首页 > 最新文献

Gait & posture最新文献

英文 中文
The effects of accelerometer sensor position on freezing gait ratio parameters 加速度传感器位置对冻结步态比率参数的影响
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.170
Slavka Viteckova, Lucie Horakova, Tereza Duspivova, Evžen Růžička, Zoltan Szabo, Radim Krupicka
Freezing of gait (FoG) is an episodic gait pattern characterised by the inability to step that occurs on initiation or turning while walking for those with Parkinson’s disease (PD) [1]. This phenomenon is one of the most disabling yet poorly understood symptoms. It has been shown that tasks requiring bilateral limb coordination are the most likely to elicit FoG in the laboratory. Among the most promising tasks are stepping in place [2], walking and turning [3], and turning in place[4]. Previously, the Freezing Ratio parameter (FoG-ratio) has been developed to objectively measure freezing severity[5]. Usually, a lower limb acceleration signal in an antero-posterior direction measured by an inertial sensor has served as the source for its calculation[6,7]. Growing interest in single sensor utilisation in gait analysis brings up the question of whether any sensor other than the foot can measure freezing severity via FoG-ratio. Is FoG-ratio computed from a sensor located on the sternum or lower back comparable to the foot FoG-ratio during a walking turn? We included 34 Parkinson disease patients (21 males, 13 females), mean age 59.0 (SD 12.3) years in the study. All subjects performed an instrumented extended Timed Up&Go Test (TUG) wearing six synchronised inertial measurement units (Opals, APDM, USA) fitted via elastic straps. Sensors were located at the sternum, lower back, both wrists and feet. The turn subtask was automatically extracted from each TUG measurement. The FoG-ratio was calculated from antero-posterior acceleration acquired by a right foot sensor, left foot sensor, sternum (S) sensor, and lumbar (L) sensor. Depending on turn direction (left or right), each foot was denoted as the inner foot (IF) and outer foot (OF). Thus, four FoG-ratios (FoG_S-ratio, FoG_L-ratio, FoG_IF-ratio, FoG_OF-ratio) were obtained for each subject. The Kolmogorov-Smirnov test rejected the null hypothesis, i.e. data was not normally distributed. The Friedman test was employed for comparison of FoG-ratios. Posthoc pairwise comparisons were performed by Wilcoxon signed rank test (alpha level set to 0.05). Next, the Spearman correlation coefficient was calculated for all FoG-ratio pairs. The Friedman test revealed that the FoG-ratios from different sensor locations are statistically different (p<0.001). Pairwise tests showed statistically significant differences between the FoG_S-ratio and FoG_L-ratio (p<0.001), the FoG_S-ratio and FoG_IF-ratio (p=0.006), the FoG_L-ratio and FoG_IF-ratio (p=0.001), and the FoG_L-ratio and FoG_OF-ratio (p=0.001). The correlation analysis detected no significant relationship, Fig. 1.Download : Download high-res image (232KB)Download : Download full-size image Taking into account the results of location comparisons and their mutual relationships, no sensor seems to be a suitable alternative to foot sensors for freezing ratio calculation. However, additional analyses need to be performed before rejecting the possibility of employing o
步态冻结(FoG)是一种发作性步态模式,其特征是帕金森病(PD)患者在走路时开始或转身时无法行走[1]。这种现象是最令人致残但却鲜为人知的症状之一。研究表明,在实验室中,需要双侧肢体协调的任务最有可能引发FoG。其中最有希望的任务是原地踏步[2],行走和转弯[3],原地转弯[4]。此前,为了客观地衡量冻结的严重程度,已经开发了冻结比参数(fg - Ratio)[5]。通常,惯性传感器测量的前后方向下肢加速度信号作为其计算的来源[6,7]。对单传感器在步态分析中的应用日益增长的兴趣提出了一个问题,即除了脚以外的任何传感器是否可以通过fg -ratio来测量冻结的严重程度。从位于胸骨或下背部的传感器计算的FoG-ratio是否可与步行转弯时的足部FoG-ratio相比较?我们纳入34例帕金森病患者(男性21例,女性13例),平均年龄59.0岁(SD 12.3)。所有受试者都戴着六个同步惯性测量装置(Opals, APDM, USA),通过弹性带安装,进行了仪器化的定时起跳测试(TUG)。传感器位于胸骨、下背部、手腕和脚上。从每次TUG测量中自动提取转弯子任务。FoG-ratio由右脚传感器、左脚传感器、胸骨(S)传感器和腰椎(L)传感器获得的前后加速度计算。根据转弯方向(左或右),每只脚分别表示为内脚(IF)和外脚(OF)。由此得到每个受试者的4个fog -ratio (FoG_S-ratio, FoG_L-ratio, FoG_IF-ratio, FoG_OF-ratio)。Kolmogorov-Smirnov检验拒绝原假设,即数据不是正态分布。采用Friedman检验比较fog -ratio。术后两两比较采用Wilcoxon符号秩检验(α水平设为0.05)。接下来,计算所有FoG-ratio对的Spearman相关系数。Friedman检验显示,不同传感器位置的fog -ratio具有统计学差异(p<0.001)。两两检验显示,FoG_S-ratio与FoG_L-ratio (p<0.001)、FoG_S-ratio与FoG_IF-ratio (p=0.006)、FoG_L-ratio与FoG_IF-ratio (p=0.001)、FoG_L-ratio与FoG_OF-ratio (p=0.001)具有统计学意义。相关分析未发现显著相关,见图1。下载:下载高分辨率图片(232KB)下载:下载全尺寸图片考虑到位置比较的结果以及它们之间的相互关系,似乎没有任何传感器可以替代足部传感器来计算冻结率。然而,在拒绝在PD中使用其他传感器分析步态冻结的可能性之前,需要进行额外的分析。
{"title":"The effects of accelerometer sensor position on freezing gait ratio parameters","authors":"Slavka Viteckova, Lucie Horakova, Tereza Duspivova, Evžen Růžička, Zoltan Szabo, Radim Krupicka","doi":"10.1016/j.gaitpost.2023.07.170","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.170","url":null,"abstract":"Freezing of gait (FoG) is an episodic gait pattern characterised by the inability to step that occurs on initiation or turning while walking for those with Parkinson’s disease (PD) [1]. This phenomenon is one of the most disabling yet poorly understood symptoms. It has been shown that tasks requiring bilateral limb coordination are the most likely to elicit FoG in the laboratory. Among the most promising tasks are stepping in place [2], walking and turning [3], and turning in place[4]. Previously, the Freezing Ratio parameter (FoG-ratio) has been developed to objectively measure freezing severity[5]. Usually, a lower limb acceleration signal in an antero-posterior direction measured by an inertial sensor has served as the source for its calculation[6,7]. Growing interest in single sensor utilisation in gait analysis brings up the question of whether any sensor other than the foot can measure freezing severity via FoG-ratio. Is FoG-ratio computed from a sensor located on the sternum or lower back comparable to the foot FoG-ratio during a walking turn? We included 34 Parkinson disease patients (21 males, 13 females), mean age 59.0 (SD 12.3) years in the study. All subjects performed an instrumented extended Timed Up&Go Test (TUG) wearing six synchronised inertial measurement units (Opals, APDM, USA) fitted via elastic straps. Sensors were located at the sternum, lower back, both wrists and feet. The turn subtask was automatically extracted from each TUG measurement. The FoG-ratio was calculated from antero-posterior acceleration acquired by a right foot sensor, left foot sensor, sternum (S) sensor, and lumbar (L) sensor. Depending on turn direction (left or right), each foot was denoted as the inner foot (IF) and outer foot (OF). Thus, four FoG-ratios (FoG_S-ratio, FoG_L-ratio, FoG_IF-ratio, FoG_OF-ratio) were obtained for each subject. The Kolmogorov-Smirnov test rejected the null hypothesis, i.e. data was not normally distributed. The Friedman test was employed for comparison of FoG-ratios. Posthoc pairwise comparisons were performed by Wilcoxon signed rank test (alpha level set to 0.05). Next, the Spearman correlation coefficient was calculated for all FoG-ratio pairs. The Friedman test revealed that the FoG-ratios from different sensor locations are statistically different (p<0.001). Pairwise tests showed statistically significant differences between the FoG_S-ratio and FoG_L-ratio (p<0.001), the FoG_S-ratio and FoG_IF-ratio (p=0.006), the FoG_L-ratio and FoG_IF-ratio (p=0.001), and the FoG_L-ratio and FoG_OF-ratio (p=0.001). The correlation analysis detected no significant relationship, Fig. 1.Download : Download high-res image (232KB)Download : Download full-size image Taking into account the results of location comparisons and their mutual relationships, no sensor seems to be a suitable alternative to foot sensors for freezing ratio calculation. However, additional analyses need to be performed before rejecting the possibility of employing o","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing the effects of multi-session cerebellar and prefrontal trans-cranial direct current stimulation on postural balance in patients with multiple sclerosis 多期小脑与前额叶经颅直流电刺激对多发性硬化症患者体位平衡的影响
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.111
Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan
Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.
