首页 > 最新文献

Cancer Communications最新文献

英文 中文
Cover Image, Volume 45, Issue 12 封面图片,第45卷,第12期
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-12-24 DOI: 10.1002/cac2.70085
Nicole C. Riedel, Carolin Walter, Flavia W. de Faria, Lea Altendorf, Paula Aust, Carolin Göbel, Archana Verma, Annika Ballast, Ivan Bedzhov, Rajanya Roy, Daniel Münter, Erik Schüftan, Thomas K. Albert, Claudia Rössig, Pascal Johann, Barbara von Zezschwitz, Sarah Sandmann, Julian Varghese, Christian Thomas, Ulrich Schüller, Jan M. Bruder, Kornelius Kerl

The cover image is based on the article In vivo intratumoral heterogeneity in a dish: scalable forebrain organoid models of embryonal brain tumors for high-throughput personalized drug discovery by Nicole C. Riedel et al., https://doi.org/10.1002/cac2.70074.

封面图片基于Nicole C. Riedel等人的文章《培养皿中的体内肿瘤内异质性:用于高通量个性化药物发现的胚胎性脑肿瘤的可扩展前脑类器官模型》,https://doi.org/10.1002/cac2.70074。
{"title":"Cover Image, Volume 45, Issue 12","authors":"Nicole C. Riedel,&nbsp;Carolin Walter,&nbsp;Flavia W. de Faria,&nbsp;Lea Altendorf,&nbsp;Paula Aust,&nbsp;Carolin Göbel,&nbsp;Archana Verma,&nbsp;Annika Ballast,&nbsp;Ivan Bedzhov,&nbsp;Rajanya Roy,&nbsp;Daniel Münter,&nbsp;Erik Schüftan,&nbsp;Thomas K. Albert,&nbsp;Claudia Rössig,&nbsp;Pascal Johann,&nbsp;Barbara von Zezschwitz,&nbsp;Sarah Sandmann,&nbsp;Julian Varghese,&nbsp;Christian Thomas,&nbsp;Ulrich Schüller,&nbsp;Jan M. Bruder,&nbsp;Kornelius Kerl","doi":"10.1002/cac2.70085","DOIUrl":"https://doi.org/10.1002/cac2.70085","url":null,"abstract":"<p>The cover image is based on the article <i>In vivo intratumoral heterogeneity in a dish: scalable forebrain organoid models of embryonal brain tumors for high-throughput personalized drug discovery</i> by Nicole C. Riedel et al., \u0000https://doi.org/10.1002/cac2.70074. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":""},"PeriodicalIF":24.9,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.70085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145848406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics profiling identified two epithelioid sarcoma molecular subtypes with distinct signaling and immune characteristics 多组学分析鉴定了两种具有不同信号和免疫特征的上皮样肉瘤分子亚型。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-28 DOI: 10.1002/cac2.70077
Carine Ngo, Léo Colmet-Daage, Julien Vibert, Clémence Hénon, Daniel Pissaloux, Alexander Valent, Jia Xiang Jin, Riwan Brillet, Julien Masliah-Planchon, Gaëlle Pierron, Ludovic Lacroix, Etienne Rouleau, Cyril Roussel-Simonin, Lilian Lecorgne, Clémence Astier, Marlène Garrido, Rastislav Bahleda, Benjamin Verret, Axel Le Cesne, Charles Honore, Matthieu Faron, Wolf Herman Fridman, Catherine Sautès-Fridman, Jean-Michel Coindre, Jean-Yves Scoazec, Joshua J Waterfall, Franck Bourdeaut, Thomas G. P. Grünewald, Jean-Yves Blay, Franck Tirode, Sophie Postel-Vinay
<p>Epithelioid sarcoma (EpS) is an aggressive soft tissue sarcoma characterized by switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) loss [<span>1</span>]. Conventionally, EpS is histologically classified as either distal or proximal subtype, each exhibiting distinct clinical behaviors; these sometimes co-exist as “hybrid” EpS [<span>2, 3</span>]. Differential diagnosis from other SMARCB1-deficient tumors, such as extracranial extrarenal rhabdoid tumors (EERTs), can be challenging [<span>4</span>]. Beyond phenotypic diversity, EpS molecular heterogeneity remains poorly understood. To address this, we aimed to build a molecular classification and explore inter- and intra-tumor heterogeneity, using multi-omics profiling.</p><p>We profiled 33 EpSs and 3 EERTs using whole-exome sequencing (WES), DNA methylation, and bulk RNA-sequencing (RNA-seq); single-cell RNA-sequencing (scRNA-seq) and 10x Genomics Visium spatial transcriptomics were performed on 8 and 4 EpSs, respectively (Figure 1A, Supplementary Materials and Methods). Cases were reviewed by two senior pathologists and classified by histology (14 distal, 14 proximal, 5 hybrid EpSs) (Supplementary Figure S1, Supplementary Tables S1-S2).</p><p>Unsupervised RNA-seq clustering identified two EpS transcriptomic subtypes (Figure 1B): (i) distal-like (<i>n</i> = 20) — including all distal EpS, 2 proximal and 4 hybrid EpSs — enriched in cell adhesion, circulatory system development genes and extracellular matrix; (ii) proximal-like (<i>n</i> = 13) — comprising 12 proximal and 1 hybrid EpSs — enriched in synapse organization, response to wounding and macrophage activation (Supplementary Figure S2A, Supplementary Table S3). Gene set enrichment analysis revealed a significant enrichment in epithelial-mesenchymal transition (EMT) and ultraviolet response in distal-like EpS compared to proximal-like EpS (normalized enrichment score = 1.80 and 1.66, respectively; false discovery rate < 25%; <i>p</i> < 0.05) (Supplementary Figure S2B, Supplementary Table S4).</p><p>We explored mechanisms of SMARCB1 loss in 31 EpSs and 3 EERTs, using WES, targeted next-generation sequencing, single-nucleotide polymorphism array, shallow whole-genome sequencing, DNA methylation and fluorescence in situ hybridization – depending on material availability (Supplementary Figure S3A, Supplementary Table S5). Biallelic <i>SMARCB1</i> inactivation was identified in 16 (51.6%) of 31 EpSs (mostly homozygous deletions), without germline <i>SMARCB1</i> alteration. Heterozygous loss-of-function alterations were found in 14/31 (45.2%) EpSs. <i>SMARCB1</i> alteration types were similar across EpS transcriptomic subtypes and unrelated to <i>SMARCB1</i> mRNA levels (Supplementary Figure S3B-D).</p><p>Recurrent alterations, excluding <i>SMARCB1</i>, occurred in up to13% of EpSs (Supplementary Figure S3A, Supplementary Tables S6-S7). Median tumor mutatio
上皮样肉瘤(EpS)是一种侵袭性软组织肉瘤,其特征是开关/糖不可发酵(SWI/SNF)相关基质相关动作蛋白依赖的染色质亚家族B成员1 (SMARCB1)缺失[1]。通常,EpS在组织学上分为远端亚型或近端亚型,每种亚型都表现出不同的临床行为;这些有时作为“混合型”EpS共存[2,3]。与其他smarcb1缺陷肿瘤的鉴别诊断,如颅外肾外横纹肌样肿瘤(EERTs),可能具有挑战性。除了表型多样性,EpS的分子异质性仍然知之甚少。为了解决这个问题,我们的目标是建立一个分子分类,并利用多组学分析探索肿瘤间和肿瘤内的异质性。我们使用全外显子组测序(WES)、DNA甲基化和大量rna测序(RNA-seq)分析了33个EpSs和3个eert;分别对8个和4个EpSs进行单细胞rna测序(scRNA-seq)和10x Genomics Visium空间转录组学(图1A,补充材料和方法)。由两名资深病理学家对病例进行检查,并根据组织学进行分类(14例远端,14例近端,5例混合型EpSs)(补充图S1,补充表S1- s2)。无监督RNA-seq聚类鉴定出两种EpS转录组亚型(图1B):(i)远端样(n = 20) -包括所有远端EpS, 2个近端EpS和4个杂交EpS -富集于细胞粘附、循环系统发育基因和细胞外基质;(ii)近端样EpSs (n = 13)——包括12个近端EpSs和1个杂交EpSs——在突触组织、对损伤的反应和巨噬细胞活化方面富集(补充图S2A,补充表S3)。基因集富集分析显示,与近端样EpS相比,远端样EpS的上皮-间质转化(EMT)和紫外线反应显著富集(标准化富集评分分别为1.80和1.66;错误发现率&lt; 25%; p &lt; 0.05)(补充图S2B,补充表S4)。我们利用WES、靶向下一代测序、单核苷酸多态性阵列、浅全基因组测序、DNA甲基化和荧光原位杂交(取决于材料的可用性),探索了31个EpSs和3个EERTs中SMARCB1丢失的机制(补充图S3A,补充表S5)。31个EpSs中有16个(51.6%)被鉴定为双等位基因SMARCB1失活(大多数是纯合缺失),没有种系SMARCB1改变。杂合子功能缺失改变在14/31(45.2%)的eps中被发现。SMARCB1的改变类型在EpS转录组亚型中相似,与SMARCB1 mRNA水平无关(补充图S3B-D)。复发性改变(不包括SMARCB1)发生在高达13%的EpSs中(补充图S3A,补充表S6-S7)。远端样EpS和近端样EpS的中位肿瘤突变负荷分别为0.84(范围0.56-15.75)和0.87(范围0.34-1.56)mut/Mb(补充图S4A,补充表S8)。远端样EpS比近端样EpS有更多的臂位拷贝数改变(CNAs)[中位数= 5(范围,0-15)vs. 1(范围,0-11),p = 0.041;补充图S4B],尽管之前的化疗或疾病分期可能影响了这一结果[b]。大量RNA-seq数据的免疫反褶积显示,远端样EpS中细胞毒性细胞和CD8+ T细胞、自然杀伤细胞和M1巨噬细胞显著富集,而近端样EpS中M2巨噬细胞富集(图1C,补充图S5A)。免疫组织化学(IHC)显示,CD8+ T细胞和CD163+巨噬细胞位于远端样EpS的肿瘤周围,成熟的三级淋巴样结构更为常见,而巨噬细胞位于近端样EpS的肿瘤内(图1D,补充图S5B-D)。3个远端样和5个近端样EpS样本的ScRNA-seq分析了28,912个高质量细胞,根据基于表达的聚类、SMARCB1表达、已知细胞类型的典型标记和推断的CNAs划分为6个主要亚群(图1E,补充图S6)。骨髓细胞是最丰富的免疫亚群(补充图S7A),标记物鉴定显示,在近端样EpS中,主要是表达髓样细胞2 (TREM2)+触发受体的肿瘤前巨噬细胞,在远端样EpS中,主要是表达炎症单核细胞(补充图S7B)。为了研究细胞间的相互作用,我们独立整合了6542个来自远端样EpS的单细胞(补充图S8)和21763个来自近端样EpS的单细胞(补充图S9)。CellPhoneDB分析提示不同的配体-受体相互作用(图1F):在远端样EpS中,推断的肿瘤-免疫相互作用主要涉及粘附分子(如粘粒蛋白2 [DSG2])或趋化因子受体(如; 非典型趋化因子受体2),与空间转录组学观察结果一致(图1G,补充图S10);近端样EpS富集巨噬细胞激活信号(图1G,补充图S11)。接下来,我们将重点放在14320个肿瘤单细胞上,并确定了10个亚簇(图1H,补充图S12,补充表S9)。其中一个亚簇(EMT_5)几乎聚集了来自远端样样样本的所有细胞,并富含与细胞外基质和细胞粘附相关的基因。相比之下,来自近端样样本的亚群大多是患者特异性的,并与各种生物过程有关。为了评估单细胞亚簇的特异性,我们在大量RNA-seq数据中对它们的特征进行了反卷积(补充图S13)。EMT_5是远端样EpS中最丰富的特征,在近端样EpS中很少见,在EERTs中几乎没有。我们在1041个间充质肿瘤的独立数据集中重新验证了这一点。同样,远端样EpS表现出最高的EMT_5特征评分,而smarcb1缺陷的恶性横纹肌样肿瘤和smarca4缺陷的未分化肿瘤的EMT_5特征评分最低(图1I)。其他具有间充质上皮特征的肉瘤(如结缔组织增生小圆细胞瘤)具有较低的EMT_5评分,突出了该特征对远端样EpS的特异性。由于DSG2在EMT_5特征的前五名标记中得分(补充图S12A),并显示功能性细胞-细胞相互作用(图1F),我们询问其表达是否可以作为远端样EpS的IHC诊断生物标志物。DSG2在所有远端样肿瘤细胞中表达,而在所有近端样肿瘤中均未检测到,但有一个肿瘤表现出弱的局灶性染色,这支持了其潜在的诊断价值(图1J,补充图S14)。我们最终探讨了EMT_5信号的预后价值。在两个独立的系列中,它与更好的总生存期和无转移生存期显著相关(图1K,补充图S15)。上皮样肉瘤是一种罕见的,形态学和临床异质性的疾病,缺乏分子分类。通过整合来自大型EpS队列的大量多组学和单细胞数据集,结合临床注释和病理回顾,我们提出了包括两种转录组亚型的分子分类:远端样EpS,其特征是预后,癌细胞特异性EMT特征和富含t细胞的微环境;和近端样EpS,具有不同的转录组程序和免疫抑制、富含巨噬细胞的微环境。EMT特征与先前的转录组学研究一致[5,6];然而,这些依赖于基于组织学亚型的监督聚类。相比之下,我们的无监督分析确定了基于分子的亚型,从而允许将6例最初归类为“近端”或“杂交”组织学亚型的病例重新分类为远端样EpS,这可能具有治疗意义。此外,单细胞和空间分析使我们取得了重大进展。首先,我们在大量RNA-seq数据中证实了EMT特征是肿瘤细胞特异性的,而不是由基质污染引起的。其次,我们发现DSG2可能作为远端样EpS的诊断标志物。第三,我们发现这种scrna -seq衍生的EMT特征具有预后性,对远端样EpS具有高度特异性,而在其他SWI/ snf缺陷性肉瘤中几乎不存在。这是否与SMARCB1在临床前模型中促进EMT基因表达的作用有关,值得进一步探讨[7,8]。最后,除了证实最近报道的在较小的18个EpS
