首页 > 最新文献

Brain-X最新文献

英文 中文
Promoting the welfare of animals utilized in neuroscience research 促进神经科学研究中使用的动物的福利
Pub Date : 2024-10-19 DOI: 10.1002/brx2.70002
Tianshuo Zhang, NianNian Zhang, Ruoqing Feng, Hao Wang, Fangfang Bi, Shuangqing Wang

The safeguarding of animal welfare holds a deep-rooted history within public institutions and legislative structures, with the objective of enhancing the comfort and overall wellbeing of animals throughout the entire experimental process. It is paramount to harmonize the enhancement of animal welfare with medical research practices, as this is pivotal in mitigating factors that impede modeling precision and prioritizing their welfare. This commitment has nurtured innovation in advanced experimental methodologies and welfare evaluation techniques. The classic 3Rs principle-replacement, reduction, and refinement-serves as a fundamental cornerstone for advancing the welfare of model animals. The establishment of appropriate metrics for animal welfare, rooted in the 3Rs principle, will propel progress in related fields. This review delves into the evolution of animal ethics and the 3R principles, alongside strategies to elevate the welfare of various model animals utilized in neuroscience, encompassing non-human primates, rodents, zebrafish, and other species. The aim of this review is to clarify the notion of welfare in this context and to evaluate the merits and constraints of utilizing model animals in neuroscience research. This, in essence, may contribute to bolstering animal protection and standardizing their use in research endeavors. Additionally, the pursuit of novel modeling methodologies is imperative to provide superior alternatives for neuroscience research.

保障动物福利在公共机构和立法结构中有着根深蒂固的历史,其目的是在整个实验过程中提高动物的舒适度和整体福利。将提高动物福利与医学研究实践相协调是至关重要的,因为这对于减少阻碍建模精确性的因素和优先考虑动物福利至关重要。这一承诺促进了先进实验方法和动物福利评估技术的创新。经典的 3R 原则--替换、减少和改进--是提高模型动物福利的基石。根据 3R 原则建立适当的动物福利衡量标准,将推动相关领域的进步。本综述深入探讨了动物伦理和 3R 原则的演变,以及提高神经科学中使用的各种模式动物(包括非人灵长类动物、啮齿动物、斑马鱼和其他物种)福利的策略。本综述旨在澄清这方面的福利概念,并评估在神经科学研究中使用模式动物的优点和限制因素。从本质上讲,这有助于加强动物保护和规范研究工作中的动物使用。此外,为了给神经科学研究提供更优越的替代方法,寻求新的建模方法势在必行。
{"title":"Promoting the welfare of animals utilized in neuroscience research","authors":"Tianshuo Zhang,&nbsp;NianNian Zhang,&nbsp;Ruoqing Feng,&nbsp;Hao Wang,&nbsp;Fangfang Bi,&nbsp;Shuangqing Wang","doi":"10.1002/brx2.70002","DOIUrl":"https://doi.org/10.1002/brx2.70002","url":null,"abstract":"<p>The safeguarding of animal welfare holds a deep-rooted history within public institutions and legislative structures, with the objective of enhancing the comfort and overall wellbeing of animals throughout the entire experimental process. It is paramount to harmonize the enhancement of animal welfare with medical research practices, as this is pivotal in mitigating factors that impede modeling precision and prioritizing their welfare. This commitment has nurtured innovation in advanced experimental methodologies and welfare evaluation techniques. The classic 3Rs principle-replacement, reduction, and refinement-serves as a fundamental cornerstone for advancing the welfare of model animals. The establishment of appropriate metrics for animal welfare, rooted in the 3Rs principle, will propel progress in related fields. This review delves into the evolution of animal ethics and the 3R principles, alongside strategies to elevate the welfare of various model animals utilized in neuroscience, encompassing non-human primates, rodents, zebrafish, and other species. The aim of this review is to clarify the notion of welfare in this context and to evaluate the merits and constraints of utilizing model animals in neuroscience research. This, in essence, may contribute to bolstering animal protection and standardizing their use in research endeavors. Additionally, the pursuit of novel modeling methodologies is imperative to provide superior alternatives for neuroscience research.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome-gut-brain axis as a novel hotspot in depression 微生物组-肠-脑轴是抑郁症的一个新热点
Pub Date : 2024-10-19 DOI: 10.1002/brx2.43
Yue Ma, Peng Xu, ZhenJun Bai, JiLiang Fang

As a prevalent psychiatric disorder, the etiology of depression remains largely elusive, necessitating further investigation into its pathophysiological underpinnings. Notably, the comorbidity of depression with other mental health conditions and chronic diseases often presents alongside gastrointestinal symptoms. Research on the microbiome-gut-brain axis (MGBA) has emerged as a promising avenue for elucidating the pathophysiology of depression. In this study, bibliometric analysis tools, including HistCite, VOSviewer, CiteSpace, and the bibliometrix R package, were employed to comprehensively explore the MGBA-depression connection. A comprehensive survey identified 980 relevant publications concerning the MGBA-depression relationship, with a significant increase in research output observed since 2014. This analysis pinpointed five key factors within the MGBA-depression domain: cytokines, maternal separation, neuroinflammation, probiotics, and the vagus nerve. The insights presented herein offer valuable perspectives on prevailing research models that investigate the intricate interplay among the microbiome, gastrointestinal system, and brain within the context of depression. Based on these findings, future investigations should prioritize developing microbial-based interventions and innovative therapeutic modalities aimed at alleviating depression. By leveraging interdisciplinary collaboration and enhancing our understanding of MGBA–depression connections, we can pave pathways toward more effective treatments. Furthermore, improving outcomes for individuals with depression may be achieved by deepening our comprehension of the complex relationships between depression itself, the gut-brain axis, and gastrointestinal microbiota.