多发性硬化症(MS)是一种进行性自身免疫性疾病,以髓鞘的破坏性炎症过程为特征(1)。多发性硬化症与多种疾病相关,通常包括肌肉无力、痉挛、认知障碍、感觉症状、运动障碍、疲劳和步态障碍(2)。通常,步态和平衡障碍在多发性硬化症患者中很常见(3)。大约80%的患者,即使在疾病的早期阶段,因此,本研究的目的是比较多节经颅直流电刺激小脑和前额叶背外侧皮质对多发性硬化症患者姿势平衡的影响,小脑tDCS或前额叶tDCS哪个区域对MS患者姿势平衡的影响更大?在本双盲随机对照试验中,20例多发性硬化症患者随机分为背外侧前额叶皮层(DLPFC) tDCS组(n=11)和小脑tDCS组(n=9)。两组的治疗包括20分钟2 mA强度的tDCS和10分钟的平衡训练,共10次,为期四周。治疗前后分别采用Berg平衡量表(BBS)、Timed Up and Go测试(TUG)和静力板评估动平衡。两组患者BBS均显著升高,TUG均显著降低(P <0.05)。小脑组前后侧偏斜径和总偏斜径明显减少(P <0.05)。与DLPFC组相比,小脑组的BBS、前后方向摇摆速度和总摇摆速度均有显著改善(P <0.05)。研究结果表明,tDCS可与物理治疗联合用于治疗多发性硬化症患者的平衡障碍。
{"title":"Comparing the effects of multi-session cerebellar and prefrontal trans-cranial direct current stimulation on postural balance in patients with multiple sclerosis","authors":"Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan","doi":"10.1016/j.gaitpost.2023.07.111","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.111","url":null,"abstract":"Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CrossFit® to improve gross motor function and gait in adolescents and young adults with unilateral cerebral palsy: a pilot study CrossFit®改善青少年和年轻人单侧脑瘫的大运动功能和步态:一项试点研究
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.267
Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Morgan Sangeux, Cornelia Neuhaus, Bastian Widmer, Elke Viehweger
Cerebral palsy (CP) is a childhood disability which affects the development of movement and posture, impairs muscle function and muscle strength, and can furthermore negatively impact gait. Recent data shows that not only strength, but also bouts of anaerobic exercise in patients with CP might help to transfer muscle strength into functional capacity (1). This pilot study examined the feasibility and effects of a functional high-intensity exercise intervention (CrossFit®) performed in a group-setting with unilateral CP patients on indicators of daily functionality, including gait. 9 adolescents with unilateral CP (7 males, 2 females, mean age: 16.9 (SD 3.48); GMFCS Level: I-II) participated in the study. The intervention consisted of two weekly supervised training sessions over 12 weeks, which contained progressive resistance training performed with free weights as well as high-intensity aerobic and anaerobic workouts performed through functional movement patterns which were adapted to individual ability and capacity. A 3D-gait analysis, the six-minute walking-test (6MWT), a clinical exam and the Gross Motor Function Measure-66 (GMFM-66) (2) were performed before and after the intervention. Mean differences were calculated with paired t-tests and corresponding 95% confidence intervals. The exercise intervention was not accompanied by any adverse events except light muscle soreness. We measured a significant increase in the GMFM 66 (p = 0.031, mean difference = 2.19 (CI 0.71-3.67)). Furthermore, a non-significant increase in the distance of the 6 MWT (p = 0.09, mean difference = 29.8 m (CI -5.8-65.5)) and the propulsion ratio (p = 0.067, mean difference 5.4% (CI 0.5-11.4%)) of the affected leg was found. No statistically significant changes were found for Gait Profile Score (GPS) (3), spatiotemporal parameters or clinical exam (ankle range of motion, popliteal angle). This pilot study shows that a high-intensity functional training with free weights (CrossFit®) in adolescents with unilateral CP is a safe training method that might effectively improve gross motor function, endurance, and asymmetry in gait. Therefore, the intervention seems to show a transfer into non-task-specific movements of daily life. Based on this pilot study, studies with bigger patient samples and control groups may be performed to detail the effect of high-intensity functional training. Furthermore, this pilot study raises the question to explore the possibilities of more functional tests to measure daily life function by for example using wearable inertial measurement units (IMU).