{"title":"Multi-omics profiling identified two epithelioid sarcoma molecular subtypes with distinct signaling and immune characteristics","authors":"Carine Ngo,&nbsp;Léo Colmet-Daage,&nbsp;Julien Vibert,&nbsp;Clémence Hénon,&nbsp;Daniel Pissaloux,&nbsp;Alexander Valent,&nbsp;Jia Xiang Jin,&nbsp;Riwan Brillet,&nbsp;Julien Masliah-Planchon,&nbsp;Gaëlle Pierron,&nbsp;Ludovic Lacroix,&nbsp;Etienne Rouleau,&nbsp;Cyril Roussel-Simonin,&nbsp;Lilian Lecorgne,&nbsp;Clémence Astier,&nbsp;Marlène Garrido,&nbsp;Rastislav Bahleda,&nbsp;Benjamin Verret,&nbsp;Axel Le Cesne,&nbsp;Charles Honore,&nbsp;Matthieu Faron,&nbsp;Wolf Herman Fridman,&nbsp;Catherine Sautès-Fridman,&nbsp;Jean-Michel Coindre,&nbsp;Jean-Yves Scoazec,&nbsp;Joshua J Waterfall,&nbsp;Franck Bourdeaut,&nbsp;Thomas G. P. Grünewald,&nbsp;Jean-Yves Blay,&nbsp;Franck Tirode,&nbsp;Sophie Postel-Vinay","doi":"10.1002/cac2.70077","DOIUrl":"10.1002/cac2.70077","url":null,"abstract":"&lt;p&gt;Epithelioid sarcoma (EpS) is an aggressive soft tissue sarcoma characterized by switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) loss [&lt;span&gt;1&lt;/span&gt;]. Conventionally, EpS is histologically classified as either distal or proximal subtype, each exhibiting distinct clinical behaviors; these sometimes co-exist as “hybrid” EpS [&lt;span&gt;2, 3&lt;/span&gt;]. Differential diagnosis from other SMARCB1-deficient tumors, such as extracranial extrarenal rhabdoid tumors (EERTs), can be challenging [&lt;span&gt;4&lt;/span&gt;]. Beyond phenotypic diversity, EpS molecular heterogeneity remains poorly understood. To address this, we aimed to build a molecular classification and explore inter- and intra-tumor heterogeneity, using multi-omics profiling.&lt;/p&gt;&lt;p&gt;We profiled 33 EpSs and 3 EERTs using whole-exome sequencing (WES), DNA methylation, and bulk RNA-sequencing (RNA-seq); single-cell RNA-sequencing (scRNA-seq) and 10x Genomics Visium spatial transcriptomics were performed on 8 and 4 EpSs, respectively (Figure 1A, Supplementary Materials and Methods). Cases were reviewed by two senior pathologists and classified by histology (14 distal, 14 proximal, 5 hybrid EpSs) (Supplementary Figure S1, Supplementary Tables S1-S2).&lt;/p&gt;&lt;p&gt;Unsupervised RNA-seq clustering identified two EpS transcriptomic subtypes (Figure 1B): (i) distal-like (&lt;i&gt;n&lt;/i&gt; = 20) — including all distal EpS, 2 proximal and 4 hybrid EpSs — enriched in cell adhesion, circulatory system development genes and extracellular matrix; (ii) proximal-like (&lt;i&gt;n&lt;/i&gt; = 13) — comprising 12 proximal and 1 hybrid EpSs — enriched in synapse organization, response to wounding and macrophage activation (Supplementary Figure S2A, Supplementary Table S3). Gene set enrichment analysis revealed a significant enrichment in epithelial-mesenchymal transition (EMT) and ultraviolet response in distal-like EpS compared to proximal-like EpS (normalized enrichment score = 1.80 and 1.66, respectively; false discovery rate &lt; 25%; &lt;i&gt;p&lt;/i&gt; &lt; 0.05) (Supplementary Figure S2B, Supplementary Table S4).&lt;/p&gt;&lt;p&gt;We explored mechanisms of SMARCB1 loss in 31 EpSs and 3 EERTs, using WES, targeted next-generation sequencing, single-nucleotide polymorphism array, shallow whole-genome sequencing, DNA methylation and fluorescence in situ hybridization – depending on material availability (Supplementary Figure S3A, Supplementary Table S5). Biallelic &lt;i&gt;SMARCB1&lt;/i&gt; inactivation was identified in 16 (51.6%) of 31 EpSs (mostly homozygous deletions), without germline &lt;i&gt;SMARCB1&lt;/i&gt; alteration. Heterozygous loss-of-function alterations were found in 14/31 (45.2%) EpSs. &lt;i&gt;SMARCB1&lt;/i&gt; alteration types were similar across EpS transcriptomic subtypes and unrelated to &lt;i&gt;SMARCB1&lt;/i&gt; mRNA levels (Supplementary Figure S3B-D).&lt;/p&gt;&lt;p&gt;Recurrent alterations, excluding &lt;i&gt;SMARCB1&lt;/i&gt;, occurred in up to13% of EpSs (Supplementary Figure S3A, Supplementary Tables S6-S7). Median tumor mutatio","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1760-1766"},"PeriodicalIF":24.9,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145630218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anbenitamab in combination with chemotherapy in patients with HER2-positive gastric or gastroesophageal junction carcinoma who failed previous therapy containing trastuzumab: a multicenter, phase II study (KC-WISE 01) Anbenitamab联合化疗治疗先前曲妥珠单抗治疗失败的her2阳性胃或胃食管结癌患者:一项多中心II期研究(KC-WISE 01)。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-22 DOI: 10.1002/cac2.70080
Chuanhua Zhao, Jun Zhao, Yigui Chen, Bo Liu, Yangfeng Du, Chenglin Li, Jingdong Zhang, Mudan Yang, Ying Liu, Yuxian Bai, Suyi Li, Ruixing Zhang, Fangling Ning, Yanping Liu, Kai Zou, Qi Zhang, Yijiao Xie, Yuping An, Jianming Xu
<p>In 2022, gastric cancer (GC) ranked as the fifth most common cancer and the third leading cause of cancer death in China, with 358,672 new cases and 260,372 deaths, accounting for 37.0% and 39.4% of global cases, respectively [<span>1</span>]. Previous studies have shown that 25.9% and 36.5% of GC patients in China were diagnosed at stages III and IV, respectively, with 5-year overall survival (OS) rates of 33.0% for stage III and 5.5% for stage IV [<span>2, 3</span>].</p><p>A previous study reported that human epidermal growth factor receptor 2 (HER2) positivity was found in 8.8% of Chinese patients with gastric adenocarcinoma [<span>4</span>]. Building on the ToGA trial [<span>5</span>], which established trastuzumab plus chemotherapy as the standard first-line treatment for HER2-positive GC, the KEYNOTE-811 trial [<span>6</span>] demonstrated superior progression-free survival (PFS) combined with immune checkpoint inhibitors, establishing this regimen as the current standard of care. Recent interim-analysis of the DESTINY-Gastric04 trial revealed that trastuzumab deruxtecan significantly improved overall survival compared to chemotherapy-based regimen in patients with HER2-positive gastric/gastroesophageal junction (GC/GEJ) carcinoma, leading to its establishment as second-line therapy [<span>7</span>]. Furthermore, zanidatamab, a HER2-targeted bispecific antibody against extracellular domains (ECDs) 2 and 4, has shown promising efficacy as both a monotherapy and in combination with chemotherapy for HER2-overexpressing GC in the second-line setting [<span>8</span>].</p><p>Anbenitamab, also known as SYS6092 (KN026), is a bispecific antibody that simultaneously binds to two distinct HER2 epitopes, the same extracellular domains targeted by trastuzumab (domain IV) and pertuzumab (domain II) [<span>9</span>]. Here, we present the results of a phase II study (NCT05427383) evaluating the safety and efficacy of anbenitamab plus chemotherapy in patients with HER2-positive advanced GC who failed previous therapy containing trastuzumab. Patients with locally advanced or metastatic HER2-positive GC/GEJ carcinoma who failed previous therapy containing trastuzumab were assigned to receive anbenitamab (30 mg/kg, Day 1, every 3 weeks [Q3W]) plus paclitaxel (175 mg/m<sup>2</sup>, Day 1, Q3W) or irinotecan (125 mg/m<sup>2</sup>, Day 1 and Day 8, Q3W) at investigators' discretion based on previous treatment. Full methodology is detailed in the Supplementary Materials.</p><p>Between April 7, 2022, and January 12, 2023, 39 patients were enrolled across 19 hospitals in China (Supplementary Table S1) and were assigned to receive either anbenitamab plus paclitaxel (<i>n</i> = 20) or anbenitamab plus irinotecan (<i>n</i> = 19; Supplementary Figure S1). Baseline patient characteristics are detailed in Supplementary Table S2. Eastern Cooperative Oncology Group performance status (ECOG PS) scores of 0 and 1 were reported in 7 (17.9%) and 32 (82.1%) patients, respect