作为一种常见的精神疾病,抑郁症的病因在很大程度上仍然难以捉摸,因此有必要进一步研究其病理生理基础。值得注意的是,抑郁症与其他精神疾病和慢性疾病的并发症往往与胃肠道症状同时出现。对微生物组-肠-脑轴(MGBA)的研究已成为阐明抑郁症病理生理学的一个很有前景的途径。本研究采用了文献计量分析工具,包括HistCite、VOSviewer、CiteSpace和bibliometrix R软件包,以全面探讨MGBA与抑郁症的联系。通过全面调查,发现了980篇有关MGBA与抑郁症关系的相关论文,并观察到自2014年以来研究成果显著增加。这项分析确定了MGBA-抑郁领域的五个关键因素:细胞因子、母体分离、神经炎症、益生菌和迷走神经。本文提出的见解为研究抑郁症背景下微生物组、胃肠道系统和大脑之间错综复杂的相互作用的现有研究模型提供了宝贵的视角。基于这些发现,未来的研究应优先开发基于微生物的干预措施和创新治疗模式,以缓解抑郁症。通过跨学科合作,加强我们对 MGBA 与抑郁症关系的了解,我们可以为更有效的治疗铺平道路。此外,通过加深对抑郁症本身、肠道-大脑轴和胃肠道微生物群之间复杂关系的理解,还可以改善抑郁症患者的治疗效果。
{"title":"Microbiome-gut-brain axis as a novel hotspot in depression","authors":"Yue Ma,&nbsp;Peng Xu,&nbsp;ZhenJun Bai,&nbsp;JiLiang Fang","doi":"10.1002/brx2.43","DOIUrl":"https://doi.org/10.1002/brx2.43","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>As a prevalent psychiatric disorder, the etiology of depression remains largely elusive, necessitating further investigation into its pathophysiological underpinnings. Notably, the comorbidity of depression with other mental health conditions and chronic diseases often presents alongside gastrointestinal symptoms. Research on the microbiome-gut-brain axis (MGBA) has emerged as a promising avenue for elucidating the pathophysiology of depression. In this study, bibliometric analysis tools, including HistCite, VOSviewer, CiteSpace, and the bibliometrix <i>R</i> package, were employed to comprehensively explore the MGBA-depression connection. A comprehensive survey identified 980 relevant publications concerning the MGBA-depression relationship, with a significant increase in research output observed since 2014. This analysis pinpointed five key factors within the MGBA-depression domain: cytokines, maternal separation, neuroinflammation, probiotics, and the vagus nerve. The insights presented herein offer valuable perspectives on prevailing research models that investigate the intricate interplay among the microbiome, gastrointestinal system, and brain within the context of depression. Based on these findings, future investigations should prioritize developing microbial-based interventions and innovative therapeutic modalities aimed at alleviating depression. By leveraging interdisciplinary collaboration and enhancing our understanding of MGBA–depression connections, we can pave pathways toward more effective treatments. Furthermore, improving outcomes for individuals with depression may be achieved by deepening our comprehension of the complex relationships between depression itself, the gut-brain axis, and gastrointestinal microbiota.</p>\u0000 </section>\u0000 </div>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.43","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Posttranslational modifications in retinal degeneration diseases: An update on the molecular basis and treatment 视网膜变性疾病中的翻译后修饰:分子基础和治疗的最新进展
Pub Date : 2024-10-15 DOI: 10.1002/brx2.70005
Ke Yao, Qianxue Mou, Zhen Jiang, Yin Zhao

Noninherited diseases and age-associated vision loss are often associated with retinal degeneration. The retina is a postmitotic neural tissue lacking endogenous regeneration capacity. Therefore, understanding the mechanism of retinal degeneration in diseases is pivotal. Posttranslational modifications (PTMs) determine protein function during physiological and pathological processes, including signal transduction, protein localization, and protein activation. Advanced detection technologies have revealed over 400 different PTMs including acetylation, methylation, phosphorylation, ubiquitination and SUMOylation. Here, we discuss PTMs in retinal degeneration diseases to aid in our understanding of their molecular basis and suggest potential future clinical treatment.

非遗传性疾病和老年性视力丧失通常与视网膜变性有关。视网膜是一种后凋亡神经组织,缺乏内源性再生能力。因此,了解疾病导致视网膜退化的机制至关重要。翻译后修饰(PTM)决定了蛋白质在生理和病理过程中的功能,包括信号转导、蛋白质定位和蛋白质活化。先进的检测技术已经发现了 400 多种不同的 PTM,包括乙酰化、甲基化、磷酸化、泛素化和 SUMOylation。在此,我们将讨论视网膜变性疾病中的 PTMs,以帮助我们了解这些疾病的分子基础,并为未来潜在的临床治疗提供建议。
{"title":"Posttranslational modifications in retinal degeneration diseases: An update on the molecular basis and treatment","authors":"Ke Yao,&nbsp;Qianxue Mou,&nbsp;Zhen Jiang,&nbsp;Yin Zhao","doi":"10.1002/brx2.70005","DOIUrl":"https://doi.org/10.1002/brx2.70005","url":null,"abstract":"<p>Noninherited diseases and age-associated vision loss are often associated with retinal degeneration. The retina is a postmitotic neural tissue lacking endogenous regeneration capacity. Therefore, understanding the mechanism of retinal degeneration in diseases is pivotal. Posttranslational modifications (PTMs) determine protein function during physiological and pathological processes, including signal transduction, protein localization, and protein activation. Advanced detection technologies have revealed over 400 different PTMs including acetylation, methylation, phosphorylation, ubiquitination and SUMOylation. Here, we discuss PTMs in retinal degeneration diseases to aid in our understanding of their molecular basis and suggest potential future clinical treatment.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel neuronal circuit: Tanycytes mediate defensive metabolic responses following acute high-temperature exposure 新型神经元回路:澹细胞介导急性高温暴露后的防御性代谢反应
Pub Date : 2024-10-08 DOI: 10.1002/brx2.70003
Qi Chen, Anke Brüning-Richardson, Ruoli Chen, Shuang Zou, Yu-Long Lan