脑瘫(CP)是一种儿童残疾,影响运动和姿势的发展,损害肌肉功能和肌肉力量,并进一步对步态产生负面影响。最近的数据显示,CP患者不仅力量,而且无氧运动也可能有助于将肌肉力量转化为功能能力(1)。本初步研究考察了功能性高强度运动干预(CrossFit®)在单侧CP患者群体环境中对日常功能指标(包括步态)的可行性和效果。青少年单侧CP 9例(男性7例,女性2例,平均年龄16.9岁(SD 3.48);GMFCS等级:I-II)参与研究。干预包括为期12周的每周两次有监督的训练,其中包括自由重量的渐进式阻力训练,以及通过适应个人能力和能力的功能性运动模式进行的高强度有氧和无氧训练。在干预前后分别进行3d步态分析、6分钟步行测试(6MWT)、临床检查和大运动功能测量-66 (GMFM-66)(2)。采用配对t检验和相应的95%置信区间计算平均差异。除了轻度肌肉酸痛外,运动干预没有伴随任何不良事件。我们测量到gmfm66显著增加(p = 0.031,平均差值= 2.19 (CI 0.71-3.67))。此外,发现受影响腿的6 MWT距离(p = 0.09,平均差值= 29.8 m (CI -5.8-65.5))和推进比(p = 0.067,平均差值5.4% (CI 0.5-11.4%))无显著增加。步态特征评分(GPS)(3)、时空参数或临床检查(踝关节活动范围、腘窝角)均无统计学意义变化。本初步研究表明,青少年单侧CP的高强度功能训练(CrossFit®)是一种安全的训练方法,可以有效改善大肌肉运动功能、耐力和步态不对称。因此,干预似乎显示了向日常生活中非任务特定运动的转移。在此初步研究的基础上,可能会进行更大患者样本和对照组的研究,以详细说明高强度功能训练的效果。此外,这项试点研究提出了一个问题,即探索更多功能测试的可能性,例如使用可穿戴惯性测量单元(IMU)来测量日常生活功能。
{"title":"CrossFit® to improve gross motor function and gait in adolescents and young adults with unilateral cerebral palsy: a pilot study","authors":"Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Morgan Sangeux, Cornelia Neuhaus, Bastian Widmer, Elke Viehweger","doi":"10.1016/j.gaitpost.2023.07.267","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.267","url":null,"abstract":"Cerebral palsy (CP) is a childhood disability which affects the development of movement and posture, impairs muscle function and muscle strength, and can furthermore negatively impact gait. Recent data shows that not only strength, but also bouts of anaerobic exercise in patients with CP might help to transfer muscle strength into functional capacity (1). This pilot study examined the feasibility and effects of a functional high-intensity exercise intervention (CrossFit®) performed in a group-setting with unilateral CP patients on indicators of daily functionality, including gait. 9 adolescents with unilateral CP (7 males, 2 females, mean age: 16.9 (SD 3.48); GMFCS Level: I-II) participated in the study. The intervention consisted of two weekly supervised training sessions over 12 weeks, which contained progressive resistance training performed with free weights as well as high-intensity aerobic and anaerobic workouts performed through functional movement patterns which were adapted to individual ability and capacity. A 3D-gait analysis, the six-minute walking-test (6MWT), a clinical exam and the Gross Motor Function Measure-66 (GMFM-66) (2) were performed before and after the intervention. Mean differences were calculated with paired t-tests and corresponding 95% confidence intervals. The exercise intervention was not accompanied by any adverse events except light muscle soreness. We measured a significant increase in the GMFM 66 (p = 0.031, mean difference = 2.19 (CI 0.71-3.67)). Furthermore, a non-significant increase in the distance of the 6 MWT (p = 0.09, mean difference = 29.8 m (CI -5.8-65.5)) and the propulsion ratio (p = 0.067, mean difference 5.4% (CI 0.5-11.4%)) of the affected leg was found. No statistically significant changes were found for Gait Profile Score (GPS) (3), spatiotemporal parameters or clinical exam (ankle range of motion, popliteal angle). This pilot study shows that a high-intensity functional training with free weights (CrossFit®) in adolescents with unilateral CP is a safe training method that might effectively improve gross motor function, endurance, and asymmetry in gait. Therefore, the intervention seems to show a transfer into non-task-specific movements of daily life. Based on this pilot study, studies with bigger patient samples and control groups may be performed to detail the effect of high-intensity functional training. Furthermore, this pilot study raises the question to explore the possibilities of more functional tests to measure daily life function by for example using wearable inertial measurement units (IMU).","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"256 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of 8-weeks selective training on the peroneus longus and peroneus brevis morphologies 8周选择性训练对腓骨长肌和腓骨短肌形态的影响
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.252
Yukio Urabe, Satoshi Arima, Oda Sakura, Tsubasa Tashiro, Rami Mizuta, Komiya Makoto, Noriaki Maeda
Resistance training for the peroneus muscles is important because this muscles undergo morphological changes and functional decline after a lateral ankle sprain. We reported at last year's ESMAC 2022 the possibility of selectively training each muscle by implementing immediate selective interventions for the peloneus long (PL) and peroneus brevis (PB) (Arima et al., 2022). However, it has not been examined whether long-term interventions can selectively train the PL and PB. Does an 8-weeks intervention allow selective training of the PL and PB? Eighteen healthy participants were divided into two task groups that performed two different 3 times a week for 8-weeks tasks: the PL task in which a Thera-Band was placed on the ball of the foot and pushed out from the contact point (n=9), and the PB task in which the Thera-Band was pulled out from the base of the fifth metatarsal (n=9). Muscle cross-sectional area (CSA) at 25% (showing PL) and 75% (showing PB) proximal to the line connecting the fibular head and lateral malleolus measured by an ultrasound system, and PL and PB strength measured using a handheld dynamometer were determined at the beginning of week 1 (baseline) and on the first day of the week following each weekly task. PL and PB strength measured muscle strength during exercise of the same as PL and PB tasks. Two-way ANOVA was used to check for differences in changes in values by the 8-weeks PL and PB tasks. There was significant interaction between groups and measurement weeks for the 25% and 75% CSA, PL and PB strength (p<0.05). Post hoc test showed that the 25% CSA was significantly higher in the PL task between weeks 3 and 8 compared to baseline (p<0.05). The 75% CSA was significantly higher in the PB task compared to baseline for all weeks between weeks 4 and 8 (p<0.05). PL strength was significantly higher in the PL task between weeks 2 and 8 compared to baseline (p<0.05). PB strength was significantly higher in the PB task compared to baseline for all weeks between weeks 3 and 8 (p<0.05). PL muscle activity is increased by the ball of the foot loading, and the PB contributes to ankle eversion compared to the PL. In this study, the 8-week intervention also increased 25% CSA and PL muscle strength in the PL task over time with each passing week, and 75% CSA and PB muscle strength in the PB task. This suggests that an 8-weeks PL and PB tasks probably be useful for long-term selective training of peroneus muscles.