2022年,胃癌是中国第五大常见癌症和第三大癌症死亡原因,新发病例358672例,死亡260372例,分别占全球病例的37.0%和39.4%。既往研究显示,中国有25.9%和36.5%的胃癌患者诊断为III期和IV期,III期和IV期的5年总生存率分别为33.0%和5.5%[2,3]。先前有研究报道,8.8%的中国胃腺癌患者中发现人表皮生长因子受体2 (HER2)阳性。在ToGA试验[5]的基础上,建立了曲妥珠单抗联合化疗作为her2阳性GC的标准一线治疗,KEYNOTE-811试验[6]显示了结合免疫检查点抑制剂的优越的无进展生存期(PFS),建立了该方案作为目前的标准治疗。最近对DESTINY-Gastric04试验的中期分析显示,与基于化疗的方案相比,曲妥珠单抗德鲁西替康显著提高了her2阳性胃/胃食管交界(GC/GEJ)癌患者的总生存率,从而使其成为二线治疗[7]。此外,zanidatamab是一种针对细胞外结构域(ECDs) 2和4的her2靶向双特异性抗体,已显示出在二线环境下her2过表达GC的单药治疗和联合化疗的良好疗效。Anbenitamab,也被称为SYS6092 (KN026),是一种双特异性抗体,可同时结合两个不同的HER2表位,即曲妥珠单抗(结构域IV)和帕妥珠单抗(结构域II)[9]靶向的相同细胞外结构域。在此,我们报告了一项II期研究(NCT05427383)的结果,该研究评估了anbenitamab联合化疗治疗her2阳性晚期GC患者(先前使用曲妥珠单抗治疗失败)的安全性和有效性。先前使用曲妥珠单抗治疗失败的局部晚期或转移性her2阳性GC/GEJ癌患者被分配接受anbenitamab (30 mg/kg,第1天,每3周[Q3W])加紫杉醇(175 mg/m2,第1天,Q3W)或伊立替康(125 mg/m2,第1天和第8天,Q3W),根据研究人员的判断。完整的方法在补充材料中有详细说明。在2022年4月7日至2023年1月12日期间,来自中国19家医院的39名患者入组(补充表S1),并被分配接受阿贝尼他单抗+紫杉醇治疗(n = 20)或阿贝尼他单抗+伊立替康治疗(n = 19;补充图S1)。患者基线特征详见补充表S2。东部肿瘤合作组ECOG状态(ECOG PS)评分为0分的患者7例(17.9%),1分的患者32例(82.1%)。34例(87.2%)患者出现HER2免疫组化3+。17例(43.6%)患者出现≥3个器官的转移。同时,10例(25.6%)患者既往接受过≥2个疗程的治疗。截至数据截止日(2024年3月26日),中位随访时间为17.0个月(95%可信区间[CI], 14.3-19.1)。在anbenitamab +紫杉醇组中,中位暴露持续时间为112天(范围21-614天),anbenitamab和紫杉醇的平均相对剂量强度分别为90.0%(标准差[SD], 13.1%)和86.3%(标准差[SD], 13.7%)。在anbenitamab +伊立替康组中,中位暴露时间为281天(范围21-663),平均相对剂量强度分别为anbenitamab 86.7% (SD, 13.3%)和伊立替康58.9% (SD, 18.0%)。减少剂量20例,中断剂量33例。截至截止日期,32例患者因疾病进展(n = 20)、撤回同意(n = 5)、死亡(n = 4)或研究者自行决定(n = 3)而停止治疗(补充图S1)。在安全性观察期间(每个治疗组n = 6),在anbenitamab联合紫杉醇治疗的患者中观察到1例剂量限制性毒性3级发热性中性粒细胞减少症。因此,另外27名患者被纳入研究,并接受了anbenitamab +紫杉醇或伊立替康的治疗。所有患者(n = 39)至少发生一次治疗相关不良事件(TRAE),其中≥3级TRAE发生25例(64.1%)(补充表S3)。最常见的≥3级TRAEs是中性粒细胞计数下降(33.3%)、白细胞计数下降(28.2%)、贫血(17.9%)和疲劳(10.3%)(补充表S4)。8例(20.5%)患者报告了严重的trae,中性粒细胞计数减少(5.1%)最为常见(补充表S5)。3例(7.7%)患者发生trae导致停药。有1例患者报告了特殊不良事件(2级射血分数降低),确定与治疗无关。截止日期为3(7)。 7%)患者在治疗期间死亡,定义为在最后一次给药后30天内因心脏病发作、胃肠道出血和不明原因死亡。其中,没有一个被研究者认为与治疗有关。共有37名患者符合由独立审查委员会(IRC)进行反应评估的条件。其中,14例(37.8%)患者达到部分缓解,9例(24.3%)患者病情稳定,6例(16.2%)患者达到非完全缓解(CR)/非进展性疾病(PD), 8例(21.6%)患者病情进展。确诊客观缓解率(ORR)为37.8% (95% CI, 22.5%-55.2%),疾病控制率(DCR)为78.4% (95% CI, 61.8%-90.2%;补充表S6,图1A和图1B)。研究者评估后观察到类似的结果。在37例可评估缓解的患者中,17例(45.9%)患者确认部分缓解,12例(32.4%)患者病情稳定,7例(18.9%)患者病情进展。1例患者因两次疾病稳定评估间隔42天而被认为不可评估。确诊ORR为45.9% (95% CI, 29.5% ~ 63.1%), DCR为78.4% (95% CI, 61.8% ~ 90.2%)。IRC评估的中位反应时间和反应持续时间(DoR)分别为1.4个月(四分位数范围,1.4-1.5)和11.7个月(95% CI, 6.0-15.6)。每次IRC评估的中位PFS为8.6个月(95% CI, 3.8-13.1)(图1C),每次研究者评估的中位PFS为8.8个月(95% CI, 4.1-11.3)(补充表S6)。截至2024年3月26日,共发生22例死亡,中位OS为13.2个月(95% CI, 10.6-20.5)(图1D)。在接受阿贝尼他单抗联合紫杉醇或伊立替康治疗的患者中未检测到抗药物抗体或中和抗体。在目前的研究中,anbenitamab联合紫杉醇或伊立替康显示出可耐受的安全性和有希望的抗肿瘤疗效。irc评估的确诊ORR为37.8%,中位PFS为8.6个月,中位OS为13.2个月。这些疗效结果与最近的DESTINY-Gastric04试验[7]中观察到的结果相当,在该试验中,曲妥珠单抗德鲁德替康报告的中位PFS为6.7个月,中位OS为14.7个月。在her2阳性胃癌的二线治疗中,这两种方案都是有希望的治疗选择。这些结果可能源于:(1)Anbenitamab的双特异性机制,与曲妥珠单抗+帕妥珠单抗[9]相比,能够实现更强的HER2结合和更好的临床前抗肿瘤活性,诱导受体聚集驱动HER2降解[10];(2)提高安全性,特别是降低心脏毒性和胃肠道毒性,促进持续的全剂量联合治疗方案。尽管如此,这项研究仍有一些局限性。首先,尽管这项研究提供了初步的见解,但其非比比性、单臂性质和非盲法设计固有地限制了干预与结果之间的因果推断。其次,本研究的样本量相对较小,限制了研究结果的普遍性。第三,尽管在含曲妥珠单抗方案治疗后进展后的肿瘤样本是每个研究
{"title":"Anbenitamab in combination with chemotherapy in patients with HER2-positive gastric or gastroesophageal junction carcinoma who failed previous therapy containing trastuzumab: a multicenter, phase II study (KC-WISE 01)","authors":"Chuanhua Zhao,&nbsp;Jun Zhao,&nbsp;Yigui Chen,&nbsp;Bo Liu,&nbsp;Yangfeng Du,&nbsp;Chenglin Li,&nbsp;Jingdong Zhang,&nbsp;Mudan Yang,&nbsp;Ying Liu,&nbsp;Yuxian Bai,&nbsp;Suyi Li,&nbsp;Ruixing Zhang,&nbsp;Fangling Ning,&nbsp;Yanping Liu,&nbsp;Kai Zou,&nbsp;Qi Zhang,&nbsp;Yijiao Xie,&nbsp;Yuping An,&nbsp;Jianming Xu","doi":"10.1002/cac2.70080","DOIUrl":"10.1002/cac2.70080","url":null,"abstract":"&lt;p&gt;In 2022, gastric cancer (GC) ranked as the fifth most common cancer and the third leading cause of cancer death in China, with 358,672 new cases and 260,372 deaths, accounting for 37.0% and 39.4% of global cases, respectively [&lt;span&gt;1&lt;/span&gt;]. Previous studies have shown that 25.9% and 36.5% of GC patients in China were diagnosed at stages III and IV, respectively, with 5-year overall survival (OS) rates of 33.0% for stage III and 5.5% for stage IV [&lt;span&gt;2, 3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;A previous study reported that human epidermal growth factor receptor 2 (HER2) positivity was found in 8.8% of Chinese patients with gastric adenocarcinoma [&lt;span&gt;4&lt;/span&gt;]. Building on the ToGA trial [&lt;span&gt;5&lt;/span&gt;], which established trastuzumab plus chemotherapy as the standard first-line treatment for HER2-positive GC, the KEYNOTE-811 trial [&lt;span&gt;6&lt;/span&gt;] demonstrated superior progression-free survival (PFS) combined with immune checkpoint inhibitors, establishing this regimen as the current standard of care. Recent interim-analysis of the DESTINY-Gastric04 trial revealed that trastuzumab deruxtecan significantly improved overall survival compared to chemotherapy-based regimen in patients with HER2-positive gastric/gastroesophageal junction (GC/GEJ) carcinoma, leading to its establishment as second-line therapy [&lt;span&gt;7&lt;/span&gt;]. Furthermore, zanidatamab, a HER2-targeted bispecific antibody against extracellular domains (ECDs) 2 and 4, has shown promising efficacy as both a monotherapy and in combination with chemotherapy for HER2-overexpressing GC in the second-line setting [&lt;span&gt;8&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Anbenitamab, also known as SYS6092 (KN026), is a bispecific antibody that simultaneously binds to two distinct HER2 epitopes, the same extracellular domains targeted by trastuzumab (domain IV) and pertuzumab (domain II) [&lt;span&gt;9&lt;/span&gt;]. Here, we present the results of a phase II study (NCT05427383) evaluating the safety and efficacy of anbenitamab plus chemotherapy in patients with HER2-positive advanced GC who failed previous therapy containing trastuzumab. Patients with locally advanced or metastatic HER2-positive GC/GEJ carcinoma who failed previous therapy containing trastuzumab were assigned to receive anbenitamab (30 mg/kg, Day 1, every 3 weeks [Q3W]) plus paclitaxel (175 mg/m&lt;sup&gt;2&lt;/sup&gt;, Day 1, Q3W) or irinotecan (125 mg/m&lt;sup&gt;2&lt;/sup&gt;, Day 1 and Day 8, Q3W) at investigators' discretion based on previous treatment. Full methodology is detailed in the Supplementary Materials.&lt;/p&gt;&lt;p&gt;Between April 7, 2022, and January 12, 2023, 39 patients were enrolled across 19 hospitals in China (Supplementary Table S1) and were assigned to receive either anbenitamab plus paclitaxel (&lt;i&gt;n&lt;/i&gt; = 20) or anbenitamab plus irinotecan (&lt;i&gt;n&lt;/i&gt; = 19; Supplementary Figure S1). Baseline patient characteristics are detailed in Supplementary Table S2. Eastern Cooperative Oncology Group performance status (ECOG PS) scores of 0 and 1 were reported in 7 (17.9%) and 32 (82.1%) patients, respect","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1755-1759"},"PeriodicalIF":24.9,"publicationDate":"2025-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145581732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 45, Issue 11 封面图片,第45卷,第11期
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-19 DOI: 10.1002/cac2.70082
Jingbo Fu, Yanping Wei, Yun Yang, Xinwei Yang, Tao Ouyang, Xianming Wang, Shuzhen Chen, Zenglin Liu, Yu Su, Jing Fu, Miao Yu, Haihua Qian, Hao Song, Shuo Xu, Ru Zhao, Xue Jiang, Yunfei Huo, Man Zhang, Pinhua Yang, Zhao Yang, Kui Wang, Liang Li, Hongyang Wang