A schematic diagram of a proposed neural circuit for high temperature-induced feeding inhibition. Acute high temperature exposure activates excitatory neurons in the parabrachial nucleus brain area, promotes the release of vascular endothelial growth factor A from tanycytes, and acts on agouti-related protein neurons in the ARC brain area to inhibit feeding behavior.

高温诱导摄食抑制的神经回路示意图。急性高温暴露会激活胫旁核脑区的兴奋性神经元,促进澹细胞释放血管内皮生长因子 A,并作用于 ARC 脑区的激动相关蛋白神经元,从而抑制摄食行为。
{"title":"A novel neuronal circuit: Tanycytes mediate defensive metabolic responses following acute high-temperature exposure","authors":"Qi Chen,&nbsp;Anke Brüning-Richardson,&nbsp;Ruoli Chen,&nbsp;Shuang Zou,&nbsp;Yu-Long Lan","doi":"10.1002/brx2.70003","DOIUrl":"https://doi.org/10.1002/brx2.70003","url":null,"abstract":"<p>A schematic diagram of a proposed neural circuit for high temperature-induced feeding inhibition. Acute high temperature exposure activates excitatory neurons in the parabrachial nucleus brain area, promotes the release of vascular endothelial growth factor A from tanycytes, and acts on agouti-related protein neurons in the ARC brain area to inhibit feeding behavior.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstructing continuous language from brain signals measured by fMRI based brain-computer interface 从基于 fMRI 的脑机接口测量到的大脑信号中重建连续语言
Pub Date : 2024-10-08 DOI: 10.1002/brx2.70001
Shurui Li, Yuanning Li, Ru-Yuan Zhang
<p>Brain-computer interfaces (BCIs) are designed to bridge the gap between human neural activity and external devices. Previous studies have shown that speech and text can be decoded from signals recorded from intracranial electrodes.<span><sup>1</sup></span> Such applications can be used to develop neuroprostheses to restore speech function in patients with brain and psychiatric disorders.<span><sup>2</sup></span> These methods largely rely on invasive intracranial neural recordings that provide signals with high spatiotemporal resolution and high signal-to-noise ratio. Despite the advantage of being non-invasive, low temporal resolution means functional magnetic resonance imaging (fMRI) has rarely been used in this context to decode continuous speech, with its application primarily limited to coarse classification tasks.<span><sup>3</sup></span></p><p>Despite this, fMRI-based neural encoding models have seen great progress in the last decade. For example, voxel-wise neural responses to continuous natural speech can be predicted using feature embeddings extracted from language models.<span><sup>4</sup></span> To reconstruct continuous speech from fMRI, three obstacles must be overcome. First, the brain's semantic representation regions are not clearly defined—previous research suggests a distributed network across various brain areas. Second, due to its temporal sluggishness, a single fMRI time point captures information from multiple preceding words within a 6–10-s window. Third, constraining the semantic space in language construction is challenging, as existing fMRI data capture only a fraction of the real semantic richness.</p><p>In a recently published study,<span><sup>5</sup></span> Tang and colleagues propose a Bayesian method to decode continuous language from brain responses measured by fMRI. Unlike previous attempts to decode semantic vectors (<i>S</i>) directly from brain responses (<i>R</i>), this study used brain responses as a control condition for language generation models. The goal was to invert the encoding model to identify the most appropriate stimulus. According to Bayesian theory, the decoder estimates the posterior distribution <i>P</i>(<i>S</i>|<i>R</i>) and finds the stimuli <i>S</i> that maximizes the posterior distribution given the neural response <i>R</i>. Instead of directly building decoders that estimate <i>P</i>(<i>S</i>|<i>R</i>), which is usually intractable due to the aforementioned difficulties, the authors took advantage of the Bayesian decoding framework that <i>P</i>(<i>S</i>|<i>R</i>) ∝ <i>P</i>(<i>S</i>)<i>P</i>(<i>R</i>|<i>S</i>) and focused instead on the encoding model <i>P</i>(<i>R</i>|<i>S</i>).</p><p>This work successfully overcame the three main barriers to fMRI-based language decoding. First, to localize the brain voxels containing semantic information, encoding performance was used as a metric to select voxels for decoding. Second, to deal with the temporal sluggishness of blood oxygen level-dep
