首页 > 最新文献

Journal of hazardous materials最新文献

英文 中文
High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms. 利用具有优异可见光吸收能力的 Z 型 AgBr/NH2-MIL-125(Ti) 光催化剂高效去除铜绿微囊藻:性能见解与机理。
Pub Date : 2024-10-05 Epub Date: 2024-08-08 DOI: 10.1016/j.jhazmat.2024.135461
Xingfeng Cao, Gongduan Fan, Jing Luo, Ling Zhang, Shiyun Wu, Yixin Yao, Kai-Qin Xu

Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH2-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH2-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH2-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O2-) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.

藻华已成为饮用水生产中的一个普遍问题,威胁着生态系统和人类健康。光催化是一种用于废水处理的前景广阔的高级氧化工艺(AOP)技术,被认为是就地修复藻华的潜在措施。然而,传统的光催化剂通常对可见光的反应有限,而且光生电子-空穴对会迅速重组。在本研究中,我们利用共沉淀法制备了一种具有优异可见光吸收性能的 Z 型 AgBr/NH2-MIL-125(Ti) 复合材料,以高效灭活铜绿微囊藻。在可见光照射 180 分钟后,AgBr/NH2-MIL-125(Ti) 对叶绿素 a 的降解效率为 98.7%,分别比 AgBr 和 NH2-MIL-125(Ti) 的降解率效率高出 3.20 倍和 36.75 倍。此外,即使重复使用五次,其去除率仍能保持在 91.1%。实验结果表明,超氧自由基(-O2-)是主要的活性氧。光催化反应改变了藻细胞的形态和表面电荷,抑制了它们的新陈代谢,破坏了它们的光合作用和抗氧化系统。总之,这项研究为光催化技术在藻华修复中的应用提供了一种前景广阔的材料。
{"title":"High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms.","authors":"Xingfeng Cao, Gongduan Fan, Jing Luo, Ling Zhang, Shiyun Wu, Yixin Yao, Kai-Qin Xu","doi":"10.1016/j.jhazmat.2024.135461","DOIUrl":"10.1016/j.jhazmat.2024.135461","url":null,"abstract":"<p><p>Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH<sub>2</sub>-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH<sub>2</sub>-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH<sub>2</sub>-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O<sub>2</sub><sup>-</sup>) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater. 制备基于污泥的低成本高多孔生物炭,用于高效去除农用化学品和制药废水中的难降解污染物。
Pub Date : 2024-10-05 Epub Date: 2024-08-17 DOI: 10.1016/j.jhazmat.2024.135572
Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng

Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm3/g and a surface area of 691.4 m2/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.

通过可行的方法生产高性能的污泥生物炭是一项巨大的挑战,也是实用性的关键。在此,我们报告了一种通过新型热解-酸处理-后热解方法从农用化学品-制药和市政污泥混合物中合成的高孔隙率污泥生物炭。优化后的生物炭被命名为 ASMS91,通过延长酸洗和随后的热解后处理,获得了相互连接的孔隙,总孔隙体积为 0.894 cm3/g,比表面积为 691.4 m2/g,优于非活性污泥生物炭。ASMS91 能在 24 小时内去除 45.3% 的废水 COD(156 mg/L),比商用活性炭(碘数为 1000)更快、更高效。这种出色的性能得益于其对中孔中长链脂肪族化合物(如 2,4-二叔丁基苯酚、新对二甲苯和二十烷)的高吸附能力,占孔隙填充的 71.8%。ASMS91 具有很高的可回收性,在第 4 个循环后,吸附量只减少了 5.3%。在去除全氟辛酸(PFOA)、6:2 氟橡胶磺酸盐(6:2 FTS)、磺胺甲噁唑、亚甲蓝和亚甲基橙方面,ASMS91 的表现也优于文献中的其他污泥生物炭。最后,通过简短的技术经济分析验证了我们提出的方法的可行性。这种可行的方法可为今后有关污泥价值化和低成本化学废水处理的研究提供支持。
{"title":"Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater.","authors":"Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng","doi":"10.1016/j.jhazmat.2024.135572","DOIUrl":"10.1016/j.jhazmat.2024.135572","url":null,"abstract":"<p><p>Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm<sup>3</sup>/g and a surface area of 691.4 m<sup>2</sup>/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daily exposure to chlordecone, an organochlorine pesticide, increases cardiac fibrosis and atrial fibrillation vulnerability. 每天接触十氯酮(一种有机氯杀虫剂)会增加心脏纤维化和心房颤动的可能性。
Pub Date : 2024-10-05 Epub Date: 2024-08-14 DOI: 10.1016/j.jhazmat.2024.135533
Alexia Fundere, Andrew Rose, Feng Xiong, Kalai Mangai Muthukumarasamy, Yasemin Altuntas, Harika Dasari, Louis Villeneuve, Martin G Sirois, Jean-François Tanguay, Jean-Claude Tardif, Roddy Hiram

Context: Chlordecone (CLD) is a carcinogenic organochlorine pesticide. CLD was shown to disturb the activity of cardiac Na+-K+-ATPase and Ca2+-Mg2+-ATPase. Conditions affecting these transmembrane pumps are often associated with cardiac arrhythmias (CA). However, little is known about the role of CLD on atrial fibrillation (AF) incidence, the most common type of CA.