腓骨肌的阻力训练很重要,因为在踝关节外侧扭伤后,腓骨肌会发生形态变化和功能下降。我们在去年的ESMAC 2022上报道了通过对腓骨长肌(PL)和腓骨短肌(PB)实施即时选择性干预来选择性训练每块肌肉的可能性(Arima et al., 2022)。然而,长期干预是否可以选择性地训练PL和PB尚未得到检验。8周的干预是否允许有选择性地训练前庭和后庭?18名健康参与者被分为两个任务组,每周三次执行两个不同的任务,为期8周:PL任务,将Thera-Band放在脚掌上并从接触点推出(n=9), PB任务,将Thera-Band从第五跖骨底部拔出(n=9)。通过超声系统测量腓骨头和外踝连接线近端25%(显示PL)和75%(显示PB)的肌肉横截面积(CSA),并在第1周开始(基线)和每周任务后的第一天使用手持式测功机测量PL和PB强度。PL和PB强度测量运动过程中的肌肉力量,与PL和PB任务相同。采用双因素方差分析(Two-way ANOVA)检验8周PL和PB任务在数值变化方面的差异。25%和75% CSA、PL和PB强度在各组和测量周之间存在显著的交互作用(p<0.05)。事后检验显示,在第3周至第8周的PL任务中,25%的CSA显著高于基线(p<0.05)。在第4周至第8周的所有周中,75% CSA在PB任务中显著高于基线(p<0.05)。与基线相比,第2周至第8周的PL强度显著提高(p<0.05)。在第3周至第8周之间的所有周,PB任务中的PB强度显著高于基线(p<0.05)。与前脚掌负荷相比,前脚掌肌肉活动增加,与前脚掌相比,前脚掌有助于踝关节外翻。在本研究中,随着时间的推移,8周的干预也使前脚掌任务中的CSA和前脚掌肌肉力量每周增加25%,在前脚掌任务中CSA和前脚掌肌肉力量每周增加75%。这表明8周的PL和PB任务可能对腓骨肌的长期选择性训练有用。
{"title":"Effects of 8-weeks selective training on the peroneus longus and peroneus brevis morphologies","authors":"Yukio Urabe, Satoshi Arima, Oda Sakura, Tsubasa Tashiro, Rami Mizuta, Komiya Makoto, Noriaki Maeda","doi":"10.1016/j.gaitpost.2023.07.252","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.252","url":null,"abstract":"Resistance training for the peroneus muscles is important because this muscles undergo morphological changes and functional decline after a lateral ankle sprain. We reported at last year's ESMAC 2022 the possibility of selectively training each muscle by implementing immediate selective interventions for the peloneus long (PL) and peroneus brevis (PB) (Arima et al., 2022). However, it has not been examined whether long-term interventions can selectively train the PL and PB. Does an 8-weeks intervention allow selective training of the PL and PB? Eighteen healthy participants were divided into two task groups that performed two different 3 times a week for 8-weeks tasks: the PL task in which a Thera-Band was placed on the ball of the foot and pushed out from the contact point (n=9), and the PB task in which the Thera-Band was pulled out from the base of the fifth metatarsal (n=9). Muscle cross-sectional area (CSA) at 25% (showing PL) and 75% (showing PB) proximal to the line connecting the fibular head and lateral malleolus measured by an ultrasound system, and PL and PB strength measured using a handheld dynamometer were determined at the beginning of week 1 (baseline) and on the first day of the week following each weekly task. PL and PB strength measured muscle strength during exercise of the same as PL and PB tasks. Two-way ANOVA was used to check for differences in changes in values by the 8-weeks PL and PB tasks. There was significant interaction between groups and measurement weeks for the 25% and 75% CSA, PL and PB strength (p<0.05). Post hoc test showed that the 25% CSA was significantly higher in the PL task between weeks 3 and 8 compared to baseline (p<0.05). The 75% CSA was significantly higher in the PB task compared to baseline for all weeks between weeks 4 and 8 (p<0.05). PL strength was significantly higher in the PL task between weeks 2 and 8 compared to baseline (p<0.05). PB strength was significantly higher in the PB task compared to baseline for all weeks between weeks 3 and 8 (p<0.05). PL muscle activity is increased by the ball of the foot loading, and the PB contributes to ankle eversion compared to the PL. In this study, the 8-week intervention also increased 25% CSA and PL muscle strength in the PL task over time with each passing week, and 75% CSA and PB muscle strength in the PB task. This suggests that an 8-weeks PL and PB tasks probably be useful for long-term selective training of peroneus muscles.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135297888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Musculoskeletal modelling informed muscle coordination re-training to reduce knee joint loads 肌肉骨骼模型告知肌肉协调再训练,以减少膝关节负荷
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.08.023
Hans Kainz, Willi Koller, Elias Wallnöfer, Gabriel Mindler, Andreas Kranzl
{"title":"Musculoskeletal modelling informed muscle coordination re-training to reduce knee joint loads","authors":"Hans Kainz, Willi Koller, Elias Wallnöfer, Gabriel Mindler, Andreas Kranzl","doi":"10.1016/j.gaitpost.2023.08.023","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.08.023","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age group identification using machine learning and IMU: A comparison of sensor placements 使用机器学习和IMU的年龄组识别:传感器放置的比较
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.122
Yong Kuk Kim, Noah Fehr, Fatemeh Fahimi, Michelle Gwerder, Angela Frautschi, William Taylor, Navrag Singh
{"title":"Age group identification using machine learning and IMU: A comparison of sensor placements","authors":"Yong Kuk Kim, Noah Fehr, Fatemeh Fahimi, Michelle Gwerder, Angela Frautschi, William Taylor, Navrag Singh","doi":"10.1016/j.gaitpost.2023.07.122","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.122","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative gait analysis of patients with unilateral juvenile osteochondritis dissecans of the knee: Comparison with the contralateral side and controls 单侧幼年性膝关节夹层性骨软骨炎患者的定量步态分析:与对侧及对照组的比较
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.137
Mathieu Lalumière, Thierry Pauyo, Jean-François Girouard, Reggie Charles Hamdy, Louis-Nicolas Veilleux
Juvenile osteochondritis dissecans (JOCD) of the knee is a common cause of pain and dysfunction among active children and adolescents [1,2]. JOCD is defined as a pathologic process for which the blood supply to a bone area is disrupted due to excessive loading forces on some parts of the joint, causing the necrosis of the subchondral bone and cartilage [3–5]. In youths with stable JOCD of the knee, conservative management focusing on biomechanical factors and unloading is the standard of care [6]. However, it is not clear how the biomechanical factors, such as the lower limbs kinematics and kinetics during walking, are associated with JOCD [6]. The aim of this project was to identify objective biomechanical outcomes associated with JOCD to better target conservative treatment options. Thirteen (n=13) patients with unilateral medial femoral condyle JOCD and nineteen (n=19) control subjects were evaluated at the SHC-Canada. Three distinct groups were created for comparison: 1) JOCD side, 2) Unaffected contralateral side, 3) Healthy controls. JOCD patients were evaluated before conservative treatment initiation. All participants performed barefoot overground walking at a self-selected speed. Retroreflective markers were placed on specific bony landmarks according to the Plug-In-Gait marker set [7]. A 10-camera motion capture system (VICON) with 4 forceplates (AMTI) were used to collect kinematic and kinetic data. Joint angles and moments at the hip and knee was processed using Nexus 2.12.1 and averaged for three complete gait cycles. For the main outcome measures, peak joint angle and moment in the coronal plane were outputted at the hip and knee. To identify statistical differences between groups (α=0.05), the main outcome measures were compared using paired t-test between JOCD and unaffected groups, and unpaired t-test between JOCD and control groups. Data showed altered knee joint movement patterns for the JOCD side group, with significantly higher peak knee varus angle (vs. unaffected=+2.66°, p=0.002; vs. controls=+2.39°, p=0.02) and varus-thrust angle (vs. unaffected=+1.48°, p=0.02) (Fig. 1B). Data also showed altered kinetics for the JOCD side group, with significantly lower peak hip adduction moment (vs. controls=-0.19 N∙m/kg, p=0.001) and peak knee adduction moment (vs. controls=-0.12 N∙m/kg; p=0.02) (Fig. 1C&D).Download : Download high-res image (116KB)Download : Download full-size image Higher knee motion in the coronal plane for youths with JOCD suggest the presence of medio-lateral knee instability. Also, reduced knee adduction moment in the presence of JOCD suggest compensations at the ipsilateral trunk and hip to reduce medial femoral condyle loading. Potential treatment focusing on knee medio-lateral stability, such as motor control exercises and knee unloading brace, have potential at improving neutral dynamic knee alignment during walking. The current set of data will serve as a method to develop a standardized conservative protocol