我们看到了未来 BCIs 的几个大有可为的发展方向。首先,更安全、便携和耐用的侵入式BCIs可以帮助成千上万的神经系统疾病患者表达自己的想法。其次,成本更低、体积更小的非侵入式 BCI 可能会应用于临床和娱乐,例如在元宇宙中。最后,提高无创生物识别技术的时间分辨率也至关重要。例如,结合脑电图或脑磁图数据可以弥补 fMRI 的低时间分辨率。有了更高的时间分辨率,解码器就可以利用语义和感觉运动信息来提高重建的准确性。李远宁:构思;经费获取;调查;资源;监督;验证;可视化;写作-审阅和编辑。张如元构思;形式分析;资金获取;项目管理;资源;监督;验证;可视化;撰写-原稿;撰写-审阅和编辑。
{"title":"Reconstructing continuous language from brain signals measured by fMRI based brain-computer interface","authors":"Shurui Li,&nbsp;Yuanning Li,&nbsp;Ru-Yuan Zhang","doi":"10.1002/brx2.70001","DOIUrl":"https://doi.org/10.1002/brx2.70001","url":null,"abstract":"&lt;p&gt;Brain-computer interfaces (BCIs) are designed to bridge the gap between human neural activity and external devices. Previous studies have shown that speech and text can be decoded from signals recorded from intracranial electrodes.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Such applications can be used to develop neuroprostheses to restore speech function in patients with brain and psychiatric disorders.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; These methods largely rely on invasive intracranial neural recordings that provide signals with high spatiotemporal resolution and high signal-to-noise ratio. Despite the advantage of being non-invasive, low temporal resolution means functional magnetic resonance imaging (fMRI) has rarely been used in this context to decode continuous speech, with its application primarily limited to coarse classification tasks.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;Despite this, fMRI-based neural encoding models have seen great progress in the last decade. For example, voxel-wise neural responses to continuous natural speech can be predicted using feature embeddings extracted from language models.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; To reconstruct continuous speech from fMRI, three obstacles must be overcome. First, the brain's semantic representation regions are not clearly defined—previous research suggests a distributed network across various brain areas. Second, due to its temporal sluggishness, a single fMRI time point captures information from multiple preceding words within a 6–10-s window. Third, constraining the semantic space in language construction is challenging, as existing fMRI data capture only a fraction of the real semantic richness.&lt;/p&gt;&lt;p&gt;In a recently published study,&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; Tang and colleagues propose a Bayesian method to decode continuous language from brain responses measured by fMRI. Unlike previous attempts to decode semantic vectors (&lt;i&gt;S&lt;/i&gt;) directly from brain responses (&lt;i&gt;R&lt;/i&gt;), this study used brain responses as a control condition for language generation models. The goal was to invert the encoding model to identify the most appropriate stimulus. According to Bayesian theory, the decoder estimates the posterior distribution &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;S&lt;/i&gt;|&lt;i&gt;R&lt;/i&gt;) and finds the stimuli &lt;i&gt;S&lt;/i&gt; that maximizes the posterior distribution given the neural response &lt;i&gt;R&lt;/i&gt;. Instead of directly building decoders that estimate &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;S&lt;/i&gt;|&lt;i&gt;R&lt;/i&gt;), which is usually intractable due to the aforementioned difficulties, the authors took advantage of the Bayesian decoding framework that &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;S&lt;/i&gt;|&lt;i&gt;R&lt;/i&gt;) ∝ &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;S&lt;/i&gt;)&lt;i&gt;P&lt;/i&gt;(&lt;i&gt;R&lt;/i&gt;|&lt;i&gt;S&lt;/i&gt;) and focused instead on the encoding model &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;R&lt;/i&gt;|&lt;i&gt;S&lt;/i&gt;).&lt;/p&gt;&lt;p&gt;This work successfully overcame the three main barriers to fMRI-based language decoding. First, to localize the brain voxels containing semantic information, encoding performance was used as a metric to select voxels for decoding. Second, to deal with the temporal sluggishness of blood oxygen level-dep","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review on investigating major depressive disorder and bipolar disorder using MRI and genetic data from 2018 to 2024 2018年至2024年利用核磁共振成像和基因数据研究重度抑郁障碍和双相情感障碍的系统综述
Pub Date : 2024-09-17 DOI: 10.1002/brx2.70000
Kai Sun, Xin Wang, Guifei Zhou, Wenchao Lv, Rujia Song, Wei Wei, Zhenyu Liu, Changbin Yu

