expense of additional weakness or selectivity. For SDR, the best responders were children with jump gait, crouch gait and apparent equinus. Spasticity was improved, while weakness and selectivity either improved or remained stable, in all gait patterns and for the total cohort. Fig. 1 shows the pre- vs post-treatment kinematics and statistically identified clusters of the three best responders to each treatment. "Fig. 1. Pre- vs post-treatment kinematics and statistically identified clusters of the three best responders to each treatment."Download : Download high-res image (251KB)Download : Download full-size image These results highlight the need to inspect the short-term effects o
{"title":"Pattern-specific effects of botulinum neurotoxin type A injections and selective dorsal rhizotomy on gait in children with spastic cerebral palsy","authors":"Eirini Papageorgiou, Els Ortibus, Guy Molenaers, Anja Van Campenhout, Kaat Desloovere","doi":"10.1016/j.gaitpost.2023.07.191","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.191","url":null,"abstract":"Botulinum neurotoxin type A (BoNT) injections and selective dorsal rhizotomy (SDR) are often applied tone reduction procedures in children with spastic cerebral palsy (CP).[1,2] BoNT is focal and temporary, whereas SDR is generalized and non-reversible. Previous studies have investigated the changes inflicted by these treatments in generic CP-groups.[3,4] It is not yet clear whether specific gait patterns would respond differently to each treatment. What are the short-term, gait pattern-specific changes inflicted by BoNT injections or SDR in children with CP? Retrospective samples that had been treated either BoNT injections (NBoNT=117; baseline ageBoNT= 6y4mo±2y4mo; GMFCS I/II/III: 70/31/16) or SDR (NSDR=89; baseline ageSDR=9y5mo±2y3mo; GMFCS I/II/III: 18/54/17) were selected. All patients underwent three-dimensional gait analysis (3DGA) sessions at baseline and post-treatment (on average 1 y post-SDR and 2mo post-BoNT). The baseline 3DGA was used to classify the gait patterns of the patients, using the gait pattern classification system for children with spastic CP (GaP-CP).[5] For children with bilateral CP, both lower limbs were considered in case of asymmetric patterns between the two lower limbs, Their most affected side was selected when they displayed symmetric gait patterns, similar to the affected lower limb for children with unilateral CP. Gait-related changes focused on sagittal plane kinematics, which were compared with statistical non-parametric mapping (vector of four components, paired Hotellings T2 test, α=0.05 and post-hoc component-level comparisons, paired t-tests, α=0.0125). The comparisons were conducted in the total cohorts, as well as in gait pattern-specific subgroups. Thereafter, statistical clusters were deemed clinically relevant if their duration exceeded 3% of the gait cycle and the respective standard errors of measurement (SEM).[6,7] Changes in neuromuscular impairments were evaluated using the composite spasticity, weakness and selectivity scores of the muscles acting in the sagittal plane,[8] based on the clinical examination. Apparent equinus and jump gait were the best BoNT-responders, followed by dropfoot, where improvements were only observed in the ankle joint. In these three gait patterns, spasticity was improved, but not at the expense of additional weakness or selectivity. For SDR, the best responders were children with jump gait, crouch gait and apparent equinus. Spasticity was improved, while weakness and selectivity either improved or remained stable, in all gait patterns and for the total cohort. Fig. 1 shows the pre- vs post-treatment kinematics and statistically identified clusters of the three best responders to each treatment. \"Fig. 1. Pre- vs post-treatment kinematics and statistically identified clusters of the three best responders to each treatment.\"Download : Download high-res image (251KB)Download : Download full-size image These results highlight the need to inspect the short-term effects o","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"120 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.262