膝关节幼年性骨软骨炎(JOCD)是活跃儿童和青少年疼痛和功能障碍的常见原因[1,2]。JOCD被定义为一种病理过程,由于关节某些部位的负荷过大,导致骨区血液供应中断,导致软骨下骨和软骨坏死[3-5]。对于青年膝关节稳定性JOCD患者,保守治疗的标准是关注生物力学因素和卸除[6]。然而,目前尚不清楚生物力学因素,如行走过程中的下肢运动学和动力学,如何与JOCD相关[6]。该项目的目的是确定与JOCD相关的客观生物力学结果,以更好地针对保守治疗方案。在SHC-Canada对13例(n=13)单侧股骨内侧髁JOCD患者和19例(n=19)对照组进行了评估。建立三个不同的组进行比较:1)JOCD侧,2)未受影响的对侧,3)健康对照组。JOCD患者在保守治疗开始前进行评估。所有参与者都以自己选择的速度赤脚在地上行走。根据plug - in -步态标记集将反射标记放置在特定的骨标记上[7]。采用带有4个力板(AMTI)的10摄像头运动捕捉系统(VICON)收集运动学和动力学数据。使用Nexus 2.12.1对髋关节和膝关节的关节角和力矩进行处理,并对三个完整的步态周期取平均值。主要测量指标为髋关节和膝关节冠状面关节角和力矩峰值。为确定各组间的统计学差异(α=0.05),采用配对t检验比较JOCD组与未受影响组的主要结局指标,采用非配对t检验比较JOCD组与对照组的主要结局指标。数据显示JOCD侧组的膝关节运动模式发生改变,膝关节内翻角峰值明显升高(未受影响=+2.66°,p=0.002;与对照组相比=+2.39°,p=0.02)和内翻推力角(与未受影响的相比=+1.48°,p=0.02)(图1B)。数据还显示JOCD侧组的动力学改变,髋内收峰值力矩(与对照组相比=-0.19 N∙m/kg, p=0.001)和膝关节内收峰值力矩(与对照组相比=-0.12 N∙m/kg;p=0.02)(图1C&D)。青少年JOCD患者的膝关节在冠状面有较高的运动提示膝关节中外侧不稳定。此外,JOCD存在时膝关节内收力矩减小,提示在同侧躯干和髋部进行代偿以减少股骨内侧髁负荷。潜在的治疗侧重于膝关节中外侧稳定性,如运动控制练习和膝关节卸载支架,在改善步行时中性动态膝关节对齐方面具有潜力。目前的数据集将作为一种方法来制定一个标准化的保守方案,重点关注客观的生物力学结果,以提高JOCD患者的护理质量和治疗成功率。
{"title":"Quantitative gait analysis of patients with unilateral juvenile osteochondritis dissecans of the knee: Comparison with the contralateral side and controls","authors":"Mathieu Lalumière, Thierry Pauyo, Jean-François Girouard, Reggie Charles Hamdy, Louis-Nicolas Veilleux","doi":"10.1016/j.gaitpost.2023.07.137","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.137","url":null,"abstract":"Juvenile osteochondritis dissecans (JOCD) of the knee is a common cause of pain and dysfunction among active children and adolescents [1,2]. JOCD is defined as a pathologic process for which the blood supply to a bone area is disrupted due to excessive loading forces on some parts of the joint, causing the necrosis of the subchondral bone and cartilage [3–5]. In youths with stable JOCD of the knee, conservative management focusing on biomechanical factors and unloading is the standard of care [6]. However, it is not clear how the biomechanical factors, such as the lower limbs kinematics and kinetics during walking, are associated with JOCD [6]. The aim of this project was to identify objective biomechanical outcomes associated with JOCD to better target conservative treatment options. Thirteen (n=13) patients with unilateral medial femoral condyle JOCD and nineteen (n=19) control subjects were evaluated at the SHC-Canada. Three distinct groups were created for comparison: 1) JOCD side, 2) Unaffected contralateral side, 3) Healthy controls. JOCD patients were evaluated before conservative treatment initiation. All participants performed barefoot overground walking at a self-selected speed. Retroreflective markers were placed on specific bony landmarks according to the Plug-In-Gait marker set [7]. A 10-camera motion capture system (VICON) with 4 forceplates (AMTI) were used to collect kinematic and kinetic data. Joint angles and moments at the hip and knee was processed using Nexus 2.12.1 and averaged for three complete gait cycles. For the main outcome measures, peak joint angle and moment in the coronal plane were outputted at the hip and knee. To identify statistical differences between groups (α=0.05), the main outcome measures were compared using paired t-test between JOCD and unaffected groups, and unpaired t-test between JOCD and control groups. Data showed altered knee joint movement patterns for the JOCD side group, with significantly higher peak knee varus angle (vs. unaffected=+2.66°, p=0.002; vs. controls=+2.39°, p=0.02) and varus-thrust angle (vs. unaffected=+1.48°, p=0.02) (Fig. 1B). Data also showed altered kinetics for the JOCD side group, with significantly lower peak hip adduction moment (vs. controls=-0.19 N∙m/kg, p=0.001) and peak knee adduction moment (vs. controls=-0.12 N∙m/kg; p=0.02) (Fig. 1C&D).Download : Download high-res image (116KB)Download : Download full-size image Higher knee motion in the coronal plane for youths with JOCD suggest the presence of medio-lateral knee instability. Also, reduced knee adduction moment in the presence of JOCD suggest compensations at the ipsilateral trunk and hip to reduce medial femoral condyle loading. Potential treatment focusing on knee medio-lateral stability, such as motor control exercises and knee unloading brace, have potential at improving neutral dynamic knee alignment during walking. The current set of data will serve as a method to develop a standardized conservative protocol","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"371 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of 3D motion analysis to quantify a clinical test method assessing wrist spasticity 应用三维运动分析量化评估腕关节痉挛的临床试验方法
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.196
Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler
Spasticity is a symptom that occurs in patients with acute or chronic damages of the central nervous system [1]. Quantification of such limitations is essential, for example for preoperative decision making. Though, objective measurement methods to assess upper limb (UL) spasticity are poorly applied in clinical practice. Due to the low interrater reliability of subjective scales (modified Ashworth scale (MAS), modified Tardieu scale (MTS) [2,3]), 3D motion analysis and synchronized surface EMG (sEMG) should be used as an alternative method to determine objective parameters. How do the results of the objective sEMG parameters during passive stretch correlate with the subjective values of MAS and MTS? Which differences exist in wrist kinematics and muscle activity during a passive stretch of the wrist flexors between healthy adults and patients with UL spasticity? 11 patients with UL spasticity (39 ± 18 years) and 5 healthy adults (10 arms, 35 ± 9 years) were included. All participants were analysed using 3D motion analysis (Qualisys, U.L.E.M.A [4]) and sEMG (Noraxon) on M. flexor carpi ulnaris and / or M. flexor carpi radialis and M. extensor carpi radialis brevis during passive stretch of the wrist (3 slow (LV) and 3 quick (HV) directed movements). sEMG data were normalised to maximum isometric contraction (MVIC) and examined over a defined period of time (200ms before reaching maximum velocity to 90% of max. extension [5]). The velocity of the passive stretch (30°/s slow, 180°/s fast) was standardized with a metronome. The maximum passive wrist extension, the sEMG parameters (EMGLV and EMGHV) as well as the sEMG difference between LV and HV (EMGchange) were compared between groups (Mann-Whitney-U-Test). MAS and MTS were clinically assessed and correlated with sEMG parameters (Spearman's rank correlation coefficient). Joint angles and sEMG parameters were significantly different between groups (Table 1a). Correlations between sEMG based parameters and the subjective values of MAS and MTS where low and not significant (Table 1b). Table 1: a): Differences between healthy adults and patients, b): Spearman's rank correlation coefficient between subjective Scales (MAS, MTS) and objective Parameters (EMGLV, EMGHV, EMGchange)Download : Download high-res image (74KB)Download : Download full-size image The objective measurement method, which has already been used for the elbow and lower limb, also shows promising results on the wrist. The comparison between healthy adults and spasticity patients clearly shows that the muscular activity of the wrist flexors during their passive stretch is high and velocity dependent in spasticity patients. Interestingly, neither MAS nor MTS values correlate to objective values at the wrist. Wrist flexor spasticity is not only caused by the wrist flexors, but also by the extrinsic finger flexors, which are not yet included in this model.