The incidence of affective disorders, of which major depression disorder (MDD) and bipolar disorder (BD) are two main types, has increased rapidly in recent years. They significantly impact patients, their families, and society. However, while affective disorders have become a major issue worldwide, their pathogenesis remains unclear. In the last 6 years, research using magnetic resonance imaging (MRI) and genetic data has gained prominence in understanding their pathophysiology and etiology. This systematic review collected the studies of MDD and BD research published between January 1, 2018, and February 1, 2024, focusing on studies using MRI and genetic data and indexed in the Web of Science and PubMed database. It aims to investigate the similarities and differences in their imaging phenotypes and underlying molecular bases. After exclusions, a total of 80 articles were included in this review. Research on MDD and BD reveals the critical role of epigenetic modifications, such as DNA methylation, in brain structure and function changes. The genes and pathways implicated in MDD are directly associated with depressive symptoms. In contrast, those implicated in BD are associated with mood regulation and cognitive functions. In addition, functional imaging studies have revealed that abnormalities in MDD are frequently concentrated in regions involved in emotion regulation and stress response. In contrast, those in BD are frequently concentrated in the neural circuits related to reward processing and emotional stability. Further multimodal and multiscale studies are needed to advance the field of mood disorder research.

近年来,情感障碍的发病率迅速上升,重度抑郁障碍(MDD)和双相情感障碍(BD)是其中的两大主要类型。它们对患者、患者家庭和社会都造成了重大影响。然而,虽然情感障碍已成为世界性的重大问题,但其发病机制仍不清楚。在过去的 6 年中,利用磁共振成像(MRI)和遗传学数据进行的研究在了解其病理生理学和病因学方面取得了显著进展。本系统性综述收集了2018年1月1日至2024年2月1日期间发表的MDD和BD研究,重点关注使用磁共振成像和遗传数据的研究,并在Web of Science和PubMed数据库中进行了索引。其目的是研究它们的影像表型和潜在分子基础的异同。经过排除,本综述共收录了 80 篇文章。对 MDD 和 BD 的研究揭示了 DNA 甲基化等表观遗传修饰在大脑结构和功能变化中的关键作用。与 MDD 有关的基因和通路与抑郁症状直接相关。相比之下,与 BD 相关的基因则与情绪调节和认知功能有关。此外,功能成像研究显示,多发性抑郁症患者的异常经常集中在情绪调节和压力反应区域。与此相反,BD 患者的异常经常集中在与奖赏处理和情绪稳定相关的神经回路中。要推进情绪障碍研究领域的发展,还需要进一步开展多模态和多尺度研究。
{"title":"A systematic review on investigating major depressive disorder and bipolar disorder using MRI and genetic data from 2018 to 2024","authors":"Kai Sun,&nbsp;Xin Wang,&nbsp;Guifei Zhou,&nbsp;Wenchao Lv,&nbsp;Rujia Song,&nbsp;Wei Wei,&nbsp;Zhenyu Liu,&nbsp;Changbin Yu","doi":"10.1002/brx2.70000","DOIUrl":"https://doi.org/10.1002/brx2.70000","url":null,"abstract":"<p>The incidence of affective disorders, of which major depression disorder (MDD) and bipolar disorder (BD) are two main types, has increased rapidly in recent years. They significantly impact patients, their families, and society. However, while affective disorders have become a major issue worldwide, their pathogenesis remains unclear. In the last 6 years, research using magnetic resonance imaging (MRI) and genetic data has gained prominence in understanding their pathophysiology and etiology. This systematic review collected the studies of MDD and BD research published between January 1, 2018, and February 1, 2024, focusing on studies using MRI and genetic data and indexed in the Web of Science and PubMed database. It aims to investigate the similarities and differences in their imaging phenotypes and underlying molecular bases. After exclusions, a total of 80 articles were included in this review. Research on MDD and BD reveals the critical role of epigenetic modifications, such as DNA methylation, in brain structure and function changes. The genes and pathways implicated in MDD are directly associated with depressive symptoms. In contrast, those implicated in BD are associated with mood regulation and cognitive functions. In addition, functional imaging studies have revealed that abnormalities in MDD are frequently concentrated in regions involved in emotion regulation and stress response. In contrast, those in BD are frequently concentrated in the neural circuits related to reward processing and emotional stability. Further multimodal and multiscale studies are needed to advance the field of mood disorder research.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Music therapy for depression: A narrative review 音乐治疗抑郁症:叙述性综述
Pub Date : 2024-08-17 DOI: 10.1002/brx2.72
Xiaoman Wang, Wei Huang, Shuibin Liu, Chunhua He, Heng Wu, Lianglun Cheng, Songqing Deng

As living standards improve, mental and physical health have been gaining increasing attention. Presently, depression is one of the most severe mental health issues. Depression affects the quality of life of affected individuals because it lasts for a very long time and is generally difficult to cure. Currently, pharmacotherapy and psychotherapy are the two main approaches for treating depression. However, some principles and characteristics of pharmacotherapy remain unclear, and its side effects are significant and noticeable. In addition, ordinary psychotherapy requires the assistance of a qualified psychotherapist, which is usually hard to find and expensive. Both methods are burdensome to the patients, making it difficult for them to benefit. As an easy-to-obtain therapy, music therapy has been recommended by physicians as an auxiliary therapy for various diseases to regulate patients' emotions and help the primary treatment methods to obtain better therapeutic effects. This review investigates and summarizes recent articles on the pathogenesis of depression and the effects of music therapy on depression. Its results show that music therapy is effective and available. However, a systematic treatment plan has not yet been formulated due to the lack of samples and short follow-up times. Future studies should include more samples and follow-up patients after the treatment period to address the continuous effect and principle of music therapy.

随着生活水平的提高,身心健康越来越受到人们的关注。目前,抑郁症是最严重的精神健康问题之一。抑郁症影响患者的生活质量,因为它持续时间长,一般很难治愈。目前,药物疗法和心理疗法是治疗抑郁症的两种主要方法。然而,药物治疗的一些原理和特点尚不明确,副作用大且明显。此外,普通的心理治疗需要合格的心理治疗师的帮助,而心理治疗师通常很难找到,而且价格昂贵。这两种方法都给患者造成了负担,使他们难以受益。音乐疗法作为一种简便易行的疗法,已被医生推荐作为各种疾病的辅助疗法,以调节患者的情绪,帮助主要治疗方法取得更好的治疗效果。本综述调查并总结了近期有关抑郁症发病机制和音乐疗法对抑郁症影响的文章。结果表明,音乐疗法是有效的,也是可用的。然而,由于样本缺乏和随访时间较短,尚未制定出系统的治疗方案。今后的研究应包括更多的样本和治疗期后的随访患者,以探讨音乐疗法的持续效果和原理。
{"title":"Music therapy for depression: A narrative review","authors":"Xiaoman Wang,&nbsp;Wei Huang,&nbsp;Shuibin Liu,&nbsp;Chunhua He,&nbsp;Heng Wu,&nbsp;Lianglun Cheng,&nbsp;Songqing Deng","doi":"10.1002/brx2.72","DOIUrl":"https://doi.org/10.1002/brx2.72","url":null,"abstract":"<p>As living standards improve, mental and physical health have been gaining increasing attention. Presently, depression is one of the most severe mental health issues. Depression affects the quality of life of affected individuals because it lasts for a very long time and is generally difficult to cure. Currently, pharmacotherapy and psychotherapy are the two main approaches for treating depression. However, some principles and characteristics of pharmacotherapy remain unclear, and its side effects are significant and noticeable. In addition, ordinary psychotherapy requires the assistance of a qualified psychotherapist, which is usually hard to find and expensive. Both methods are burdensome to the patients, making it difficult for them to benefit. As an easy-to-obtain therapy, music therapy has been recommended by physicians as an auxiliary therapy for various diseases to regulate patients' emotions and help the primary treatment methods to obtain better therapeutic effects. This review investigates and summarizes recent articles on the pathogenesis of depression and the effects of music therapy on depression. Its results show that music therapy is effective and available. However, a systematic treatment plan has not yet been formulated due to the lack of samples and short follow-up times. Future studies should include more samples and follow-up patients after the treatment period to address the continuous effect and principle of music therapy.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.72","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound-enabled delivery of drugs to the brain: Thinking outside the blood–brain barrier 通过超声波向大脑输送药物:突破血脑屏障
Pub Date : 2024-08-16 DOI: 10.1002/brx2.73
Zhenghong Gao