Rebecca Louise Walker, Tom D O'Brien, Gabor J Barton, Bernie Carter, David M Wright, Richard J Foster
Children with cerebral palsy (CwCP) regularly fall (35% fall daily), yet reasons for their falls are not well understood [1]. Stability and changes in walking behaviour of CwCP when negotiating challenging walking environments (e.g. uneven surfaces) have been accurately measured in laboratory settings [2], however these have not captured the real-world fall-risk that CwCP face daily. Walk-along interviews are a useful approach to capture the meaningful lived experiences of children whilst they are walking outside in challenging environments [3,4]. Previously, we co-designed a novel walk-along interview protocol by engaging with CwCP[5]. Real-world insights gathered from these walk-along interviews could enable us to design bespoke research protocols that explore the mechanisms of daily falls in CwCP. How do lived experiences of CwCP inform the development of a bespoke lab-based protocol to investigate the mechanisms of falls? Twelve CwCP (GMFCS I to III, 6 diplegia, 6 hemiplegia, 12±3 years old) and their parents took part in tailored walk-along interviews in which they discussed everyday fall experiences based on environments encountered on an outdoor walk. Chest-mounted cameras (Kaiser Baas X450) and wireless microphones (RODE GO II) captured environments and conversations. Walk-along interviews were analysed in NVivo using interpretive description[6]. Key insights from interviews (e.g. previous fall experiences) were used to determine the types of environments to be included in a bespoke walking protocol for assessing mechanisms of falls. Four CwCP and their parents were consulted about the findings from walk-along interviews to support protocol design. Walk-along interviews revealed that falls most often result when environmental challenges (“bumpy” surfaces) and sensory challenges (being “distracted” or “not looking”) are present together. Discussing previous falls or trips (Fig. 1) with CwCP and their parents informed the design of a bespoke walkway to investigate mechanisms of falls in challenging environments. The walkway includes common environmental challenges that cause falls (grass potholes and uneven pavements). To emulate the sensory challenges reported during walk-along interviews, randomly selected trials over the bespoke walkway will include a virtual distraction imitating noises and images of a busy street. Consultations with CwCP suggested these virtual distractions should include dogs barking and cars driving on busy roads. Download : Download high-res image (87KB)Download : Download full-size image We have designed a bespoke protocol that replicates the challenging environmental features and distractions faced daily by CwCP. Our protocol is unique because it was informed by the lived experiences of CwCP and their parents during novel walk-along interviews. We will next investigate, using 3D motion capture, potential indicators of high fall-risk (e.g. foot placement, decreased margins of stability) in CwCP compared to typicall
脑瘫儿童(CwCP)经常跌倒(35%每天跌倒),但其跌倒的原因尚不清楚[1]。在实验室环境中,研究人员已经精确测量了CwCP在艰难行走环境(如凹凸不平的表面)时行走行为的稳定性和变化[2],然而,这些并没有捕捉到CwCP每天面临的真实跌倒风险。行走访谈是一种有用的方法,可以捕捉到孩子们在充满挑战的环境中行走时有意义的生活经历[3,4]。在此之前,我们通过与CwCP合作设计了一种新颖的随走访谈协议[5]。从这些访谈中收集到的真实世界的见解可以使我们设计定制的研究方案,探索CwCP中每日跌倒的机制。CwCP的生活经验如何为研究跌倒机制的定制实验室方案的开发提供信息?12名CwCP (GMFCS I至III, 6名双瘫患者,6名偏瘫患者,12±3岁)及其父母参加了量身定制的步行访谈,在访谈中,他们根据户外散步时遇到的环境讨论了日常跌倒经历。胸装摄像头(Kaiser Baas X450)和无线麦克风(RODE GO II)可以捕捉环境和对话。在NVivo中使用解释性描述分析行走访谈[6]。从访谈中获得的关键见解(例如,以前的跌倒经历)用于确定用于评估跌倒机制的定制步行协议中要包含的环境类型。我们咨询了四名CwCP及其父母,以了解通过访谈获得的支持方案设计的结果。行走访谈显示,当环境挑战(“颠簸”的表面)和感官挑战(“分心”或“不看”)同时出现时,最容易导致跌倒。与CwCP和他们的父母讨论了以前的跌倒或旅行(图1),从而设计了一个定制的人行道,以研究在具有挑战性的环境中跌倒的机制。人行道包括常见的环境挑战,导致跌倒(草坑和不平坦的路面)。为了模拟在步行采访中报告的感官挑战,在定制人行道上随机选择的试验将包括模仿噪音和繁忙街道图像的虚拟分心。与CwCP的磋商表明,这些虚拟干扰应该包括狗叫和汽车在繁忙的道路上行驶。下载:下载高分辨率图片(87KB)下载:下载全尺寸图片我们设计了一个定制的协议,复制了CwCP每天面临的具有挑战性的环境特征和干扰。我们的方案是独特的,因为它是由CwCP和他们的父母在新颖的walk-along访谈中的生活经历所提供的。接下来,我们将使用3D动作捕捉技术,在有或没有干扰的情况下,与正常发育的儿童相比,在CwCP中,潜在的高跌倒风险指标(例如,脚部放置,稳定度下降)。通过我们的协议,我们希望在CwCP协商复制真实世界环境时识别跌倒风险行为,为未来的跌倒预防计划提供信息。