痉挛是急性或慢性中枢神经系统损伤患者的症状[1]。量化这些限制是必要的,例如术前决策。然而,评估上肢痉挛的客观测量方法在临床实践中应用很少。由于主观量表(改良Ashworth量表(MAS)、改良Tardieu量表(MTS)[2,3])的判据间信度较低,应采用三维运动分析和同步面肌电信号(sEMG)作为确定客观参数的替代方法。被动拉伸时的客观表面肌电信号参数与主观的MAS和MTS值有何关联?健康成人和UL痉挛患者在被动屈肌拉伸时手腕运动学和肌肉活动有哪些差异?纳入11例UL痉挛患者(39±18岁)和5例健康成人(10臂,35±9岁)。使用3D运动分析(Qualisys, U.L.E.M.A[4])和肌电图(Noraxon)对尺侧腕屈肌和/或桡侧腕屈肌和桡侧腕短伸肌进行被动手腕拉伸(3次慢(LV)和3次快速(HV)定向运动)。将表面肌电信号数据归一化为最大等距收缩(MVIC),并在达到最大速度至最大速度的90%之前的200毫秒内进行检查。扩展[5])。被动拉伸的速度(慢30°/s,快180°/s)用节拍器标准化。采用mann - whitney - u检验比较两组患者最大被动腕部伸度、表面肌电信号参数(EMGLV和EMGHV)以及LV和HV表面肌电信号差异(EMGchange)。临床评估MAS和MTS并与肌电参数(Spearman等级相关系数)相关。两组间关节角度和肌电参数有显著差异(表1a)。基于表面肌电信号的参数与MAS和MTS主观值之间的相关性较低且不显著(表1b)。表1:a):健康成人与患者的差异,b):主观量表(MAS、MTS)与客观参数(EMGLV、EMGHV、EMGchange)的Spearman等级相关系数下载:下载高分辨率图像(74KB)下载:下载全尺寸图像。客观测量方法已经用于肘部和下肢,在手腕上也显示出很好的结果。健康成人与痉挛患者的比较清楚地表明,痉挛患者在被动拉伸时腕屈肌的肌肉活动高且依赖于速度。有趣的是,MAS和MTS值都与腕部的客观值无关。腕屈肌痉挛不仅是由腕屈肌引起的,而且是由外在的手指屈肌引起的,这还没有包括在这个模型中。
{"title":"Application of 3D motion analysis to quantify a clinical test method assessing wrist spasticity","authors":"Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler","doi":"10.1016/j.gaitpost.2023.07.196","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.196","url":null,"abstract":"Spasticity is a symptom that occurs in patients with acute or chronic damages of the central nervous system [1]. Quantification of such limitations is essential, for example for preoperative decision making. Though, objective measurement methods to assess upper limb (UL) spasticity are poorly applied in clinical practice. Due to the low interrater reliability of subjective scales (modified Ashworth scale (MAS), modified Tardieu scale (MTS) [2,3]), 3D motion analysis and synchronized surface EMG (sEMG) should be used as an alternative method to determine objective parameters. How do the results of the objective sEMG parameters during passive stretch correlate with the subjective values of MAS and MTS? Which differences exist in wrist kinematics and muscle activity during a passive stretch of the wrist flexors between healthy adults and patients with UL spasticity? 11 patients with UL spasticity (39 ± 18 years) and 5 healthy adults (10 arms, 35 ± 9 years) were included. All participants were analysed using 3D motion analysis (Qualisys, U.L.E.M.A [4]) and sEMG (Noraxon) on M. flexor carpi ulnaris and / or M. flexor carpi radialis and M. extensor carpi radialis brevis during passive stretch of the wrist (3 slow (LV) and 3 quick (HV) directed movements). sEMG data were normalised to maximum isometric contraction (MVIC) and examined over a defined period of time (200ms before reaching maximum velocity to 90% of max. extension [5]). The velocity of the passive stretch (30°/s slow, 180°/s fast) was standardized with a metronome. The maximum passive wrist extension, the sEMG parameters (EMGLV and EMGHV) as well as the sEMG difference between LV and HV (EMGchange) were compared between groups (Mann-Whitney-U-Test). MAS and MTS were clinically assessed and correlated with sEMG parameters (Spearman's rank correlation coefficient). Joint angles and sEMG parameters were significantly different between groups (Table 1a). Correlations between sEMG based parameters and the subjective values of MAS and MTS where low and not significant (Table 1b). Table 1: a): Differences between healthy adults and patients, b): Spearman's rank correlation coefficient between subjective Scales (MAS, MTS) and objective Parameters (EMGLV, EMGHV, EMGchange)Download : Download high-res image (74KB)Download : Download full-size image The objective measurement method, which has already been used for the elbow and lower limb, also shows promising results on the wrist. The comparison between healthy adults and spasticity patients clearly shows that the muscular activity of the wrist flexors during their passive stretch is high and velocity dependent in spasticity patients. Interestingly, neither MAS nor MTS values correlate to objective values at the wrist. Wrist flexor spasticity is not only caused by the wrist flexors, but also by the extrinsic finger flexors, which are not yet included in this model.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of subject’s physical properties on joint biomechanics: Hypermobility alters lower extremity biomechanics during knee-bearing activity 受试者物理特性对关节生物力学的影响:过度活动可改变膝关节活动时的下肢生物力学
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.134
Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander
Hypermobility is a physical specificity of the subject that refers to an increased range of motion in one or more joints beyond what is considered normal or expected for an individual's age, gender, and body type. The previous studies on hypermobility stated that generalized joint hypermobility (GJH) may cause joint instability and muscle weakness [1]. The knee joint structural integrity and function maintained essentially by the cruciate ligaments. The anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) work together to provide stability to the knee joint by preventing excessive movement of the tibia (shin bone) in relation to the femur (thigh bone). The more common ligament injury is ACL injury and non-contact ACL injuries remain a serious problem among athletes [2]. Activities demanding mechanical bearing on the knee joint recommended for classifying an athlete's anterior cruciate ligament injury risk [3]. Some biomechanical factors determined in these tests are associated with future injuries [4]. In order to protect the athlete from injury, it is necessary to determine the causes of biomechanical factors determined by functional tests. The aim of this study is to examine the effects of GJH on Pelvis and lower body joint biomechanics with Single Leg Landing (SLL) test. Does hypermobility alter lower extremity biomechanics? Eight healthy volunteers with no history of musculoskeletal injury or pain participated in this study (mean age: 16.6±4.2). Casual sports participants were divided into two equal groups (control ≤4, hypermobile ≥6) according to the Beighton score which measures GJH [5]. SLL tests were acquired for each subject using 3D motion analysis (6 Vantage 5 Camera, 2 Force Platforms, Vicon Motion Systems Ltd UK). Plug-in-gait model for lower extremity is utilized as marker set that described in the previous studies [4]. Three repetitive tests were evaluated for each leg side. An Independent t-test was used for statistical analysis. Participants with hypermobility exhibited higher peak angles of pelvic external rotation (p=0.01), hip adduction (p=0.03), and knee valgus (p=0.02) during the stance phase of knee-bearing activity (see Table 1). In contrast, peak values of pelvic posterior tilt angle (p=0.03), foot internal progression (p=0.05), and knee flexion moment (p=0.01) were found to be decreased in participants with hypermobility.Download : Download high-res image (113KB)Download : Download full-size image It has been determined that joint hypermobility can lead to alterations in lower extremity biomechanics during SLL test. Increase in peak hip adduction and knee valgus angles lead to both acute (ACL rupture factor) and overuse sport injuries [6]. Further studies are needed to investigate the effects of joint hypermobility using detailed marker set for better quantification of specifically knee joint movement.