The cover image is based on the article Intranuclear paraspeckle-circular RNA TACC3 assembly forms RNA-DNA hybrids to facilitate MASH-related hepatocellular carcinoma growth in an m6A-dependent manner by Hongyang Wang et al., https://doi.org/10.1002/cac2.70061.

封面图片基于Hongyang Wang等人(https://doi.org/10.1002/cac2.70061)的文章:核内副斑状环状RNA TACC3组装形成RNA- dna杂交体,以m6a依赖的方式促进mash相关肝细胞癌的生长。
{"title":"Cover Image, Volume 45, Issue 11","authors":"Jingbo Fu,&nbsp;Yanping Wei,&nbsp;Yun Yang,&nbsp;Xinwei Yang,&nbsp;Tao Ouyang,&nbsp;Xianming Wang,&nbsp;Shuzhen Chen,&nbsp;Zenglin Liu,&nbsp;Yu Su,&nbsp;Jing Fu,&nbsp;Miao Yu,&nbsp;Haihua Qian,&nbsp;Hao Song,&nbsp;Shuo Xu,&nbsp;Ru Zhao,&nbsp;Xue Jiang,&nbsp;Yunfei Huo,&nbsp;Man Zhang,&nbsp;Pinhua Yang,&nbsp;Zhao Yang,&nbsp;Kui Wang,&nbsp;Liang Li,&nbsp;Hongyang Wang","doi":"10.1002/cac2.70082","DOIUrl":"https://doi.org/10.1002/cac2.70082","url":null,"abstract":"<p>The cover image is based on the article <i>Intranuclear paraspeckle-circular RNA TACC3 assembly forms RNA-DNA hybrids to facilitate MASH-related hepatocellular carcinoma growth in an m<sup>6</sup>A-dependent manner</i> by Hongyang Wang et al., https://doi.org/10.1002/cac2.70061.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 11","pages":""},"PeriodicalIF":24.9,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.70082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145547160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 45, Issue 11 封面图片,第45卷,第11期
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-19 DOI: 10.1002/cac2.70081
Jiaqi Liang, Guoshu Bi, Xiaolong Huang, Zhijie Xu, Yiwei Huang, Yunyi Bian, Guangyao Shan, Wei Guo, Yuanliang Yan, Qihai Sui, Xiaodong Yang, Zhencong Chen, Tao Lu, Huan Zhang, Qun Wang, Wei Jiang, Cheng Zhan

The cover image is based on the article CD24 is a promising immunotherapeutic target for enhancing efficacy of third-generation EGFR-TKIs on EGFR-mutated lung cancer by Jiaqi Liang et al., https://doi.org/10.1002/cac2.70068.