Hypotheses: 1) Daily ingestion of CLD induces arrhythmogenic cardiac remodeling. 2) A phase of CLD withdrawal can reduce CLD-induced AF susceptibility.

Methods: Adult male Wistar rats (250 g-275 g) ingested daily-doses of CLD (0 μg/L, 0.1 μg/L, or 1 μg/L) diluted in their quotidian water for 4 weeks. From day (D)29 to D56, all rats received CLD-free water. Vulnerability to AF and cardiac function were evaluated at D28 and D56 by electrophysiological study, echocardiography, and optical-mapping. Levels of genes and proteins related to inflammation, fibrosis, and senescence were quantified by qPCR and immunoassays.

Results: Twenty-eight days of CLD exposure were associated with significantly increased AF vulnerability compared to CLD-free rats. Contamination with 1 μg/L CLD significantly reduced atrial conduction velocity (ERP, APD). CLD-weaning normalized food consumption and weight intake. However, after the CLD-withdrawal period of 28 days, AF inducibility, atrial inflammation (IL6, IL1β), and atrial fibrosis (Masson's trichrome staining) remained significantly higher in rats exposed to 1 μg/L CLD compared to 0 μg/L.

Conclusions: Prolonged CLD ingestion provokes atrial conduction slowing and increased risk of AF. Although CLD-weaning, some persistent damages occurred in the atrium like atrial fibrosis and atrial senescence signals, which are accompanied by atrial inflammation and arrhythmogenicity.

背景:十氯酮(CLD)是一种致癌的有机氯杀虫剂:十氯酮(CLD)是一种致癌的有机氯杀虫剂。研究表明,CLD 会干扰心脏 Na+-K+-ATPase 和 Ca2+-Mg2+-ATPase 的活性。影响这些跨膜泵的情况通常与心律失常(CA)有关。然而,CLD 对心房颤动(AF)发病率(最常见的心律失常类型)的作用却知之甚少:1)每天摄入 CLD 会诱发心律失常性心脏重塑。2)停用 CLD 的阶段可降低 CLD 诱导的房颤易感性:方法:成年雄性 Wistar 大鼠(250 克-275 克)每天摄入稀释在饮水中的 CLD(0 μg/L、0.1 μg/L 或 1 μg/L),连续摄入 4 周。从第 29 天到第 56 天,所有大鼠都饮用不含 CLD 的水。在第 28 天和第 56 天,通过电生理学研究、超声心动图和光学绘图评估房颤的易感性和心脏功能。通过 qPCR 和免疫测定量化了与炎症、纤维化和衰老相关的基因和蛋白质水平:结果:与无 CLD 的大鼠相比,暴露于 CLD 28 天的大鼠房颤易损性显著增加。1 μg/L CLD 污染显著降低了心房传导速度(ERP、APD)。CLD断奶使大鼠的食量和体重恢复正常。然而,在28天的CLD戒断期后,与0 μg/L的大鼠相比,摄入1 μg/L CLD的大鼠房颤诱发率、心房炎症(IL6、IL1β)和心房纤维化(Masson三色染色)仍然显著较高:结论:长期摄入CLD会导致心房传导减慢,增加房颤风险。结论:长期摄入 CLD 会导致心房传导减慢,增加房颤风险。虽然 CLD 已减弱,但心房中仍存在一些持续性损伤,如心房纤维化和心房衰老信号,并伴有心房炎症和致心律失常性。
{"title":"Daily exposure to chlordecone, an organochlorine pesticide, increases cardiac fibrosis and atrial fibrillation vulnerability.","authors":"Alexia Fundere, Andrew Rose, Feng Xiong, Kalai Mangai Muthukumarasamy, Yasemin Altuntas, Harika Dasari, Louis Villeneuve, Martin G Sirois, Jean-François Tanguay, Jean-Claude Tardif, Roddy Hiram","doi":"10.1016/j.jhazmat.2024.135533","DOIUrl":"10.1016/j.jhazmat.2024.135533","url":null,"abstract":"<p><strong>Context: </strong>Chlordecone (CLD) is a carcinogenic organochlorine pesticide. CLD was shown to disturb the activity of cardiac Na<sup>+</sup>-K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-Mg<sup>2+</sup>-ATPase. Conditions affecting these transmembrane pumps are often associated with cardiac arrhythmias (CA). However, little is known about the role of CLD on atrial fibrillation (AF) incidence, the most common type of CA.</p><p><strong>Hypotheses: </strong>1) Daily ingestion of CLD induces arrhythmogenic cardiac remodeling. 2) A phase of CLD withdrawal can reduce CLD-induced AF susceptibility.</p><p><strong>Methods: </strong>Adult male Wistar rats (250 g-275 g) ingested daily-doses of CLD (0 μg/L, 0.1 μg/L, or 1 μg/L) diluted in their quotidian water for 4 weeks. From day (D)29 to D56, all rats received CLD-free water. Vulnerability to AF and cardiac function were evaluated at D28 and D56 by electrophysiological study, echocardiography, and optical-mapping. Levels of genes and proteins related to inflammation, fibrosis, and senescence were quantified by qPCR and immunoassays.</p><p><strong>Results: </strong>Twenty-eight days of CLD exposure were associated with significantly increased AF vulnerability compared to CLD-free rats. Contamination with 1 μg/L CLD significantly reduced atrial conduction velocity (ERP, APD). CLD-weaning normalized food consumption and weight intake. However, after the CLD-withdrawal period of 28 days, AF inducibility, atrial inflammation (IL6, IL1β), and atrial fibrosis (Masson's trichrome staining) remained significantly higher in rats exposed to 1 μg/L CLD compared to 0 μg/L.</p><p><strong>Conclusions: </strong>Prolonged CLD ingestion provokes atrial conduction slowing and increased risk of AF. Although CLD-weaning, some persistent damages occurred in the atrium like atrial fibrosis and atrial senescence signals, which are accompanied by atrial inflammation and arrhythmogenicity.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial charge demulsification endowed dual-network photocatalytic hydrogen-bonded PVA@agarose membranes for oil-water separation. 用于油水分离的双网络光催化氢键 PVA@AGarose 膜的界面电荷破乳作用。
Pub Date : 2024-10-05 Epub Date: 2024-08-17 DOI: 10.1016/j.jhazmat.2024.135569
Jing Jing, Zhanjian Liu, Yuxin Fu, Haonan Liu, Xiguang Zhang, Meiling Li, Liyan Liu, Huaiyuan Wang