活动过度是指一个或多个关节的活动范围增加,超出了个体年龄、性别和体型的正常或预期范围。以往关于关节活动过度的研究表明,广泛性关节活动过度(GJH)可引起关节不稳定和肌肉无力[1]。膝关节的结构完整性和功能主要由交叉韧带维持。前交叉韧带(ACL)和后交叉韧带(PCL)共同作用,通过防止胫骨(胫骨)相对于股骨(大腿骨)的过度运动来提供膝关节的稳定性。更常见的韧带损伤是前交叉韧带损伤,非接触性前交叉韧带损伤仍然是运动员的一个严重问题。对运动员前交叉韧带损伤风险进行分类时,建议对膝关节进行需要机械承重的活动[3]。这些试验中确定的一些生物力学因素与未来的损伤有关。为了保护运动员免受伤害,有必要通过功能测试确定生物力学因素的原因。本研究的目的是通过单腿着地(SLL)试验来研究GJH对骨盆和下肢关节生物力学的影响。活动过度会改变下肢生物力学吗?8名没有肌肉骨骼损伤或疼痛史的健康志愿者参加了这项研究(平均年龄:16.6±4.2)。根据Beighton评分(GJH[5])将休闲运动参与者分为两组(对照组≤4,超动组≥6)。使用3D运动分析(6台Vantage 5相机,2台Force平台,Vicon motion Systems Ltd UK)对每个受试者进行SLL测试。采用前人研究[4]中描述的下肢插入式步态模型作为标记集。对每侧腿进行三次重复试验。采用独立t检验进行统计分析。活动度高的参与者在负重膝关节活动的站立阶段表现出更高的骨盆外旋峰角(p=0.01)、髋关节内收(p=0.03)和膝关节外翻(p=0.02)(见表1)。相反,活动度高的参与者盆腔后倾角(p=0.03)、足部内进(p=0.05)和膝关节屈曲力矩(p=0.01)的峰值被发现降低。下载:下载高分辨率图片(113KB)下载:下载全尺寸图片在SLL测试中,已经确定关节活动过度会导致下肢生物力学的改变。髋内收峰和膝关节外翻角的增加会导致急性(前交叉韧带破裂因子)和过度使用性运动损伤[10]。需要进一步的研究来研究关节过度活动的影响,使用详细的标记集来更好地量化具体的膝关节运动。
{"title":"Impact of subject’s physical properties on joint biomechanics: Hypermobility alters lower extremity biomechanics during knee-bearing activity","authors":"Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander","doi":"10.1016/j.gaitpost.2023.07.134","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.134","url":null,"abstract":"Hypermobility is a physical specificity of the subject that refers to an increased range of motion in one or more joints beyond what is considered normal or expected for an individual's age, gender, and body type. The previous studies on hypermobility stated that generalized joint hypermobility (GJH) may cause joint instability and muscle weakness [1]. The knee joint structural integrity and function maintained essentially by the cruciate ligaments. The anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) work together to provide stability to the knee joint by preventing excessive movement of the tibia (shin bone) in relation to the femur (thigh bone). The more common ligament injury is ACL injury and non-contact ACL injuries remain a serious problem among athletes [2]. Activities demanding mechanical bearing on the knee joint recommended for classifying an athlete's anterior cruciate ligament injury risk [3]. Some biomechanical factors determined in these tests are associated with future injuries [4]. In order to protect the athlete from injury, it is necessary to determine the causes of biomechanical factors determined by functional tests. The aim of this study is to examine the effects of GJH on Pelvis and lower body joint biomechanics with Single Leg Landing (SLL) test. Does hypermobility alter lower extremity biomechanics? Eight healthy volunteers with no history of musculoskeletal injury or pain participated in this study (mean age: 16.6±4.2). Casual sports participants were divided into two equal groups (control ≤4, hypermobile ≥6) according to the Beighton score which measures GJH [5]. SLL tests were acquired for each subject using 3D motion analysis (6 Vantage 5 Camera, 2 Force Platforms, Vicon Motion Systems Ltd UK). Plug-in-gait model for lower extremity is utilized as marker set that described in the previous studies [4]. Three repetitive tests were evaluated for each leg side. An Independent t-test was used for statistical analysis. Participants with hypermobility exhibited higher peak angles of pelvic external rotation (p=0.01), hip adduction (p=0.03), and knee valgus (p=0.02) during the stance phase of knee-bearing activity (see Table 1). In contrast, peak values of pelvic posterior tilt angle (p=0.03), foot internal progression (p=0.05), and knee flexion moment (p=0.01) were found to be decreased in participants with hypermobility.Download : Download high-res image (113KB)Download : Download full-size image It has been determined that joint hypermobility can lead to alterations in lower extremity biomechanics during SLL test. Increase in peak hip adduction and knee valgus angles lead to both acute (ACL rupture factor) and overuse sport injuries [6]. Further studies are needed to investigate the effects of joint hypermobility using detailed marker set for better quantification of specifically knee joint movement.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced reciprocal inhibition during passive spasticity assessments is related with increased muscle co-activation during perturbations of standing balance 被动痉挛评估过程中相互抑制的减少与站立平衡摄动过程中肌肉共同激活的增加有关
Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.269
Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote
Children with cerebral palsy (CP) often have balance impairments, but little is known about the relation between joint hyper-resistance (i.e., the most common symptom in spastic CP) and balance impairments (1). Both during clinical tests of joint hyper-resistance and when standing balance is perturbed, muscles are stretched. In children with CP, the stretch reflex in response to passive joint rotations is often hyper-excitable and reduced reciprocal inhibition has been observed in the antagonistic muscle (2). Furthermore, children with CP often have increased muscle co-activation during standing balance perturbations (3). Recently, we demonstrated that this increased muscle co-activation is not a useful compensation strategy and might therefore be a consequence of reduced reciprocal inhibition (4). Here, we investigated whether a reduction in reciprocal inhibition between plantarflexors and dorsiflexors in response to a passive stretching of the plantarflexors was related to higher levels of co-activation in response to toe-up rotational perturbations of standing balance. Twenty children with spastic CP participated in the study. We performed an instrumented spasticity assessment of the plantarflexors (5) followed by a standing balance assessment (Fig. 1, row1-2). During the instrumented spasticity assessment, the ankle was rotated as fast as possible from a plantar flexed position until the end of range of motion towards