In a groundbreaking study, Rezai et al. unveiled a promising avenue for treating Alzheimer's disease (AD) using aducanumab and a cutting-edge delivery method1 (Figure 1A). The team employed magnetic resonance-guided focused ultrasound (MRgFUS) to transiently open the blood–brain barrier (BBB), facilitating the transport of the drug from the blood circulation to the brain tissue. This resulted in a remarkable reduction in amyloid deposition in the treated cerebral area in three human patients. The study counters the drug delivery barriers of the brain by demonstrating the potential efficacy of this innovative approach in treating Alzheimer's.

MRgFUS stands out as a pivotal modality in brain drug delivery; it offers distinctive advantages, particularly in achieving high spatiotemporal resolution. This technology selectively and reversibly opens the BBB, primarily through the paracellular pathway. This noninvasive methodology presents a compelling approach to increasing the brain parenchyma's permeability to drugs. One key feature lies in the capacity to engineer the volume, shape, and depth of the focal spot in the brain tissue. This engineered precision caters to the specific requirements of treating diverse neurological diseases. The adaptability and precision of MRgFUS open avenues for targeted and efficacious interventions in the intricate landscape of brain-related pathologies.

Beyond the anticipated benefits of enhanced aducanumab (an FDA-approved amyloid beta-directed human monoclonal antibody indicated to treat Alzheimer's disease) delivery to the brain, the study implicated the intricate dynamics of drug/toxic complex diffusion and clearance within the human brain parenchyma. Notably, although the scientific discussion around the benefits of aducanumab is ongoing, ultrasound waves not only facilitate BBB opening but also interact with the brain parenchyma beyond the BBB to induce multiple effects2, 3 that could account for the overall benefit (Figure 1B).

Considering the importance of the extracellular space (ECS), perivascular space (PVS), and cerebrospinal fluid flow dynamics in modulating drug diffusion, distribution, and waste clearance,4 several questions remain that require further investigation. First, does ultrasound expand the ECS? Second, does it impact the PVS? Third, can ultrasound enhance flow transport, improving the clearance of antibodies and degraded amyloid fragments? Fourth, how does ultrasound interact with brain cells (e.g., neurons, astrocytes, etc.)? Fifth, does any mechanical activation of the signaling pathway have an impact? Finally, how can the technology be translated and extended to increase the efficacy of other treatment modalities enabled by larger particles, such as antibody–drug conjugates, adeno-associated viruses, and lipid nanoparticles?