Hydrogel materials with hydrophilic cross-linked network exhibit remarkable super-wettability, enabling their widespread application in oily wastewater treatment. However, the single and loose structure lacks sufficient strength and porosity to resist long-term degradation. Herein, a structural synergistic molecular strategy was reported to introduce reinforcing phase structures and interfacial active sites into the polymer networks for long-term oil-water emulsion separation. The carbon skeleton was uniformly interspersed through the strongly hydrogen-bonded polymer chains via covalent bonds, resulting in a hydrogel network with high mechanical strength and exceptional flow conductivity, which maintained a separation flux of 1233 L m-2 h-1 after 20 separation cycles under gravitational force. Dense negative charges on the surface disrupted the internal charge stability of the oil-water emulsion, leading to remarkable demulsification with a separation efficiency exceeding 99 %. Simultaneously, the strong redox reaction of the photoheterojunction effectively removed organic dyes under visible light, enhancing the overall antifouling performance. This study provided a feasible strategy at the molecular level for optimizing the suitability of hydrogels for oil-water emulsion separation.

具有亲水交联网络的水凝胶材料表现出显著的超强润湿性,使其在含油废水处理中得到广泛应用。然而,这种单一而松散的结构缺乏足够的强度和孔隙率,无法抵抗长期降解。本文报告了一种结构协同分子策略,在聚合物网络中引入增强相结构和界面活性位点,以实现长期的油水乳液分离。碳骨架通过共价键均匀地穿插在强氢键聚合物链中,从而形成了具有高机械强度和优异流动传导性的水凝胶网络,在重力作用下进行 20 次分离循环后,其分离通量仍能保持在 1233 L m-2 h-1 的水平。表面密集的负电荷破坏了油水乳液内部电荷的稳定性,导致显著的破乳化,分离效率超过 99%。同时,光电氧化结的强氧化还原反应能在可见光下有效去除有机染料,提高了整体防污性能。这项研究为优化水凝胶在油水乳状液分离中的适用性提供了分子水平上的可行策略。
{"title":"Interfacial charge demulsification endowed dual-network photocatalytic hydrogen-bonded PVA@agarose membranes for oil-water separation.","authors":"Jing Jing, Zhanjian Liu, Yuxin Fu, Haonan Liu, Xiguang Zhang, Meiling Li, Liyan Liu, Huaiyuan Wang","doi":"10.1016/j.jhazmat.2024.135569","DOIUrl":"10.1016/j.jhazmat.2024.135569","url":null,"abstract":"<p><p>Hydrogel materials with hydrophilic cross-linked network exhibit remarkable super-wettability, enabling their widespread application in oily wastewater treatment. However, the single and loose structure lacks sufficient strength and porosity to resist long-term degradation. Herein, a structural synergistic molecular strategy was reported to introduce reinforcing phase structures and interfacial active sites into the polymer networks for long-term oil-water emulsion separation. The carbon skeleton was uniformly interspersed through the strongly hydrogen-bonded polymer chains via covalent bonds, resulting in a hydrogel network with high mechanical strength and exceptional flow conductivity, which maintained a separation flux of 1233 L m<sup>-2</sup> h<sup>-1</sup> after 20 separation cycles under gravitational force. Dense negative charges on the surface disrupted the internal charge stability of the oil-water emulsion, leading to remarkable demulsification with a separation efficiency exceeding 99 %. Simultaneously, the strong redox reaction of the photoheterojunction effectively removed organic dyes under visible light, enhancing the overall antifouling performance. This study provided a feasible strategy at the molecular level for optimizing the suitability of hydrogels for oil-water emulsion separation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. 纳米级外聚合物重新组装-捕获机制决定了水生动物在不同觅食栖息地接触全氟辛烷磺酸的对比模式:纳米可视化研究。
Pub Date : 2024-10-05 Epub Date: 2024-08-13 DOI: 10.1016/j.jhazmat.2024.135515
Shuyan Xu, Pengfeng Zhu, Caiqin Wang, Daoyong Zhang, Ming Zhang, Xiangliang Pan

The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.