dorsiflexion. At least 7 seconds of rest were provided between different trials, five in total. Reactive standing balance was tested on a moving platform. Participants were instructed to maintain balance without stepping and the platform was rotated such that ankle dorsiflexion was elicited. Perturbations were repeated 8 times. Electromyography (EMG) from gastrocnemius lateralis (LG) and medialis (MG), soleus (SOL) and tibialis anterior (TA) was collected during both assessments. EMG was filtered and normalized to the maximal value across assessments (Fig. 1, row 3). We calculated the co-contraction index (CCI) as the overlap between TA and respectively LG, MG, and SOL EMG (6). We tested the relation between the CCI during passive joint rotations and reactive standing balance. The CCI between the plantarflexors and tibialis anterior during spasticity assessment was moderately correlated with the CCI during reactive balance responses (LG-TA: r=0.55; p= 0.02; MG-TA: r= 0.57, p=0.01; SOL-TA: r=0.54, p=0.02; Fig. 1, row 4). Fig. 1: Correlation between co-contraction index during instrumented spasticity assessment and perturbations of standing balance.Download : Download high-res image (242KB)Download : Download full-size image Our results suggest that deficits in spinal pathways governing the stretch reflex, and more specifically reduced reciprocal inhibition, might hinder reactive balance control. Successful postural control might therefore rely on compensations in supraspinal pathways to generate net balance correcting ankle momen
脑瘫(CP)患儿经常有平衡障碍,但关节过度抵抗(即痉挛性CP最常见的症状)与平衡障碍之间的关系知之甚少(1)。无论是在关节过度抵抗的临床试验中,还是在站立平衡受到干扰时,肌肉都会被拉伸。在患有CP的儿童中,被动关节旋转的拉伸反射通常是高度兴奋的,并且在对抗性肌肉中观察到相互抑制的减少(2)。此外,患有CP的儿童在站立平衡扰动时通常会增加肌肉的共同激活(3)。最近,我们证明这种增加的肌肉共同激活不是一种有用的补偿策略,因此可能是相互抑制减少的结果(4)。我们研究了被动拉伸跖屈肌时跖屈肌和背屈肌之间相互抑制的减少是否与站立平衡的向上旋转扰动时更高水平的共激活有关。20名患有痉挛性脑瘫的儿童参与了这项研究。我们对跖屈肌进行了器械性痉挛评估(5),然后进行了站立平衡评估(图1,第1-2行)。在测量痉挛评估时,踝关节从足底屈曲位置尽可能快地旋转,直到活动范围向背屈结束。每次试验之间至少有7秒的休息时间,总共5秒。在移动平台上测试了反应式站立平衡。参与者被要求保持平衡而不踩踏板,平台被旋转以引起脚踝背屈。扰动重复8次。两组评估均收集腓肠肌外侧肌(LG)和内侧肌(MG)、比目鱼肌(SOL)和胫骨前肌(TA)的肌电图(EMG)。肌电信号经过过滤并归一化到评估的最大值(图1,第3行)。我们计算了共收缩指数(CCI),作为TA与LG、MG和SOL肌电信号之间的重叠(6)。我们测试了被动关节旋转时CCI与反应性站立平衡之间的关系。痉挛评估时跖屈肌和胫骨前肌之间的CCI与反应性平衡反应时的CCI有中度相关(LG-TA: r=0.55;p = 0.02;MG-TA: r= 0.57, p=0.01;SOL-TA: r=0.54, p=0.02;图1,第4行)。图1:测量痉挛评估时的共收缩指数与站立平衡摄动之间的相关性。我们的研究结果表明,控制拉伸反射的脊髓通路的缺陷,更具体地说是相互抑制的减少,可能会阻碍反应性平衡控制。因此,成功的姿势控制可能依赖于椎骨上通路的代偿来产生净平衡纠正踝关节力矩。我们需要进一步探索是否增加的共激活也会导致更差的平衡性能。
{"title":"Reduced reciprocal inhibition during passive spasticity assessments is related with increased muscle co-activation during perturbations of standing balance","authors":"Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote","doi":"10.1016/j.gaitpost.2023.07.269","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.269","url":null,"abstract":"Children with cerebral palsy (CP) often have balance impairments, but little is known about the relation between joint hyper-resistance (i.e., the most common symptom in spastic CP) and balance impairments (1). Both during clinical tests of joint hyper-resistance and when standing balance is perturbed, muscles are stretched. In children with CP, the stretch reflex in response to passive joint rotations is often hyper-excitable and reduced reciprocal inhibition has been observed in the antagonistic muscle (2). Furthermore, children with CP often have increased muscle co-activation during standing balance perturbations (3). Recently, we demonstrated that this increased muscle co-activation is not a useful compensation strategy and might therefore be a consequence of reduced reciprocal inhibition (4). Here, we investigated whether a reduction in reciprocal inhibition between plantarflexors and dorsiflexors in response to a passive stretching of the plantarflexors was related to higher levels of co-activation in response to toe-up rotational perturbations of standing balance. Twenty children with spastic CP participated in the study. We performed an instrumented spasticity assessment of the plantarflexors (5) followed by a standing balance assessment (Fig. 1, row1-2). During the instrumented spasticity assessment, the ankle was rotated as fast as possible from a plantar flexed position until the end of range of motion towards dorsiflexion. At least 7 seconds of rest were provided between different trials, five in total. Reactive standing balance was tested on a moving platform. Participants were instructed to maintain balance without stepping and the platform was rotated such that ankle dorsiflexion was elicited. Perturbations were repeated 8 times. Electromyography (EMG) from gastrocnemius lateralis (LG) and medialis (MG), soleus (SOL) and tibialis anterior (TA) was collected during both assessments. EMG was filtered and normalized to the maximal value across assessments (Fig. 1, row 3). We calculated the co-contraction index (CCI) as the overlap between TA and respectively LG, MG, and SOL EMG (6). We tested the relation between the CCI during passive joint rotations and reactive standing balance. The CCI between the plantarflexors and tibialis anterior during spasticity assessment was moderately correlated with the CCI during reactive balance responses (LG-TA: r=0.55; p= 0.02; MG-TA: r= 0.57, p=0.01; SOL-TA: r=0.54, p=0.02; Fig. 1, row 4). Fig. 1: Correlation between co-contraction index during instrumented spasticity assessment and perturbations of standing balance.Download : Download high-res image (242KB)Download : Download full-size image Our results suggest that deficits in spinal pathways governing the stretch reflex, and more specifically reduced reciprocal inhibition, might hinder reactive balance control. Successful postural control might therefore rely on compensations in supraspinal pathways to generate net balance correcting ankle momen","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gait & posture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1