Some of these aspects have been studied in the preclinical animals' m

在一项开创性的研究中,Rezai 等人揭示了利用阿杜单抗和最先进的给药方法1 治疗阿尔茨海默病(AD)的前景(图 1A)。研究小组利用磁共振引导聚焦超声(MRgFUS)瞬时打开血脑屏障(BBB),促进药物从血液循环运输到脑组织。这使得三名人类患者接受治疗的脑区淀粉样蛋白沉积明显减少。这项研究打破了大脑的药物输送障碍,证明了这一创新方法在治疗阿尔茨海默氏症方面的潜在疗效。MRgFUS 是大脑药物输送的关键模式;它具有独特的优势,尤其是在实现高时空分辨率方面。该技术主要通过细胞旁通路选择性地、可逆地打开 BBB。这种无创方法为提高脑实质对药物的通透性提供了一种令人信服的方法。它的一个主要特点是能够设计脑组织中焦点的体积、形状和深度。这种工程设计的精确性满足了治疗各种神经系统疾病的特殊要求。MRgFUS的适应性和精确性为在错综复杂的脑相关病症中进行有针对性的有效干预开辟了道路。除了增强阿杜单抗(美国食品及药物管理局批准的淀粉样蛋白β定向人类单克隆抗体,用于治疗阿尔茨海默病)向大脑输送的预期益处外,该研究还涉及药物/毒性复合物在人脑实质内扩散和清除的复杂动态。值得注意的是,尽管围绕阿杜单抗益处的科学讨论仍在继续,但超声波不仅能促进BBB开放,还能与BBB以外的脑实质相互作用,诱发多种效应2、3,这可能是总体益处的原因(图1B)。考虑到细胞外空间(ECS)、血管周围空间(PVS)和脑脊液流动动力学在调节药物扩散、分布和废物清除方面的重要性4,仍有几个问题需要进一步研究。首先,超声是否会扩大 ECS?第二,超声是否会影响 PVS?第三,超声是否能增强血流传输,改善抗体和降解淀粉样蛋白片段的清除?第四,超声波如何与脑细胞(如神经元、星形胶质细胞等)相互作用?第五,机械激活信号通路是否会产生影响?最后,如何转化和扩展该技术,以提高由较大颗粒(如抗体-药物共轭物、腺相关病毒和脂质纳米颗粒)促成的其他治疗方式的疗效?其中一些方面已在临床前动物模式中进行了研究;例如,脉冲超声已被证明可扩大啮齿动物的 ECS 和 PVS。这些考虑因素将开辟一个新的领域,促使我们重新评估超声波对脑组织动力学的多方面影响,并阐明和改进向大脑的药物输送。拓展这一领域的知识将有助于治疗包括阿尔茨海默氏症在内的多种脑部疾病。值得注意的是,超声波照射的特点是持续 5-10 毫秒的短暂爆发。这些爆发每秒一次,总治疗时间约为 2 分钟。最重要的是,尽管照射时间很短,但超声波的峰值强度却非常高。总之,这一科学突破凸显了超声波介导的药物输送在阿尔茨海默氏症治疗中的革命性潜力。对这些超越 BBB 的机制的进一步探索有望完善治疗策略,并为该领域的变革性进步铺平道路:构思;数据整理;形式分析;资金获取;调查;方法论;项目管理;资源;验证;可视化;写作-原稿;写作-审稿&;编辑。
{"title":"Ultrasound-enabled delivery of drugs to the brain: Thinking outside the blood–brain barrier","authors":"Zhenghong Gao","doi":"10.1002/brx2.73","DOIUrl":"https://doi.org/10.1002/brx2.73","url":null,"abstract":"<p>In a groundbreaking study, Rezai et al. unveiled a promising avenue for treating Alzheimer's disease (AD) using aducanumab and a cutting-edge delivery method<span><sup>1</sup></span> (Figure 1A). The team employed magnetic resonance-guided focused ultrasound (MRgFUS) to transiently open the blood–brain barrier (BBB), facilitating the transport of the drug from the blood circulation to the brain tissue. This resulted in a remarkable reduction in amyloid deposition in the treated cerebral area in three human patients. The study counters the drug delivery barriers of the brain by demonstrating the potential efficacy of this innovative approach in treating Alzheimer's.</p><p>MRgFUS stands out as a pivotal modality in brain drug delivery; it offers distinctive advantages, particularly in achieving high spatiotemporal resolution. This technology selectively and reversibly opens the BBB, primarily through the paracellular pathway. This noninvasive methodology presents a compelling approach to increasing the brain parenchyma's permeability to drugs. One key feature lies in the capacity to engineer the volume, shape, and depth of the focal spot in the brain tissue. This engineered precision caters to the specific requirements of treating diverse neurological diseases. The adaptability and precision of MRgFUS open avenues for targeted and efficacious interventions in the intricate landscape of brain-related pathologies.</p><p>Beyond the anticipated benefits of enhanced aducanumab (an FDA-approved amyloid beta-directed human monoclonal antibody indicated to treat Alzheimer's disease) delivery to the brain, the study implicated the intricate dynamics of drug/toxic complex diffusion and clearance within the human brain parenchyma. Notably, although the scientific discussion around the benefits of aducanumab is ongoing, ultrasound waves not only facilitate BBB opening but also interact with the brain parenchyma beyond the BBB to induce multiple effects<span><sup>2, 3</sup></span> that could account for the overall benefit (Figure 1B).</p><p>Considering the importance of the extracellular space (ECS), perivascular space (PVS), and cerebrospinal fluid flow dynamics in modulating drug diffusion, distribution, and waste clearance,<span><sup>4</sup></span> several questions remain that require further investigation. First, does ultrasound expand the ECS? Second, does it impact the PVS? Third, can ultrasound enhance flow transport, improving the clearance of antibodies and degraded amyloid fragments? Fourth, how does ultrasound interact with brain cells (e.g., neurons, astrocytes, etc.)? Fifth, does any mechanical activation of the signaling pathway have an impact? Finally, how can the technology be translated and extended to increase the efficacy of other treatment modalities enabled by larger particles, such as antibody–drug conjugates, adeno-associated viruses, and lipid nanoparticles?</p><p>Some of these aspects have been studied in the preclinical animals' m","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.73","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral sensory nerve regeneration: Novel target in bone tissue engineering 外周感觉神经再生:骨组织工程的新目标
Pub Date : 2024-07-17 DOI: 10.1002/brx2.71
Lan Xiao, Jiaying Liu, Fuhua Yan, Yin Xiao

Synthetic biomaterials are emerging candidate solutions for treating large bone defects. However, the clinical performances of most synthetic materials are not satisfactory, with the need for improvement in design and synthesis. Although bone is highly innervated, the central role during healing of the peripheral nervous system, and in particular sensory nerves (SNs), has only recently been acknowledged. SNs can improve osteogenic differentiation of bone marrow stem/stromal cells through neurotransmitters and peptides; the interplay between SNs and the vascular system also facilitates vascular network reconstruction, indirectly facilitating bone healing. These factors suggest the importance of SNs in bone healing, a vital point that has been overlooked in bone biomaterial design until very recently. SN regeneration represents a novel direction in the development of biomaterials for bone regeneration. The current perspective paper summarizes the cellular and molecular mechanisms under the regulatory influence of SNs in the bone healing process and outlines the recent advances in biomaterials for innervated bone tissue regeneration. This establishes potential future directions for bone engineering biomaterial design.