全氟辛烷磺酸(PFOS)在水生环境中的行为和归宿因其高毒性和持久性而备受关注。尽管人们普遍知道 EPS 会影响全氟辛烷磺酸的生物利用率,但全氟辛烷磺酸与无处不在的 EPS(外聚合物)之间的纳米级超分子相互作用机制仍不清楚。通常情况下,水生动物的全氟辛烷磺酸暴露模式会随着 EPS 与全氟辛烷磺酸之间的相互作用而发生变化,但这种模式尚未完全明了。本研究假设,全氟辛烷磺酸的暴露和积累途径取决于全氟辛烷磺酸-EPS的交互装配行为和动物种类。本研究选择了斑马鱼和摇蚊幼虫这两种具有不同摄食习性的模式动物,在无 EPS 和有 EPS 的环境浓度下进行全氟辛烷磺酸暴露和蓄积试验。结果发现,全氟辛烷磺酸会引发 EPS 的自组装,形成大的聚集体,从而显著截留全氟辛烷磺酸。由于 EPS 与全氟辛烷磺酸之间的纳米级交互组装,全氟辛烷磺酸在斑马鱼体内的蓄积明显增加,但在摇蚊幼虫体内则大幅减少。口部较大的斑马鱼对全氟辛烷磺酸的皮肤摄取量减少,但口腔摄取量增加,这可能是由于斑马鱼将富含全氟辛烷磺酸的发泡聚苯乙烯聚集体作为食物摄取量增加所致。对于口部较小的摇蚊幼虫来说,PFOS-EPS 聚合物减少了其皮肤、口腔和肠道对全氟辛烷磺酸的吸收。纳米可视化证据证实,富含全氟辛烷磺酸的 EPS-PFOS 组合物阻止了全氟辛烷磺酸在两种动物皮肤中的渗透。这些发现为了解全氟辛烷磺酸在水生环境中的生态风险提供了新的知识。
{"title":"Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study.","authors":"Shuyan Xu, Pengfeng Zhu, Caiqin Wang, Daoyong Zhang, Ming Zhang, Xiangliang Pan","doi":"10.1016/j.jhazmat.2024.135515","DOIUrl":"10.1016/j.jhazmat.2024.135515","url":null,"abstract":"<p><p>The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong synergistic and antagonistic effects of quinones and metal ions in oxidative potential (OP) determination by ascorbic acid (AA) assays. 通过抗坏血酸(AA)测定氧化潜能(OP)时,醌类化合物和金属离子具有很强的协同和拮抗作用。
Pub Date : 2024-10-05 Epub Date: 2024-08-20 DOI: 10.1016/j.jhazmat.2024.135599
Eduardo José Dos Santos Souza, Khanneh Wadinga Fomba, Manuela van Pinxteren, Nabil Deabji, Hartmut Herrmann

A key challenge in oxidative potential (OP) assays is to accurately assess the cumulative impact of redox-active aerosol species rather than only their individual effects. This study investigates the OP of single and combined mixtures of 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ), 1,4-benzoquinone (1,4-BQ), Cu, Fe, Mn, and Zn in standard ascorbic acid (OPAA) and the synthetic respiratory tract lining fluid (OPRTLF) assays. In both OPAA and OPRTLF, binary mixtures showed additive and synergistic effects in the presence of 1,2-NQ. The mixture of Cu and Zn showed substantial synergisms in both assays, while the mixtures in the absence of 1,2-NQ primarily induced antagonistic effects. For the first time, we propose linear equations to improve the prediction of OP values by considering the impacts of synergistic and antagonistic effects. Under this approach, we observed that the potential effects caused by binary mixtures in ambient particulate matter (PM) samples could account for up to 68 % of the PM-OP values in Fez, Morocco (OPmAA: 0.34 nmol min-1 µg-1 and OPmRTLF: 0.18 nmol min-1 µg-1). The present study improves the understanding of effects of chemical interaction of potentially toxic substances that are important in the understanding of PM-induced oxidative stress in the human body.