{"title":"Designing a novel protocol to investigate mechanisms of falls in children with cerebral palsy, informed by lived experiences","authors":"Rebecca Louise Walker, Tom D O'Brien, Gabor J Barton, Bernie Carter, David M Wright, Richard J Foster","doi":"10.1016/j.gaitpost.2023.07.262","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.262","url":null,"abstract":"Children with cerebral palsy (CwCP) regularly fall (35% fall daily), yet reasons for their falls are not well understood [1]. Stability and changes in walking behaviour of CwCP when negotiating challenging walking environments (e.g. uneven surfaces) have been accurately measured in laboratory settings [2], however these have not captured the real-world fall-risk that CwCP face daily. Walk-along interviews are a useful approach to capture the meaningful lived experiences of children whilst they are walking outside in challenging environments [3,4]. Previously, we co-designed a novel walk-along interview protocol by engaging with CwCP[5]. Real-world insights gathered from these walk-along interviews could enable us to design bespoke research protocols that explore the mechanisms of daily falls in CwCP. How do lived experiences of CwCP inform the development of a bespoke lab-based protocol to investigate the mechanisms of falls? Twelve CwCP (GMFCS I to III, 6 diplegia, 6 hemiplegia, 12±3 years old) and their parents took part in tailored walk-along interviews in which they discussed everyday fall experiences based on environments encountered on an outdoor walk. Chest-mounted cameras (Kaiser Baas X450) and wireless microphones (RODE GO II) captured environments and conversations. Walk-along interviews were analysed in NVivo using interpretive description[6]. Key insights from interviews (e.g. previous fall experiences) were used to determine the types of environments to be included in a bespoke walking protocol for assessing mechanisms of falls. Four CwCP and their parents were consulted about the findings from walk-along interviews to support protocol design. Walk-along interviews revealed that falls most often result when environmental challenges (“bumpy” surfaces) and sensory challenges (being “distracted” or “not looking”) are present together. Discussing previous falls or trips (Fig. 1) with CwCP and their parents informed the design of a bespoke walkway to investigate mechanisms of falls in challenging environments. The walkway includes common environmental challenges that cause falls (grass potholes and uneven pavements). To emulate the sensory challenges reported during walk-along interviews, randomly selected trials over the bespoke walkway will include a virtual distraction imitating noises and images of a busy street. Consultations with CwCP suggested these virtual distractions should include dogs barking and cars driving on busy roads. Download : Download high-res image (87KB)Download : Download full-size image We have designed a bespoke protocol that replicates the challenging environmental features and distractions faced daily by CwCP. Our protocol is unique because it was informed by the lived experiences of CwCP and their parents during novel walk-along interviews. We will next investigate, using 3D motion capture, potential indicators of high fall-risk (e.g. foot placement, decreased margins of stability) in CwCP compared to typicall","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}