封面图片基于梁佳琪等人,https://doi.org/10.1002/cac2.70068的文章CD24是提高第三代EGFR-TKIs治疗egfr突变肺癌疗效的有前景的免疫治疗靶点。
{"title":"Cover Image, Volume 45, Issue 11","authors":"Jiaqi Liang,&nbsp;Guoshu Bi,&nbsp;Xiaolong Huang,&nbsp;Zhijie Xu,&nbsp;Yiwei Huang,&nbsp;Yunyi Bian,&nbsp;Guangyao Shan,&nbsp;Wei Guo,&nbsp;Yuanliang Yan,&nbsp;Qihai Sui,&nbsp;Xiaodong Yang,&nbsp;Zhencong Chen,&nbsp;Tao Lu,&nbsp;Huan Zhang,&nbsp;Qun Wang,&nbsp;Wei Jiang,&nbsp;Cheng Zhan","doi":"10.1002/cac2.70081","DOIUrl":"https://doi.org/10.1002/cac2.70081","url":null,"abstract":"<p>The cover image is based on the article <i>CD24 is a promising immunotherapeutic target for enhancing efficacy of third-generation EGFR-TKIs on EGFR-mutated lung cancer</i> by Jiaqi Liang et al., https://doi.org/10.1002/cac2.70068.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 11","pages":""},"PeriodicalIF":24.9,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.70081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145547162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy and safety of combining bevacizumab and fractionated stereotactic radiotherapy for extensive brain metastases in patients with non-small cell lung cancer: a prospective phase II study (GASTO-1053) 贝伐单抗联合分割立体定向放疗治疗非小细胞肺癌患者广泛脑转移的疗效和安全性:一项前瞻性II期研究(g斯托-1053)。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-14 DOI: 10.1002/cac2.70078
Rui Zhou, Shiyang Zheng, Daquan Wang, Fang Dong, Hongmei Zhang, Tao Zhang, Qiaoting Luo, Biaoshui Liu, Hui Liu, Jun Zhang, Fangjie Liu, Bin Wang, Likun Chen, Yonggao Mou, Kangqiang Peng, Bo Qiu, Hui Liu
<div> <section> <h3> Background</h3> <p>The prognosis for non-small cell lung cancer (NSCLC) patients with extensive brain metastases (BMs) treated with radiotherapy alone remains poor. Based on the synergistic potential of radiotherapy and angiogenesis inhibitors, we initiated this phase II study to assess the efficacy and safety of combining bevacizumab (Bev) with fractionated stereotactic radiotherapy (FSRT) in managing extensive BMs in NSCLC patients who had stable extracranial disease.</p> </section> <section> <h3> Methods</h3> <p>Patients with extensive BMs from NSCLC, deemed unsuitable for stereotactic radiosurgery, were prospectively enrolled following multidisciplinary tumor board evaluation. Patients received FSRT (40 Gy in 10 fractions or 30 Gy in 5 fractions) in combination with Bev (7.5 mg/kg on day 1 prior to FSRT and on day 21 post-FSRT). The primary endpoint was intracranial progression-free survival (IPFS). Secondary endpoints included overall survival, progression-free survival, quality of life (QOL), and toxicities. For comparison, NSCLC patients with extensive BMs treated with whole-brain radiotherapy (WBRT) plus FSRT or FSRT alone were matched 1:1 with the study group (Bev + FSRT) using the propensity score matching.</p> </section> <section> <h3> Results</h3> <p>One hundred and six patients were included in the Bev + FSRT group, with a median follow-up duration of 35.8 months. The median IPFS was 18.3 months (95% confidence interval, 15.2-23.3 months). The Bev + FSRT group showed a significant improvement in IPFS compared to both the WBRT + FSRT group (9.6 months, P < 0.001) and the FSRT alone group (8.9 months, P < 0.001). Treatment was well tolerated, with grade 1 radiation necrosis in 1 patient. Bev + FSRT treatment significantly reduced tumor volume (<i>P</i> < 0.001), peritumoral edema volume (<i>P</i> = 0.004), and vascular leakage (<i>P</i> < 0.001). Furthermore, QOL was significantly improved after Bev + FSRT treatment, particularly in patients with symptomatic extensive BMs.</p> </section> <section> <h3> Conclusion</h3> <p>These findings support the combination of Bev and FSRT as a safe and effective treatment strategy for extensive BMs in NSCLC patients, offering improved intracranial disease control and symptom relief while avoiding the neurotoxicity associated with WBRT. A randomized trial is warranted to validate the findings of the current study.</p> </section> <section> <h3> Trial registration</h3> <p
背景:非小细胞肺癌(NSCLC)伴广泛性脑转移(BMs)患者单独放疗的预后仍然很差。基于放疗和血管生成抑制剂的协同潜力,我们启动了这项II期研究,以评估贝伐单抗(Bev)与分割立体定向放疗(FSRT)联合治疗有稳定颅外疾病的NSCLC患者广泛脑转移的有效性和安全性。方法:在多学科肿瘤委员会评估后,前瞻性纳入被认为不适合立体定向放射手术的非小细胞肺癌大面积脑转移患者。患者接受FSRT (40 Gy分10次或30 Gy分5次)联合Bev (FSRT前1天和FSRT后21天分别为7.5 mg/kg)。主要终点是颅内无进展生存期(IPFS)。次要终点包括总生存期、无进展生存期、生活质量(QOL)和毒性。为了进行比较,采用全脑放疗(WBRT)加FSRT或单独FSRT治疗的广泛脑转移的NSCLC患者使用倾向评分匹配与研究组(Bev + FSRT)进行1:1匹配。结果:Bev + FSRT组共纳入106例患者,中位随访时间35.8个月。中位IPFS为18.3个月(95%置信区间,15.2-23.3个月)。与WBRT + FSRT组(9.6个月,P < 0.001)和单独FSRT组(8.9个月,P < 0.001)相比,Bev + FSRT组IPFS均有显著改善。治疗耐受性良好,1例患者发生1级放射性坏死。Bev + FSRT治疗显著减少肿瘤体积(P < 0.001)、瘤周水肿体积(P = 0.004)和血管渗漏(P < 0.001)。此外,Bev + FSRT治疗后,生活质量显著改善,特别是有症状的广泛脑转移患者。结论:这些研究结果支持Bev和FSRT联合治疗NSCLC患者广泛脑转移是一种安全有效的治疗策略,可以改善颅内疾病控制和症状缓解,同时避免WBRT相关的神经毒性。有必要进行随机试验来验证当前研究的结果。试验注册:ClinicalTrials.gov, NCT04345146。报名日期:2020-02-22。
{"title":"Efficacy and safety of combining bevacizumab and fractionated stereotactic radiotherapy for extensive brain metastases in patients with non-small cell lung cancer: a prospective phase II study (GASTO-1053)","authors":"Rui Zhou,&nbsp;Shiyang Zheng,&nbsp;Daquan Wang,&nbsp;Fang Dong,&nbsp;Hongmei Zhang,&nbsp;Tao Zhang,&nbsp;Qiaoting Luo,&nbsp;Biaoshui Liu,&nbsp;Hui Liu,&nbsp;Jun Zhang,&nbsp;Fangjie Liu,&nbsp;Bin Wang,&nbsp;Likun Chen,&nbsp;Yonggao Mou,&nbsp;Kangqiang Peng,&nbsp;Bo Qiu,&nbsp;Hui Liu","doi":"10.1002/cac2.70078","DOIUrl":"10.1002/cac2.70078","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The prognosis for non-small cell lung cancer (NSCLC) patients with extensive brain metastases (BMs) treated with radiotherapy alone remains poor. Based on the synergistic potential of radiotherapy and angiogenesis inhibitors, we initiated this phase II study to assess the efficacy and safety of combining bevacizumab (Bev) with fractionated stereotactic radiotherapy (FSRT) in managing extensive BMs in NSCLC patients who had stable extracranial disease.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Patients with extensive BMs from NSCLC, deemed unsuitable for stereotactic radiosurgery, were prospectively enrolled following multidisciplinary tumor board evaluation. Patients received FSRT (40 Gy in 10 fractions or 30 Gy in 5 fractions) in combination with Bev (7.5 mg/kg on day 1 prior to FSRT and on day 21 post-FSRT). The primary endpoint was intracranial progression-free survival (IPFS). Secondary endpoints included overall survival, progression-free survival, quality of life (QOL), and toxicities. For comparison, NSCLC patients with extensive BMs treated with whole-brain radiotherapy (WBRT) plus FSRT or FSRT alone were matched 1:1 with the study group (Bev + FSRT) using the propensity score matching.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;One hundred and six patients were included in the Bev + FSRT group, with a median follow-up duration of 35.8 months. The median IPFS was 18.3 months (95% confidence interval, 15.2-23.3 months). The Bev + FSRT group showed a significant improvement in IPFS compared to both the WBRT + FSRT group (9.6 months, P &lt; 0.001) and the FSRT alone group (8.9 months, P &lt; 0.001). Treatment was well tolerated, with grade 1 radiation necrosis in 1 patient. Bev + FSRT treatment significantly reduced tumor volume (&lt;i&gt;P&lt;/i&gt; &lt; 0.001), peritumoral edema volume (&lt;i&gt;P&lt;/i&gt; = 0.004), and vascular leakage (&lt;i&gt;P&lt;/i&gt; &lt; 0.001). Furthermore, QOL was significantly improved after Bev + FSRT treatment, particularly in patients with symptomatic extensive BMs.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;These findings support the combination of Bev and FSRT as a safe and effective treatment strategy for extensive BMs in NSCLC patients, offering improved intracranial disease control and symptom relief while avoiding the neurotoxicity associated with WBRT. A randomized trial is warranted to validate the findings of the current study.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Trial registration&lt;/h3&gt;\u0000 \u0000 &lt;p","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1739-1754"},"PeriodicalIF":24.9,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145511785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-cyclin-dependent kinase inhibition is a potential treatment for adenoid cystic carcinoma that downregulates the MYB::NFIB fusion and induces tumor regression 泛细胞周期蛋白依赖性激酶抑制是腺样囊性癌的一种潜在治疗方法,可下调MYB::NFIB融合并诱导肿瘤消退。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-12 DOI: 10.1002/cac2.70079
Junchi Huang, Peter Larsson, Maryam Kakay Afshari, Paloma Tejera Nevado, Tajana Tešan Tomić, André Fehr, Fredrik Jäwert, Göran Stenman, Mattias K. Andersson
<p>Adenoid cystic carcinoma (ACC) is an aggressive glandular cancer primarily affecting the major and minor salivary glands but may also occur in other anatomical locations such as the breast, prostate, lungs, and skin [<span>1, 2</span>]. ACC has a poor long-term prognosis due to frequent recurrences and distant metastases and is unresponsive to all so far tested systemic therapies. The <i>MYB</i> proto-oncogene, transcription factor (<i>MYB</i>), is a key oncogenic driver activated by gene fusions in ACC [<span>3-7</span>]. We have previously demonstrated that the canonical <i>MYB</i>::nuclear factor I B (<i>NFIB</i>) fusion (<i>MYB::NFIB</i>) is targetable by insulin-like growth factor 1 receptor/AKT serine-threonine kinase (IGF1R/AKT) inhibitors, demonstrating that it is indeed an actionable target in ACC [<span>5</span>].</p><p>To identify more effective therapeutic options for ACC patients, we conducted an in vitro drug screen using carefully validated <i>MYB::NFIB</i>-positive ACC cells and a custom-made library of more than 300 small-molecule inhibitors covering important druggable targets in precision oncology (Supplementary Materials). Notably, cyclin-dependent kinase (CDK) inhibitors emerged among the most effective agents that reduced the viability of ACC cells (Figure 1A, Supplementary Tables S1-S2). We further tested 8 different U.S. Food and Drug Administration (FDA)-approved/phase II–III CDK inhibitors, of which dinaciclib (a pan-CDK inhibitor) showed by far the highest potency (half maximal inhibitory concentration [IC50]: 10–13 nmol/L, <i>P</i> < 0.001) (Figure 1B, Supplementary Figure S1A). ACC cells were significantly less sensitive to U.S. FDA-approved CDK4/6 inhibitors, such as palbociclib and ribociclib, than to dinaciclib. The ACC cell line, UM-HACC-2A, showed similar sensitivity to dinaciclib as ACCX11 and ACC67 cells, whereas control pleomorphic adenoma (PA) cells were significantly less responsive (Supplementary Figure S1B). Additional top hits from our screen included histone deacetylase, proteasome, and IGF1R-phosphoinositide 3-kinase (PI3K)-AKT inhibitors, consistent with our previous findings [<span>5, 8</span>] and thus validating our screening approach.</p><p>Dinaciclib caused a significant decrease in ACC spheroid formation at nanomolar concentrations (Figure 1C, Supplementary Figure S2A), suggesting that it inhibits cell division of immature stem-like ACC cells capable of tumor initiation. Flow cytometry analysis of dinaciclib-treated ACC cells revealed reduced S-phase entry and accumulation of cells in the G1 and G2/M phases, indicating cell cycle arrest at multiple checkpoints (Supplementary Figures S2B-C and S3). To test if CDK inhibition leads to apoptosis in ACC cells, we treated ACCX11 and ACC67 cells with CDK inhibitors at different concentrations for 24 h. Dinaciclib induced apoptosis at low concentrations, whereas Flavopiridol and AT7519 caused apoptosis at much higher concentrations; the other teste