氧化潜能(OP)检测中的一个主要挑战是准确评估氧化还原活性气溶胶物种的累积影响,而不仅仅是它们各自的影响。本研究调查了在标准抗坏血酸(OPAA)和合成呼吸道内壁液(OPRTLF)检测中,1,2-萘醌(1,2-NQ)、1,4-萘醌(1,4-NQ)、9,10-菲醌(9,10-PQ)、1,4-苯醌(1,4-BQ)、铜、铁、锰和锌的单一和组合混合物的氧化潜能值。在 OPAA 和 OPRTLF 中,二元混合物在 1,2-NQ 的存在下显示出相加和协同效应。铜和锌的混合物在这两项试验中都表现出了很大的协同作用,而在没有 1,2-NQ 的情况下,混合物则主要产生拮抗作用。我们首次提出了线性方程,通过考虑协同效应和拮抗效应的影响来改进 OP 值的预测。根据这种方法,我们观察到环境颗粒物(PM)样本中二元混合物引起的潜在效应可能占摩洛哥非斯 PM-OP 值的 68%(OPmAA:0.34 nmol min-1 µg-1 和 OPmRTLF:0.18 nmol min-1 µg-1)。本研究加深了人们对潜在有毒物质化学相互作用影响的了解,这对了解 PM 诱导的人体氧化应激非常重要。
{"title":"Strong synergistic and antagonistic effects of quinones and metal ions in oxidative potential (OP) determination by ascorbic acid (AA) assays.","authors":"Eduardo José Dos Santos Souza, Khanneh Wadinga Fomba, Manuela van Pinxteren, Nabil Deabji, Hartmut Herrmann","doi":"10.1016/j.jhazmat.2024.135599","DOIUrl":"10.1016/j.jhazmat.2024.135599","url":null,"abstract":"<p><p>A key challenge in oxidative potential (OP) assays is to accurately assess the cumulative impact of redox-active aerosol species rather than only their individual effects. This study investigates the OP of single and combined mixtures of 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ), 1,4-benzoquinone (1,4-BQ), Cu, Fe, Mn, and Zn in standard ascorbic acid (OP<sup>AA</sup>) and the synthetic respiratory tract lining fluid (OP<sup>RTLF</sup>) assays. In both OP<sup>AA</sup> and OP<sup>RTLF</sup>, binary mixtures showed additive and synergistic effects in the presence of 1,2-NQ. The mixture of Cu and Zn showed substantial synergisms in both assays, while the mixtures in the absence of 1,2-NQ primarily induced antagonistic effects. For the first time, we propose linear equations to improve the prediction of OP values by considering the impacts of synergistic and antagonistic effects. Under this approach, we observed that the potential effects caused by binary mixtures in ambient particulate matter (PM) samples could account for up to 68 % of the PM-OP values in Fez, Morocco (OP<sub>m</sub><sup>AA</sup>: 0.34 nmol min<sup>-1</sup> µg<sup>-1</sup> and OP<sub>m</sub><sup>RTLF</sup>: 0.18 nmol min<sup>-1</sup> µg<sup>-1</sup>). The present study improves the understanding of effects of chemical interaction of potentially toxic substances that are important in the understanding of PM-induced oxidative stress in the human body.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates. 有氧铁转化导致腐殖酸-铁共沉淀物对六价铬的吸附减少和还原增强。
Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135595
Hui Wang, Fengping Liu, Yankun Zhang, Xueying Gong, Jinqi Zhu, Wenbing Tan, Ying Yuan, Jia Zhang, Honghan Chen, Beidou Xi

Humic substance (HS)-ferric iron (Fe(III)) coprecipitates are widespread organo-mineral associations in soils and aquifers and have the capacity to immobilize and detoxify Cr(VI). These coprecipitates undergo transformation owing to their thermodynamic instability; however, the effects of this transformation on their environmental behaviors remain unclear, particularly in aerobic environments. In this study, the aerobic transformation of humic acid (HA)-Fe(III) coprecipitates, a representative of HS-Fe(III) coprecipitates, was simulated. The environmental effect was then evaluated after conducting an adsorption-reduction batch experiment toward Cr(VI). The aerobic transformation characteristics, as well as the adsorption/reduction capacity of HA-Fe(III) coprecipitates, were found to depend strongly on their structures. In ferrihydrite (Fh)-like coprecipitates, amorphous Fh is readily transformed into crystalline hematite and goethite at aerobic environments, leading to a much lower specific surface area and adsorption capacity. However, this increasing degree of crystallization enhanced the inductive reduction ability towards Cr(VI) owing to the more significant shift of electron pairs in the FeOC bond toward the HA direction. In HS-like coprecipitates, Fe(III) always serves as a cation bridge connecting HA molecules, but can be reduced to Fe(II) by the associated HA after aerobic transformation. The produced Fe(II), therefore, drove the reduction of the adsorbed Cr(VI). These findings emphasize the pivotal role of aerobic transformation in enhancing the reduction capacity for Cr(VI), which opens a new avenue for the development of in-situ remediation agents for Cr(VI)-contaminated sites.