合成生物材料是治疗大面积骨缺损的新兴候选解决方案。然而,大多数合成材料的临床表现并不令人满意,需要在设计和合成方面加以改进。虽然骨骼具有高度神经支配,但外周神经系统,尤其是感觉神经(SN)在愈合过程中的核心作用直到最近才得到承认。感觉神经可通过神经递质和多肽改善骨髓干细胞/基质细胞的成骨分化;感觉神经与血管系统之间的相互作用也有利于血管网络的重建,间接促进骨愈合。这些因素表明了SN在骨愈合中的重要性,而直到最近,骨生物材料设计中一直忽略了这一关键点。SN再生是骨再生生物材料发展的一个新方向。本视角论文总结了骨愈合过程中受神经元调控影响的细胞和分子机制,并概述了用于神经支配骨组织再生的生物材料的最新进展。这为骨工程生物材料的设计确立了潜在的未来方向。
{"title":"Peripheral sensory nerve regeneration: Novel target in bone tissue engineering","authors":"Lan Xiao,&nbsp;Jiaying Liu,&nbsp;Fuhua Yan,&nbsp;Yin Xiao","doi":"10.1002/brx2.71","DOIUrl":"https://doi.org/10.1002/brx2.71","url":null,"abstract":"<p>Synthetic biomaterials are emerging candidate solutions for treating large bone defects. However, the clinical performances of most synthetic materials are not satisfactory, with the need for improvement in design and synthesis. Although bone is highly innervated, the central role during healing of the peripheral nervous system, and in particular sensory nerves (SNs), has only recently been acknowledged. SNs can improve osteogenic differentiation of bone marrow stem/stromal cells through neurotransmitters and peptides; the interplay between SNs and the vascular system also facilitates vascular network reconstruction, indirectly facilitating bone healing. These factors suggest the importance of SNs in bone healing, a vital point that has been overlooked in bone biomaterial design until very recently. SN regeneration represents a novel direction in the development of biomaterials for bone regeneration. The current perspective paper summarizes the cellular and molecular mechanisms under the regulatory influence of SNs in the bone healing process and outlines the recent advances in biomaterials for innervated bone tissue regeneration. This establishes potential future directions for bone engineering biomaterial design.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.71","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances of therapy for Alzheimer's disease: An updated review 阿尔茨海默病治疗的进展:最新综述
Pub Date : 2024-07-15 DOI: 10.1002/brx2.68
Can Mei, Jianbo Zhan, Shuzhen Zhu, Yutong Zhang, Chang-e Xiong, Jia Wang, Yu Jia Xu, Hua Zhong, Jing Cheng

Alzheimer's disease (AD) is a type of dementia characterized by a decline in brain function, which leads to the inability to perform activities independently. Many researchers recognize abnormalities related to beta-amyloid as the main cause of the disease (i.e., the beta-amyloid hypothesis), but aging, genetics, coronary heart disease, environmental factors, gender, and other risk factors may also contribute to AD development. Three drugs with different mechanisms are available for AD treatment: cholinesterase inhibitors, N-methyl d-aspartate, and aducanumab. This study reviewed the therapies that are already applied in clinical practice and those that are currently being investigated for clinical use. These therapies include not only pharmacological treatments but also non-pharmacological treatments, such as gut flora therapy and music therapy. A comprehensive understanding of these therapies is necessary to enable early intervention, improve patients' physical and mental conditions, delay the occurrence and development of AD, and extend patients' healthy lifespans.

阿尔茨海默病(AD)是一种以大脑功能衰退为特征的痴呆症,会导致患者无法独立完成活动。许多研究人员认为,与β-淀粉样蛋白有关的异常是该病的主要病因(即β-淀粉样蛋白假说),但衰老、遗传、冠心病、环境因素、性别和其他风险因素也可能导致阿尔茨海默病的发生。目前有三种不同机制的药物可用于治疗AD:胆碱酯酶抑制剂、N-甲基 d-天冬氨酸和阿杜卡单抗。本研究回顾了已应用于临床实践的疗法和目前正在研究用于临床的疗法。这些疗法不仅包括药物疗法,还包括非药物疗法,如肠道菌群疗法和音乐疗法。有必要全面了解这些疗法,以便及早干预,改善患者的身体和精神状况,延缓注意力缺失症的发生和发展,延长患者的健康寿命。
{"title":"Advances of therapy for Alzheimer's disease: An updated review","authors":"Can Mei,&nbsp;Jianbo Zhan,&nbsp;Shuzhen Zhu,&nbsp;Yutong Zhang,&nbsp;Chang-e Xiong,&nbsp;Jia Wang,&nbsp;Yu Jia Xu,&nbsp;Hua Zhong,&nbsp;Jing Cheng","doi":"10.1002/brx2.68","DOIUrl":"https://doi.org/10.1002/brx2.68","url":null,"abstract":"<p>Alzheimer's disease (AD) is a type of dementia characterized by a decline in brain function, which leads to the inability to perform activities independently. Many researchers recognize abnormalities related to beta-amyloid as the main cause of the disease (i.e., the beta-amyloid hypothesis), but aging, genetics, coronary heart disease, environmental factors, gender, and other risk factors may also contribute to AD development. Three drugs with different mechanisms are available for AD treatment: cholinesterase inhibitors, N-methyl d-aspartate, and aducanumab. This study reviewed the therapies that are already applied in clinical practice and those that are currently being investigated for clinical use. These therapies include not only pharmacological treatments but also non-pharmacological treatments, such as gut flora therapy and music therapy. A comprehensive understanding of these therapies is necessary to enable early intervention, improve patients' physical and mental conditions, delay the occurrence and development of AD, and extend patients' healthy lifespans.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.68","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brain-X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1