腺样囊性癌(Adenoid cystic carcinoma, ACC)是一种侵袭性腺癌,主要影响大涎腺和小涎腺,但也可能发生在其他解剖部位,如乳腺、前列腺、肺和皮肤[1,2]。由于经常复发和远处转移,ACC的长期预后较差,并且对迄今为止测试的所有全身治疗无反应。MYB原癌基因转录因子(MYB)是ACC中基因融合激活的关键致癌驱动因子[3-7]。我们之前已经证明,典型的MYB::核因子IB (NFIB)融合(MYB::NFIB)可被胰岛素样生长因子1受体/AKT丝氨酸-苏氨酸激酶(IGF1R/AKT)抑制剂靶向,这表明它确实是ACC[5]的可操作靶点。为了确定ACC患者更有效的治疗方案,我们使用经过仔细验证的MYB:: nfib阳性ACC细胞和一个包含300多种小分子抑制剂的定制文库进行了体外药物筛选,这些小分子抑制剂涵盖了精确肿瘤学中重要的可药物靶点(补充材料)。值得注意的是,细胞周期蛋白依赖性激酶(CDK)抑制剂是降低ACC细胞活力最有效的药物之一(图1A,补充表S1-S2)。我们进一步测试了8种不同的美国食品和药物管理局(FDA)批准的/ II-III期CDK抑制剂,其中dinaciclib(一种泛CDK抑制剂)显示出迄今为止最高的效力(最大抑制浓度的一半[IC50]: 10-13 nmol/L, P &lt; 0.001)(图1B,补充图S1A)。ACC细胞对美国fda批准的CDK4/6抑制剂(如palbociclib和ribociclib)的敏感性明显低于对dinaciclib。ACC细胞系UM-HACC-2A对dinaciclib的敏感性与ACCX11和ACC67细胞相似,而对照多形性腺瘤(PA)细胞对dinaciclib的敏感性明显较低(Supplementary Figure S1B)。我们筛选的其他热门项目包括组蛋白去乙酰化酶、蛋白酶体和igf1r -磷酸肌肽3-激酶(PI3K)-AKT抑制剂,这与我们之前的发现一致[5,8],从而验证了我们的筛选方法。在纳摩尔浓度下,Dinaciclib导致ACC球体形成显著减少(图1C,补充图S2A),表明它抑制了能够引发肿瘤的未成熟干细胞样ACC细胞的细胞分裂。流式细胞术分析显示,经dinaciclib处理的ACC细胞在G1和G2/M期的s期进入和细胞积累减少,表明细胞周期在多个检查点停滞(补充图S2B-C和S3)。为了测试CDK抑制是否会导致ACC细胞凋亡,我们用不同浓度的CDK抑制剂处理ACCX11和ACC67细胞24小时。低浓度的地那昔利布诱导细胞凋亡,而高浓度的黄嘌呤吡醇和AT7519诱导细胞凋亡;其他测试的CDK抑制剂不诱导细胞凋亡(图1D,补充图S4A)。Dinaciclib还能诱导UM-HACC-2A ACC细胞凋亡,但对PA、黏液表皮样癌和乳腺癌细胞没有或极低的影响(Supplementary Figure S4B-D),表明该药对ACC具有特异性敏感性。然后,我们探索了凋亡反应的潜在myb依赖性。野生型MYB在ACC67细胞中的过表达增强了dinaciclib诱导的细胞凋亡(图1E)。相反,在ACCX11中MYB::NFIB敲低降低了对dinaciclib的敏感性和细胞增殖,但不增加凋亡(图1F,补充图S5A-B),与先前在ACC67细胞[5]中的发现一致。ACCX11细胞MYB::NFIB表达水平明显高于ACC67细胞,对dinaciclib的敏感性高于ACC67细胞(图1D和1G,补充图S2C、S4A和S5C)。这些结果表明,高MYB水平使ACC细胞对泛cdk抑制敏感,并暗示它们是“MYB成瘾”。对dinaciclib处理的ACC细胞的RNA-seq分析显示,参与细胞周期、DNA复制和DNA修复的基因下调,而上调的基因与程序性细胞死亡、蛋白质水解和自噬相关(补充图S6A-C)。基因集富集分析显示,先前鉴定的MYB特征基因[9]在dinaciclib处理的细胞中显著下调(图1H),这表明dinaciclib干扰了MYB驱动基因的表达。值得注意的是,我们还发现dinaciclib直接影响MYB::NFIB表达;在dinaciclib处理的细胞中,MYB::NFIB mRNA和蛋白水平均显著下调(图1I,补充图S6D)。此外,参与细胞周期调控和凋亡的已知MYB靶基因也显著减少(Supplementary Figure S6E),表明dinaciclib通过下调MYB:: nfib驱动的转录程序的表达,从而破坏了MYB:: nfib驱动的转录程序。CDK9,一个已知的dinaciclib靶点,调节乳腺癌和结肠癌细胞中MYB的表达。 ACC细胞的Western blotting显示,在dinaciclib治疗后,RNA聚合酶II丝氨酸2的磷酸化降低(补充图S7A),证实CDK9也是dinaciclib在ACC中的靶标。CDK9敲低导致MYB::NFIB表达降低,但与dinaciclib不同,不诱导细胞凋亡(图1J-K,补充图S7B-C)。同样,使用CDK9抑制剂KB-0742治疗也未能诱导细胞凋亡(Supplementary Figure S7D),这表明其他CDK靶点介导ACC细胞死亡。值得注意的是,与正常唾液腺组织相比,所有已知被dinaciclib靶向的CDK基因在原发性acc中都过表达(图1L)。这些基因的个体敲低表明,CDK1、CDK2、CDK4和CDK6的沉默诱导ACC细胞凋亡,但效果不如dinaciclib(图1M,补充图S7E)。出乎意料的是,敲除所有测试的CDK基因导致MYB::NFIB在mRNA和蛋白质水平上的表达显著降低,其中CDK6的影响最为显著(图1N,补充图S7F)。CDK6也是ACC患者样本中表达最高的CDK基因(n = 8)(补充图S8)。综上所述,这些结果表明几种CDKs协同作用调节MYB::NFIB的表达,并且dinaciclib通过抑制多种CDKs诱导ACC细胞显著凋亡。由于MYB::NFIB和CDK9敲低均未能诱导细胞凋亡,我们的研究结果对正在进行和已完成的单药MYB/CDK9抑制剂治疗ACC (NCT06462183, NCT06297941, NCT04718675)的临床试验具有重要意义。为了验证泛cdk抑制在体内的有效性,我们用dinaciclib治疗两个ACC患者来源的异种移植(PDX)模型6周。两种模型均对dinaciclib有明显的肿瘤消退反应,单个小鼠的最大肿瘤体积分别减少94% (ACCX11)和27% (ACCX5M1)(图10)。重要的是,dinaciclib对小鼠体重没有显着影响(补充图S9A),先前包括其他癌症类型的临床I/II期试验表明,dinaciclib总体上耐受性良好且安全(NCT00871663, NCT00732810)。值得注意的是,我们的研究报告了在PDX模型中使用dinaciclib作为单药治疗的肿瘤消退,这在其他研究中没有显示,无论癌症类型如何。与对照肿瘤相比,经dinaciclib处理的ACC PDX小鼠肿瘤组织的组织病理学分析显示,与对照肿瘤相比,中心区域大面积坏死,炎症细胞局灶性浸润(图1P)。此外,Ki-67和MYB:
{"title":"Pan-cyclin-dependent kinase inhibition is a potential treatment for adenoid cystic carcinoma that downregulates the MYB::NFIB fusion and induces tumor regression","authors":"Junchi Huang,&nbsp;Peter Larsson,&nbsp;Maryam Kakay Afshari,&nbsp;Paloma Tejera Nevado,&nbsp;Tajana Tešan Tomić,&nbsp;André Fehr,&nbsp;Fredrik Jäwert,&nbsp;Göran Stenman,&nbsp;Mattias K. Andersson","doi":"10.1002/cac2.70079","DOIUrl":"10.1002/cac2.70079","url":null,"abstract":"&lt;p&gt;Adenoid cystic carcinoma (ACC) is an aggressive glandular cancer primarily affecting the major and minor salivary glands but may also occur in other anatomical locations such as the breast, prostate, lungs, and skin [&lt;span&gt;1, 2&lt;/span&gt;]. ACC has a poor long-term prognosis due to frequent recurrences and distant metastases and is unresponsive to all so far tested systemic therapies. The &lt;i&gt;MYB&lt;/i&gt; proto-oncogene, transcription factor (&lt;i&gt;MYB&lt;/i&gt;), is a key oncogenic driver activated by gene fusions in ACC [&lt;span&gt;3-7&lt;/span&gt;]. We have previously demonstrated that the canonical &lt;i&gt;MYB&lt;/i&gt;::nuclear factor I B (&lt;i&gt;NFIB&lt;/i&gt;) fusion (&lt;i&gt;MYB::NFIB&lt;/i&gt;) is targetable by insulin-like growth factor 1 receptor/AKT serine-threonine kinase (IGF1R/AKT) inhibitors, demonstrating that it is indeed an actionable target in ACC [&lt;span&gt;5&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;To identify more effective therapeutic options for ACC patients, we conducted an in vitro drug screen using carefully validated &lt;i&gt;MYB::NFIB&lt;/i&gt;-positive ACC cells and a custom-made library of more than 300 small-molecule inhibitors covering important druggable targets in precision oncology (Supplementary Materials). Notably, cyclin-dependent kinase (CDK) inhibitors emerged among the most effective agents that reduced the viability of ACC cells (Figure 1A, Supplementary Tables S1-S2). We further tested 8 different U.S. Food and Drug Administration (FDA)-approved/phase II–III CDK inhibitors, of which dinaciclib (a pan-CDK inhibitor) showed by far the highest potency (half maximal inhibitory concentration [IC50]: 10–13 nmol/L, &lt;i&gt;P&lt;/i&gt; &lt; 0.001) (Figure 1B, Supplementary Figure S1A). ACC cells were significantly less sensitive to U.S. FDA-approved CDK4/6 inhibitors, such as palbociclib and ribociclib, than to dinaciclib. The ACC cell line, UM-HACC-2A, showed similar sensitivity to dinaciclib as ACCX11 and ACC67 cells, whereas control pleomorphic adenoma (PA) cells were significantly less responsive (Supplementary Figure S1B). Additional top hits from our screen included histone deacetylase, proteasome, and IGF1R-phosphoinositide 3-kinase (PI3K)-AKT inhibitors, consistent with our previous findings [&lt;span&gt;5, 8&lt;/span&gt;] and thus validating our screening approach.&lt;/p&gt;&lt;p&gt;Dinaciclib caused a significant decrease in ACC spheroid formation at nanomolar concentrations (Figure 1C, Supplementary Figure S2A), suggesting that it inhibits cell division of immature stem-like ACC cells capable of tumor initiation. Flow cytometry analysis of dinaciclib-treated ACC cells revealed reduced S-phase entry and accumulation of cells in the G1 and G2/M phases, indicating cell cycle arrest at multiple checkpoints (Supplementary Figures S2B-C and S3). To test if CDK inhibition leads to apoptosis in ACC cells, we treated ACCX11 and ACC67 cells with CDK inhibitors at different concentrations for 24 h. Dinaciclib induced apoptosis at low concentrations, whereas Flavopiridol and AT7519 caused apoptosis at much higher concentrations; the other teste","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1734-1738"},"PeriodicalIF":24.9,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145494756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unfolded protein response kinase PERK supports survival and metastasis of circulating tumor cell clusters via SAM synthesis and H3K4me3-dependent PDGFB signaling 未折叠蛋白反应激酶PERK通过SAM合成和h3k4me3依赖性PDGFB信号传导支持循环肿瘤细胞簇的生存和转移。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-10 DOI: 10.1002/cac2.70072
Rui Tang, Yan Sun, Ao Deng, Jiahe Liu, Peijin Dai, Jing Chen, Chaoqun Deng, Hui Liu, Yuhang Hai, Yanran Tong, Yan-e Du, Manran Liu, Haojun Luo
<div> <section> <h3> Background</h3> <p>Metastasis is the leading cause of cancer-related mortality, with circulating tumor cell (CTC) clusters serving as highly efficient precursors of distant metastasis. Survival of CTC clusters in the bloodstream is the primary contributor to tumor metastasis. However, the underlying mechanisms of how CTC clusters respond to the blood environment and drive metastasis remain elusive. This study aimed to elucidate the potential mechanisms that enable CTC clusters to adapt and survive in the bloodstream.</p> </section> <section> <h3> Methods</h3> <p>CTC clusters were detected using a microfluidic system in cancer patients, as well as in patient-derived xenograft (PDX), cell line-derived xenograft, and syngeneic models. The key molecules responsible for the adaptive survival of CTC clusters were characterized using RNA-sequencing (RNA-seq), gene interference, and flow cytometry. To investigate the underlying mechanisms of adaptive survival, RNA-seq, targeted metabolomics, isotope tracing experiments, chromatin immunoprecipitation (ChIP) sequencing, and immunofluorescence (IF) staining were employed. The therapeutic potential of survival pathway inhibitor combined with chemotherapy drug was evaluated in patient-derived CTCs and the PDX model.</p> </section> <section> <h3> Results</h3> <p>CTC clusters exhibited superior survival and metastatic capacity compared to single CTCs and were associated with adverse clinical outcomes. The unfolded protein response mediator protein kinase R-like endoplasmic reticulum kinase (PERK) was activated in CTC clusters and maintained S-adenosylmethionine (SAM) availability, facilitating their adaptive survival in the bloodstream. Mechanistically, PERK mediated the upregulation of activating transcription factor 4 (ATF4), which enhanced methionine adenosyltransferase 2A (MAT2A) expression, contributing to SAM synthesis. Increased SAM enhanced H3K4me3 modification of the platelet-derived growth factor B (<i>PDGFB</i>) promoter, leading to elevated PDGFB secretion and its accumulation in the intercellular region within CTC clusters. PDGFB functioned as a shared survival signal, triggering the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway via platelet-derived growth factor receptor beta (PDGFRβ), supporting CTC cluster survival in the bloodstream. Inhibition of PERK and PDGFRβ profoundly impaired the survival signaling and suppressed the metastatic dissemination of CTC clusters.</p> </section> <section> <h3> Conclusions</h3> <p>Our findings revealed a PERK/MAT2A/PDGFB axi
背景:转移是癌症相关死亡的主要原因,循环肿瘤细胞(CTC)簇是远处转移的高效前体。血流中CTC簇的存活是肿瘤转移的主要因素。然而,CTC簇如何响应血液环境并驱动转移的潜在机制仍不清楚。本研究旨在阐明使CTC簇在血液中适应和存活的潜在机制。方法:采用微流体系统检测癌症患者、患者来源的异种移植物(PDX)、细胞系来源的异种移植物和同基因模型中的CTC簇。利用rna测序(RNA-seq)、基因干扰和流式细胞术对CTC集群适应性存活的关键分子进行了表征。为了研究适应性生存的潜在机制,采用了RNA-seq、靶向代谢组学、同位素示踪实验、染色质免疫沉淀(ChIP)测序和免疫荧光(IF)染色。在患者源性CTCs和PDX模型中评估生存途径抑制剂联合化疗药物的治疗潜力。结果:与单个CTC相比,CTC集群表现出更高的生存和转移能力,并与不良临床结果相关。未折叠蛋白反应介质蛋白激酶r样内质网激酶(PERK)在CTC簇中被激活,维持s -腺苷蛋氨酸(SAM)的可用性,促进其在血液中的适应性存活。从机制上讲,PERK介导了激活转录因子4 (ATF4)的上调,从而增强了蛋氨酸腺苷转移酶2A (MAT2A)的表达,促进了SAM的合成。SAM的增加增强了血小板源性生长因子B (PDGFB)启动子的H3K4me3修饰,导致PDGFB分泌升高及其在CTC集群细胞间区域的积累。PDGFB作为共享生存信号,通过血小板衍生生长因子受体β (PDGFRβ)触发磷酸肌肽3激酶(PI3K)/蛋白激酶B (AKT)通路,支持血流中的CTC簇存活。抑制PERK和PDGFRβ严重损害了生存信号并抑制了CTC簇的转移传播。结论:我们的研究结果揭示了PERK/MAT2A/PDGFB轴赋予血流中的CTC簇适应性生存能力。靶向这种生存信号通路是一种有希望的转移性癌症治疗策略。
{"title":"Unfolded protein response kinase PERK supports survival and metastasis of circulating tumor cell clusters via SAM synthesis and H3K4me3-dependent PDGFB signaling","authors":"Rui Tang,&nbsp;Yan Sun,&nbsp;Ao Deng,&nbsp;Jiahe Liu,&nbsp;Peijin Dai,&nbsp;Jing Chen,&nbsp;Chaoqun Deng,&nbsp;Hui Liu,&nbsp;Yuhang Hai,&nbsp;Yanran Tong,&nbsp;Yan-e Du,&nbsp;Manran Liu,&nbsp;Haojun Luo","doi":"10.1002/cac2.70072","DOIUrl":"10.1002/cac2.70072","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Metastasis is the leading cause of cancer-related mortality, with circulating tumor cell (CTC) clusters serving as highly efficient precursors of distant metastasis. Survival of CTC clusters in the bloodstream is the primary contributor to tumor metastasis. However, the underlying mechanisms of how CTC clusters respond to the blood environment and drive metastasis remain elusive. This study aimed to elucidate the potential mechanisms that enable CTC clusters to adapt and survive in the bloodstream.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;CTC clusters were detected using a microfluidic system in cancer patients, as well as in patient-derived xenograft (PDX), cell line-derived xenograft, and syngeneic models. The key molecules responsible for the adaptive survival of CTC clusters were characterized using RNA-sequencing (RNA-seq), gene interference, and flow cytometry. To investigate the underlying mechanisms of adaptive survival, RNA-seq, targeted metabolomics, isotope tracing experiments, chromatin immunoprecipitation (ChIP) sequencing, and immunofluorescence (IF) staining were employed. The therapeutic potential of survival pathway inhibitor combined with chemotherapy drug was evaluated in patient-derived CTCs and the PDX model.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;CTC clusters exhibited superior survival and metastatic capacity compared to single CTCs and were associated with adverse clinical outcomes. The unfolded protein response mediator protein kinase R-like endoplasmic reticulum kinase (PERK) was activated in CTC clusters and maintained S-adenosylmethionine (SAM) availability, facilitating their adaptive survival in the bloodstream. Mechanistically, PERK mediated the upregulation of activating transcription factor 4 (ATF4), which enhanced methionine adenosyltransferase 2A (MAT2A) expression, contributing to SAM synthesis. Increased SAM enhanced H3K4me3 modification of the platelet-derived growth factor B (&lt;i&gt;PDGFB&lt;/i&gt;) promoter, leading to elevated PDGFB secretion and its accumulation in the intercellular region within CTC clusters. PDGFB functioned as a shared survival signal, triggering the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway via platelet-derived growth factor receptor beta (PDGFRβ), supporting CTC cluster survival in the bloodstream. Inhibition of PERK and PDGFRβ profoundly impaired the survival signaling and suppressed the metastatic dissemination of CTC clusters.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our findings revealed a PERK/MAT2A/PDGFB axi","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1706-1733"},"PeriodicalIF":24.9,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145487926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HMGB3 promotes brain metastasis of lung adenocarcinoma by recruiting SSBP1 for nuclear translocation to remodel mitochondrial metabolism HMGB3通过募集SSBP1进行核易位,重塑线粒体代谢,促进肺腺癌脑转移。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-05 DOI: 10.1002/cac2.70075
Huanhuan Cui, Yuechao Yang, Sen Li, Yan Hao, Mingtao Feng, Changshuai Zhou, Xin Chen, Yang Gao, Lei Chen, Xiaojun Wu, Weiguo Hu, Liangdong Li, Yiqun Cao