腐殖质(HS)-铁(Fe(III))共沉淀物是土壤和含水层中广泛存在的有机矿物结合体,具有固定和解毒六价铬的能力。由于其热力学不稳定性,这些共沉淀会发生转化;然而,这种转化对其环境行为的影响仍不清楚,尤其是在有氧环境中。本研究模拟了腐植酸(HA)-铁(III)共沉淀物(HS-铁(III)共沉淀物的代表)的有氧转化过程。然后在对六价铬进行吸附还原批量实验后,对其环境效应进行了评估。研究发现,HA-Fe(III) 共沉淀的好氧转化特性以及吸附/还原能力在很大程度上取决于其结构。在类似于水铁矿(Fh)的共沉淀物中,无定形的 Fh 很容易在有氧环境中转化为结晶赤铁矿和高铁铁矿,从而导致比表面积和吸附容量大大降低。然而,结晶程度的提高会增强对 Cr(VI) 的感应还原能力,这是因为 FeOC 键中的电子对向 HA 方向发生了更显著的移动。在类似 HS 的共沉淀物中,Fe(III) 始终是连接 HA 分子的阳离子桥,但在有氧转化后会被相关的 HA 还原成 Fe(II)。因此,生成的 Fe(II) 推动了吸附的 Cr(VI) 的还原。这些发现强调了有氧转化在增强六价铬还原能力方面的关键作用,为开发六价铬污染场地的原位修复剂开辟了一条新途径。
{"title":"Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates.","authors":"Hui Wang, Fengping Liu, Yankun Zhang, Xueying Gong, Jinqi Zhu, Wenbing Tan, Ying Yuan, Jia Zhang, Honghan Chen, Beidou Xi","doi":"10.1016/j.jhazmat.2024.135595","DOIUrl":"10.1016/j.jhazmat.2024.135595","url":null,"abstract":"<p><p>Humic substance (HS)-ferric iron (Fe(III)) coprecipitates are widespread organo-mineral associations in soils and aquifers and have the capacity to immobilize and detoxify Cr(VI). These coprecipitates undergo transformation owing to their thermodynamic instability; however, the effects of this transformation on their environmental behaviors remain unclear, particularly in aerobic environments. In this study, the aerobic transformation of humic acid (HA)-Fe(III) coprecipitates, a representative of HS-Fe(III) coprecipitates, was simulated. The environmental effect was then evaluated after conducting an adsorption-reduction batch experiment toward Cr(VI). The aerobic transformation characteristics, as well as the adsorption/reduction capacity of HA-Fe(III) coprecipitates, were found to depend strongly on their structures. In ferrihydrite (Fh)-like coprecipitates, amorphous Fh is readily transformed into crystalline hematite and goethite at aerobic environments, leading to a much lower specific surface area and adsorption capacity. However, this increasing degree of crystallization enhanced the inductive reduction ability towards Cr(VI) owing to the more significant shift of electron pairs in the FeOC bond toward the HA direction. In HS-like coprecipitates, Fe(III) always serves as a cation bridge connecting HA molecules, but can be reduced to Fe(II) by the associated HA after aerobic transformation. The produced Fe(II), therefore, drove the reduction of the adsorbed Cr(VI). These findings emphasize the pivotal role of aerobic transformation in enhancing the reduction capacity for Cr(VI), which opens a new avenue for the development of in-situ remediation agents for Cr(VI)-contaminated sites.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics. 肉眼观察汤普森无籽葡萄幼苗中的聚苯乙烯纳米塑料,并通过转录组学和代谢组学评估其影响。
Pub Date : 2024-10-05 Epub Date: 2024-08-21 DOI: 10.1016/j.jhazmat.2024.135550
Songlin Zhang, Fuchun Zhang, Lu Cai, Na Xu, Chuan Zhang, Vivek Yadav, Xiaoming Zhou, Xinyu Wu, Haixia Zhong

Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.

微/纳米塑料(MNPs)是一种新出现的非点源污染物,由于其对生态系统的威胁而受到越来越多的关注。有关 MNP 对园艺作物影响的研究很少。具体来说,MNPs 是否能被葡萄藤吸收和迁移的研究还没有报道。为了填补这一空白,我们在水培环境中添加了聚苯乙烯纳米塑料(PS-NPs,100 nm),并观察了它们在汤普森无籽葡萄(TS,Vitis vinifera L.)幼苗中的分布情况。接触 15 天后,使用共聚焦显微镜和扫描电子显微镜在根、茎和叶的细胞壁上检测到了塑料纳米球。这表明 PS-NPs 也能通过葡萄树的表皮-皮层界面被根系吸收,并沿着木质部导管向上运输。此外,我们还分析了 TS 葡萄对 PS-NPs 的分子反应机制。通过测量相关指标并结合全局分析,我们发现植物激素信号转导、类黄酮和黄酮醇的生物合成、苯丙类化合物的生物合成以及 MAPK 信号通路的生物合成在其对 PS-NPs 的响应中发挥了关键作用。研究结果不仅揭示了 MNPs 被葡萄树吸收并最终进入食物链的潜在风险,还为植物健康和生态风险评估提供了宝贵的科学证据和数据。
{"title":"Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics.","authors":"Songlin Zhang, Fuchun Zhang, Lu Cai, Na Xu, Chuan Zhang, Vivek Yadav, Xiaoming Zhou, Xinyu Wu, Haixia Zhong","doi":"10.1016/j.jhazmat.2024.135550","DOIUrl":"10.1016/j.jhazmat.2024.135550","url":null,"abstract":"<p><p>Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis. 可的松对斑马鱼(Danio rerio)的影响:洞察肠道微生物群相互作用以及 DNA 损伤和细胞凋亡的分子机制。
Pub Date : 2024-10-05 Epub Date: 2024-08-20 DOI: 10.1016/j.jhazmat.2024.135576
Jiefeng Tan, Lihua Yang, Meixin Ye, Yuxin Geng, Yanfang Guo, Hong Zou, Liping Hou