Background

Brain metastasis, a leading cause of death in patients with lung adenocarcinoma (LUAD), arises from tumor cells adapting to the unique microenvironment of the brain through metabolic remodeling regulated by key oncogenes. Here, we aimed to determine the role of high mobility group protein box 3 (HMGB3) in regulating tumor cell metabolism to promote the progression and brain metastasis of LUAD.

Methods

A LUAD cell model predisposed to brain metastasis was established, followed by differential gene expression analysis. HMGB3 expression was quantified via single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, with clinical relevance assessed in two retrospective cohorts: the primary LUAD and the LUAD brain metastasis cohorts. Gene enrichment analysis of scRNA-seq and bulk RNA-seq data, along with Western blotting, were performed to identify HMGB3-associated pathways. Co-immunoprecipitation combined with mass spectrometry was used to detect HMGB3-interacting proteins. Gain-of-function, loss-of-function and rescue experiments targeting HMGB3 downstream pathways were conducted in vitro and in vivo.

Results

HMGB3 expression was significantly elevated in both primary LUAD lesions and brain metastatic foci, and its upregulation was strongly associated with poor prognosis in LUAD patients, as well as in those with concomitant brain metastasis. HMGB3 enhanced the migration, invasion, and epithelial-mesenchymal transition (EMT) capabilities of LUAD cells in vitro and promoted the development of brain metastasis in vivo. Mechanistically, HMGB3 recruited and interacted with single-stranded DNA-binding protein 1 (SSBP1), inducing its nuclear translocation and reprogramming mitochondrial metabolism. This process elevated cytoplasmic reactive oxygen species levels, which subsequently activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathway through downregulating phosphatase and tensin homolog (PTEN), ultimately promoting tumor cell proliferation, migration, invasion, and EMT.

Conclusions

This study demonstrated HMGB3 as a key regulator of the brain metastasis of LUAD, orchestrating tumor cells’ metabolic adaptation to the brain microenvironment through modulation of mitochondrial metabolism, thereby offering potential therapeutic targets for LUAD brain metastases.