Cortisone can enter aquatic ecosystems and pose a risk to organisms therein. However, few studies have explored the effects of cortisone on the gut microbiota of aquatic organisms. Here, we exposed zebrafish (Danio rerio) to cortisone at environmentally relevant concentrations (5.0, 50.0, or 500.0 ng L-1) for 60 days to explore its toxicological effects and their association with gut microbiota changes. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay revealed that exposure to 50 ng L-1 cortisone significantly increased the intestinal cell apoptosis rate, 8-hydroxydeoxyguanosine contents, and caspase-3 and caspase-8 activities. Moreover, the transcriptome analysis results demonstrated a notable downregulation in the expression of most differentially expressed genes associated with apoptosis pathways, as well as changes in DNA replication, oxidative stress, and drug metabolism pathways; these results indicated the occurrence of cortisone-induced stress response in zebrafish. Molecular docking analysis revealed that cortisone can bind to caspase-3 through hydrogen bonds and hydrophobic interactions but that no such interactions occur between cortisone and caspase-8. Thus, cortisone may induce oxidative DNA damage and apoptosis by activating caspase-3. Finally, the 16S rRNA sequencing results demonstrated that cortisone significantly affected microbial community structures and functions in the intestinal ecosystem. These changes may indicate gut microbiota response to cortisone-induced intestinal damage and inflammation. In conclusion, the current results clarify the mechanisms underlying intestinal response to cortisone exposure and provide a basis for evaluating the health risks of cortisone in animals.

可的松可进入水生生态系统并对其中的生物造成危害。然而,很少有研究探讨可的松对水生生物肠道微生物群的影响。在此,我们将斑马鱼(Danio rerio)暴露于环境相关浓度(5.0、50.0 或 500.0 ng L-1)的可的松中 60 天,以探讨其毒性效应及其与肠道微生物群变化的关联。末端脱氧核苷酸转移酶介导的dUTP-生物素缺口端标记实验显示,暴露于50 ng L-1可的松可显著增加肠道细胞凋亡率、8-羟基脱氧鸟苷含量以及caspase-3和caspase-8活性。此外,转录组分析结果表明,与细胞凋亡通路相关的大多数差异表达基因的表达明显下调,DNA 复制、氧化应激和药物代谢通路也发生了变化;这些结果表明斑马鱼发生了可的松诱导的应激反应。分子对接分析表明,可的松能通过氢键和疏水作用与caspase-3结合,但可的松与caspase-8之间没有这种作用。因此,可的松可能通过激活 caspase-3 来诱导 DNA 氧化损伤和细胞凋亡。最后,16S rRNA 测序结果表明,可的松对肠道生态系统中的微生物群落结构和功能有显著影响。这些变化可能表明肠道微生物群对可的松诱导的肠道损伤和炎症的反应。总之,目前的研究结果阐明了肠道对可的松暴露的反应机制,并为评估可的松对动物的健康风险提供了依据。
{"title":"Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis.","authors":"Jiefeng Tan, Lihua Yang, Meixin Ye, Yuxin Geng, Yanfang Guo, Hong Zou, Liping Hou","doi":"10.1016/j.jhazmat.2024.135576","DOIUrl":"10.1016/j.jhazmat.2024.135576","url":null,"abstract":"<p><p>Cortisone can enter aquatic ecosystems and pose a risk to organisms therein. However, few studies have explored the effects of cortisone on the gut microbiota of aquatic organisms. Here, we exposed zebrafish (Danio rerio) to cortisone at environmentally relevant concentrations (5.0, 50.0, or 500.0 ng L<sup>-1</sup>) for 60 days to explore its toxicological effects and their association with gut microbiota changes. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay revealed that exposure to 50 ng L<sup>-1</sup> cortisone significantly increased the intestinal cell apoptosis rate, 8-hydroxydeoxyguanosine contents, and caspase-3 and caspase-8 activities. Moreover, the transcriptome analysis results demonstrated a notable downregulation in the expression of most differentially expressed genes associated with apoptosis pathways, as well as changes in DNA replication, oxidative stress, and drug metabolism pathways; these results indicated the occurrence of cortisone-induced stress response in zebrafish. Molecular docking analysis revealed that cortisone can bind to caspase-3 through hydrogen bonds and hydrophobic interactions but that no such interactions occur between cortisone and caspase-8. Thus, cortisone may induce oxidative DNA damage and apoptosis by activating caspase-3. Finally, the 16S rRNA sequencing results demonstrated that cortisone significantly affected microbial community structures and functions in the intestinal ecosystem. These changes may indicate gut microbiota response to cortisone-induced intestinal damage and inflammation. In conclusion, the current results clarify the mechanisms underlying intestinal response to cortisone exposure and provide a basis for evaluating the health risks of cortisone in animals.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for sustainably reducing secondary pollutants in a typical industrial city in China: Co-benefit from controlling sources with high reduction potential beyond industrial process. 中国典型工业城市可持续减少二次污染物的证据:控制工业过程之外的高减排潜力源的共同效益。
Pub Date : 2024-10-05 Epub Date: 2024-08-21 DOI: 10.1016/j.jhazmat.2024.135556
Yueyuan Niu, Yulong Yan, Jiaqi Dong, Ke Yue, Xiaolin Duan, Dongmei Hu, Junjie Li, Lin Peng

Under China's strict industrial control measures, the reduction of secondary pollutants (O3 and secondary organic aerosols [SOA]) and precursors (volatile organic compounds [VOCs] and NOx) caused by industrial processes has encountered bottlenecks. In this study, the net O3 formation rate (Net [O3]) in summer and the self-reaction rate between peroxy radicals (Self-Rnxs) in winter are used to characterize the formation potentials of O3 and SOA, respectively. Assuming that the precursor reduction ratio based on emission inventories is approximately equal to that based on observed concentrations, this study combines emission inventory and observation-based model (OBM) methods to indicate the potential source of secondary pollutants reduction. The findings show that strict control measures implemented by local governments, particularly those targeting industrial processes and fossil fuel combustion, are effective in reducing VOCs and NOx emissions during summer, and the two sources result in 3.8 % and 5.3 % decrease in the Net (O3), respectively. Similarly, control measures focusing on industrial processes help to significantly reduce VOCs emissions during winter, resulting in an 8.0 % decrease in Self-Rnxs. However, current measures for industrial processes are stringent and have little potential for further reduction. Therefore, additional sources with higher reduction potentials beyond industrial processes should be subject to stringent controls in industrial cities. Given the limited emission reduction potential associated with industrial processes, this study provides perspectives for sustained reduction of secondary pollutants in industrial cities.

在中国严格的工业控制措施下,工业生产过程中产生的二次污染物(O3 和二次有机气溶胶 [SOA])和前体物质(挥发性有机化合物 [VOCs] 和氮氧化物 [NOx])的减排遇到了瓶颈。本研究利用夏季的净 O3 形成率(Net [O3])和冬季过氧自由基之间的自反应速率(Self-Rnxs)来分别描述 O3 和 SOA 的形成潜力。假定基于排放清单的前体削减率与基于观测浓度的前体削减率大致相等,本研究结合排放清单和基于观测的模型(OBM)方法来指出二次污染物削减的潜在来源。研究结果表明,地方政府实施的严格控制措施,尤其是针对工业生产过程和化石燃料燃烧的控制措施,能够有效减少夏季挥发性有机物和氮氧化物的排放,这两个来源分别导致净(O3)浓度下降 3.8% 和 5.3%。同样,以工业流程为重点的控制措施也有助于大幅减少冬季的 VOCs 排放,从而使自净排放(Self-Rnxs)减少 8.0%。然而,目前针对工业流程的措施非常严格,进一步减排的潜力很小。因此,在工业城市中,除了工业流程之外,其他减排潜力更大的排放源也应受到严格控制。鉴于与工业流程相关的减排潜力有限,本研究为工业城市持续减少二次污染物提供了前景。
{"title":"Evidence for sustainably reducing secondary pollutants in a typical industrial city in China: Co-benefit from controlling sources with high reduction potential beyond industrial process.","authors":"Yueyuan Niu, Yulong Yan, Jiaqi Dong, Ke Yue, Xiaolin Duan, Dongmei Hu, Junjie Li, Lin Peng","doi":"10.1016/j.jhazmat.2024.135556","DOIUrl":"10.1016/j.jhazmat.2024.135556","url":null,"abstract":"<p><p>Under China's strict industrial control measures, the reduction of secondary pollutants (O<sub>3</sub> and secondary organic aerosols [SOA]) and precursors (volatile organic compounds [VOCs] and NOx) caused by industrial processes has encountered bottlenecks. In this study, the net O<sub>3</sub> formation rate (Net [O<sub>3</sub>]) in summer and the self-reaction rate between peroxy radicals (Self-Rnxs) in winter are used to characterize the formation potentials of O<sub>3</sub> and SOA, respectively. Assuming that the precursor reduction ratio based on emission inventories is approximately equal to that based on observed concentrations, this study combines emission inventory and observation-based model (OBM) methods to indicate the potential source of secondary pollutants reduction. The findings show that strict control measures implemented by local governments, particularly those targeting industrial processes and fossil fuel combustion, are effective in reducing VOCs and NOx emissions during summer, and the two sources result in 3.8 % and 5.3 % decrease in the Net (O<sub>3</sub>), respectively. Similarly, control measures focusing on industrial processes help to significantly reduce VOCs emissions during winter, resulting in an 8.0 % decrease in Self-Rnxs. However, current measures for industrial processes are stringent and have little potential for further reduction. Therefore, additional sources with higher reduction potentials beyond industrial processes should be subject to stringent controls in industrial cities. Given the limited emission reduction potential associated with industrial processes, this study provides perspectives for sustained reduction of secondary pollutants in industrial cities.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of hazardous materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1