背景:脑转移是肺腺癌(LUAD)患者死亡的主要原因,肿瘤细胞通过关键癌基因调节的代谢重塑来适应大脑独特的微环境。本研究旨在确定高迁移率组蛋白盒3 (HMGB3)在调节肿瘤细胞代谢中促进LUAD进展和脑转移的作用。方法:建立易发生脑转移的LUAD细胞模型,进行差异基因表达分析。通过单细胞RNA测序(scRNA-seq)和免疫组织化学对HMGB3表达进行量化,并在两个回顾性队列中评估临床相关性:原发性LUAD和LUAD脑转移队列。对scRNA-seq和大量RNA-seq数据进行基因富集分析,以及Western blotting,以确定hmgb3相关途径。采用免疫共沉淀法结合质谱法检测hmgb3相互作用蛋白。在体外和体内进行了靶向HMGB3下游通路的功能获得、功能丧失和挽救实验。结果:HMGB3在LUAD原发病灶和脑转移灶中表达均显著升高,且HMGB3表达上调与LUAD患者及合并脑转移患者预后不良密切相关。HMGB3在体外增强LUAD细胞的迁移、侵袭和上皮间质转化(epithelial-mesenchymal transition, EMT)能力,在体内促进脑转移的发生。机制上,HMGB3招募并与单链dna结合蛋白1 (SSBP1)相互作用,诱导其核易位并重编程线粒体代谢。这一过程提高了细胞质活性氧水平,随后通过下调磷酸酶和紧张素同源物(PTEN)激活磷脂酰肌醇3-激酶/蛋白激酶B (PI3K-Akt)信号通路,最终促进肿瘤细胞的增殖、迁移、侵袭和EMT。结论:本研究表明HMGB3是LUAD脑转移的关键调控因子,通过调节线粒体代谢,协调肿瘤细胞对脑微环境的代谢适应,从而为LUAD脑转移提供潜在的治疗靶点。
{"title":"HMGB3 promotes brain metastasis of lung adenocarcinoma by recruiting SSBP1 for nuclear translocation to remodel mitochondrial metabolism","authors":"Huanhuan Cui,&nbsp;Yuechao Yang,&nbsp;Sen Li,&nbsp;Yan Hao,&nbsp;Mingtao Feng,&nbsp;Changshuai Zhou,&nbsp;Xin Chen,&nbsp;Yang Gao,&nbsp;Lei Chen,&nbsp;Xiaojun Wu,&nbsp;Weiguo Hu,&nbsp;Liangdong Li,&nbsp;Yiqun Cao","doi":"10.1002/cac2.70075","DOIUrl":"10.1002/cac2.70075","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Brain metastasis, a leading cause of death in patients with lung adenocarcinoma (LUAD), arises from tumor cells adapting to the unique microenvironment of the brain through metabolic remodeling regulated by key oncogenes. Here, we aimed to determine the role of high mobility group protein box 3 (HMGB3) in regulating tumor cell metabolism to promote the progression and brain metastasis of LUAD.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>A LUAD cell model predisposed to brain metastasis was established, followed by differential gene expression analysis. HMGB3 expression was quantified via single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, with clinical relevance assessed in two retrospective cohorts: the primary LUAD and the LUAD brain metastasis cohorts. Gene enrichment analysis of scRNA-seq and bulk RNA-seq data, along with Western blotting, were performed to identify HMGB3-associated pathways. Co-immunoprecipitation combined with mass spectrometry was used to detect HMGB3-interacting proteins. Gain-of-function, loss-of-function and rescue experiments targeting HMGB3 downstream pathways were conducted in vitro and in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>HMGB3 expression was significantly elevated in both primary LUAD lesions and brain metastatic foci, and its upregulation was strongly associated with poor prognosis in LUAD patients, as well as in those with concomitant brain metastasis. HMGB3 enhanced the migration, invasion, and epithelial-mesenchymal transition (EMT) capabilities of LUAD cells in vitro and promoted the development of brain metastasis in vivo. Mechanistically, HMGB3 recruited and interacted with single-stranded DNA-binding protein 1 (SSBP1), inducing its nuclear translocation and reprogramming mitochondrial metabolism. This process elevated cytoplasmic reactive oxygen species levels, which subsequently activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathway through downregulating phosphatase and tensin homolog (PTEN), ultimately promoting tumor cell proliferation, migration, invasion, and EMT.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This study demonstrated HMGB3 as a key regulator of the brain metastasis of LUAD, orchestrating tumor cells’ metabolic adaptation to the brain microenvironment through modulation of mitochondrial metabolism, thereby offering potential therapeutic targets for LUAD brain metastases.</p>\u0000 </section>\u0000 </div>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1676-1705"},"PeriodicalIF":24.9,"publicationDate":"2025-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145451116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo intratumoral heterogeneity in a dish: scalable forebrain organoid models of embryonal brain tumors for high-throughput personalized drug discovery 培养皿中的体内肿瘤内异质性:用于高通量个性化药物发现的胚胎性脑肿瘤的可扩展前脑类器官模型。
IF 24.9 1区 医学 Q1 ONCOLOGY Pub Date : 2025-11-02 DOI: 10.1002/cac2.70074
Nicole C. Riedel, Carolin Walter, Flavia W. de Faria, Lea Altendorf, Paula Aust, Carolin Göbel, Archana Verma, Annika Ballast, Ivan Bedzhov, Rajanya Roy, Daniel Münter, Erik Schüftan, Thomas K. Albert, Claudia Rössig, Pascal Johann, Barbara von Zezschwitz, Sarah Sandmann, Julian Varghese, Christian Thomas, Ulrich Schüller, Jan M. Bruder, Kornelius Kerl
<p>Brain tumors are the most prevalent solid tumors in pediatrics, with atypical teratoid and rhabdoid tumor (ATRT) and embryonal tumor with multilayered rosettes (ETMR) presenting particularly poor prognoses.</p><p>The development of effective therapies is hampered by the lack of in vitro models that accurately reflect the complex tumor microenvironment (TME) and intratumoral heterogeneity observed in vivo. Traditional monolayer and tumorsphere/tumoroid cultures fail to capture these critical aspects [<span>1</span>], biasing them towards proliferative cell populations that respond differently to drugs than the original tumor. Likewise, in vivo models have fundamental limitations: they lack the primate-specific chromosome 19 microRNA cluster (C19MC) driver central to ETMR [<span>2</span>], cannot capture human-specific neurotoxicity, and are impractical for scalable drug screens [<span>1, 3</span>].</p><p>To address this, we developed a scalable and reproducible tumor-forebrain-organoid (TBO) model for ETMR and ATRT sonic hedgehog (ATRT-SHH) using a novel coaggregation method, which we characterized histologically and transcriptionally, and applied to drug screening, thereby identifying new candidate therapeutics for ETMR (Supplementary File of Methods). The automated workflow ensures high reproducibility and scalability, enabling the parallel generation of thousands of TBOs for high-throughput drug screening on tumor and TME.</p><p>To integrate central nervous system embryonal tumors into forebrain organoids (FBOs), which recapitulate key developmental trends and contain comparable cell populations found in first- and second-trimester fetal brains, we modified an automated FBO model [<span>4</span>] (Supplementary Figures S1, S3). For this, we employed a coaggregation approach, which involved mixing tumor and human-induced pluripotent stem cells (hiPSCs), and subsequently allowing their aggregation and joint maturation to form TBOs (Figure 1A). Confocal microscopy of whole-mount immunostained and cleared organoids revealed a broad and uniform integration of green fluorescent protein (GFP)-tagged human ETMR and ATRT-SHH (hETMR and hATRT-SHH) cells throughout FBOs (Figure 1B). The automated workflow allowed for the parallel generation of highly uniform and reproducible TBOs in 96-well plates, with low-standard error of the mean for the GFP signal intensity, indicative for tumor content, across multiple TBOs for both hETMR-FBO and hATRT-SHH-FBO (Figure 1C).</p><p>To comprehensively characterize TBOs, we employed immunohistochemistry (IHC) to examine the phenotype of hETMR- and hATRT-SHH-FBOs, with age-matched FBOs as controls. hETMR tumor areas were identified based on lin-28 homolog A (LIN28A) positivity, multilayered rosettes, and C19MC alterations, along with GFP immunofluorescence (Figure 1D, Supplementary Figure S4A-D). Control 1-month aged FBOs exhibited a predominantly immature phenotype [LIN28A<sup>+</sup>, SRY-box transcription factor 2 (
脑肿瘤是儿科最常见的实体肿瘤,非典型畸胎瘤和横纹肌样瘤(ATRT)和具有多层玫瑰花结的胚胎性肿瘤(ETMR)预后特别差。由于缺乏准确反映体内观察到的复杂肿瘤微环境(TME)和肿瘤内异质性的体外模型,阻碍了有效治疗方法的发展。传统的单层和肿瘤球/类肿瘤培养不能捕获这些关键方面,使它们偏向于对药物反应不同于原始肿瘤的增殖细胞群。同样,体内模型也有基本的局限性:它们缺乏灵长类动物特异性的19号染色体microRNA簇(C19MC)驱动程序,对ETMR[2]至关重要,不能捕获人类特异性的神经毒性,并且无法用于可扩展的药物筛选[1,3]。为了解决这个问题,我们使用一种新的共聚集方法开发了一种可扩展和可重复的肿瘤-前脑-类器官(TBO)模型,用于ETMR和ATRT音猬(ATRT- shh),我们对其进行了组织学和转录表征,并应用于药物筛选,从而确定了ETMR的新候选治疗方法(方法补充文件)。自动化工作流程确保了高再现性和可扩展性,能够并行生成数千个tbo,用于肿瘤和TME的高通量药物筛选。为了将中枢神经系统胚胎肿瘤整合到前脑类器官(FBOs)中,这概括了关键的发育趋势,并包含在妊娠早期和妊娠中期胎儿大脑中发现的可比较的细胞群,我们修改了一个自动化的FBO模型[4](补充图S1, S3)。为此,我们采用了一种共聚集方法,将肿瘤细胞和人类诱导的多能干细胞(hiPSCs)混合在一起,随后允许它们聚集和关节成熟形成tbo(图1A)。全贴载免疫染色和清除类器官的共聚焦显微镜显示,绿色荧光蛋白(GFP)标记的人ETMR和ATRT-SHH (hETMR和hATRT-SHH)细胞在整个fbo中广泛而均匀地整合(图1B)。自动化工作流程允许在96孔板上并行生成高度均匀和可重复的tbo,在hETMR-FBO和hatrt - sh - fbo的多个tbo中,GFP信号强度的平均标准误差很低,指示肿瘤含量(图1C)。为了全面表征TBOs,我们采用免疫组织化学(IHC)检测了hETMR-和hatrt - sh -FBOs的表型,并以年龄匹配的FBOs为对照。基于lin-28同源物A (LIN28A)阳性、多层莲座、C19MC改变以及GFP免疫荧光鉴定hETMR肿瘤区域(图1D,补充图S4A-D)。对照1月龄FBOs在培养过程中(2-3月龄时为MAP2C+、SOX2 -、LIN28A -)成熟,表型以不成熟为主[LIN28A+、SRY-box转录因子2 +、微管相关蛋白2C+]。hETMR细胞在所有时间点上一致显示未成熟祖细胞标记物(LIN28A+、SOX2+和Nestin+)阳性(图1D,补充图S4A-D)。此外,很少有hETMR细胞表现出细胞质MAP2C阳性。对于hATRT-SHH,根据IHC中SWI/ snf相关基质相关动作蛋白依赖的染色质亚家族B成员1的调节因子(SMARCB1)阴性(ATRT的标志)和免疫荧光中GFP阳性(图1E,补充图S4E-F)来确定肿瘤区域。值得注意的是,hart - shh细胞sox2阳性,部分map2c阳性(图1E,补充图S4E-F)。hETMR和hATRT-SHH细胞主要表现为不成熟表型(SOX2+,少数MAP2C+细胞)。与原发肿瘤一致,它们表现出特定的特征:hETMR中C19MC扩增和多层花环,而hATRT中SMARCB1阴性。最近的研究强调了在体内观察到的ETMR[5]和ATRT[6]的肿瘤内转录异质性,这种异质性在肿瘤细胞系中没有反映出来(补充图S5)。为了评估我们的tbo是否能更好地反映原发肿瘤细胞与肿瘤球的肿瘤内异质性,我们进行了单细胞RNA测序(scRNA-seq),并将我们的数据与公开的原发肿瘤数据集相结合[5-7]。对于ETMR,我们将肿瘤细胞分为放射状胶质样(RG-like)、神经元祖细胞样(NProg-like)和神经母细胞样(Nb-like)亚组,所有亚群都出现在hETMR-FBO中(图1F,补充图S6A-B)。相比之下,肿瘤球培养在hETMR中主要表现为nprog样细胞,在mETMR中主要表现为循环rg样细胞,这表明与tbo和初级样品中观察到的转录景观不同(图1G,补充图S6C-G)。 对于hATRT-SHH,我们采用基于特征的方法,使用胎儿前脑图谱[8]的神经元特征,将hATRT-SHH细胞分为类似于胎儿放射状胶质细胞(RG)、神经元祖细胞(NProg)和神经母细胞(Nb)的亚组,并将其余细胞分类为未分化细胞(图1H,补充图S6H-I)。值得注意的是,原代和TBO肿瘤细胞在亚群中表现出平衡分布,而肿瘤球培养则表现出向nprog样状态倾斜的分布(图1I)。此外,指示神经元分化的标记基因,如statthmin 2 (STMN2),在瘤球nb样细胞中明显缺失(Supplementary Figure S6J)。随后的细胞周期动力学分析显示,与tbo相比,肿瘤球表现出循环细胞的积累,后者表现出与初级样品相似的动力学(补充图S7)。Pearson相关分析进一步证实,与原发肿瘤和肿瘤球相比,原发肿瘤与TBO之间的相关性更高(图1J-K,补充图S8A-B),强调TBO在再现原发肿瘤转录格局方面具有更高的保真度。差异表达分析揭示了肿瘤球和tbo之间基因表达模式的显著变化(补充图S8C-D),表明神经组织环境对肿瘤细胞表型有上下文影响。利用我们的TBO模型同时宿主肿瘤和神经元细胞的独特能力,我们建立了一个细胞类型特异性药物筛选的自动化工作流程。TBO形成和发展后,于第20天开始药物治疗,第30天固定TBO进行后续分析,然后进行全挂载免疫染色、组织清除和高含量成像(图1L)。作为概念验证,我们通过评估依托opo苷对小鼠ETMR肿瘤(黄色荧光蛋白;YFP+)和神经元(MAP2C+) FBO细胞的作用,确定了依托opo苷的治疗窗口,该浓度范围最大限度地提高了抗肿瘤功效,同时最小化了神经元毒性(补充图S9)。在确定了tbo中细胞类型特异性毒性筛选的可行性后,我们接下来筛选了美国食品药品监督管理局批准的160种hetmr - fbo药物库(补充表S1),以确定新的药物脆弱性。大多数化合物对肿瘤的毒性高于对TME细胞的毒性(补充图S10)。有趣的是,我们筛选的四种高分药物(图1M),阿霉素、柔红霉素、长春新碱和阿糖胞苷,目前正在临床试验中作为治疗ETMR的新疗法进行研究[9,10]。三种具有高抗肿瘤活性和低神经毒性的候选药物——雷公藤甲素、阿霉素和柔红霉素的剂量-反应曲线验证了它们的抗肿瘤作用(减少GFP+细胞),并评估了它们对MAP2C+神经细胞的毒性(图1N-P)。值得注意的是,雷公藤甲素具有显著的抗肿瘤活性,且神经元毒性相对较低。正在进行ETMR临床研究的蒽环类药物(阿霉素和柔红霉素)的鉴定[9,10],通过使用PERCEPTION(见方法)的独立计算分析进一步验证,预测蒽环类药物对原发性ETMR的疗效很高(补充图S11)。这一发现加强了我们筛选平台的预测有效性。总之,我们使用一种简单、自动化的共聚集方法建立了ETMR-和atrt - sh - fbo模型,与传统的肿瘤球相比,该方法能更好地概括原发肿瘤的组织学特征和转录异质性。我们的研究验证了细胞类型特异性药物筛选的方法,并确定了蒽环
{"title":"In vivo intratumoral heterogeneity in a dish: scalable forebrain organoid models of embryonal brain tumors for high-throughput personalized drug discovery","authors":"Nicole C. Riedel,&nbsp;Carolin Walter,&nbsp;Flavia W. de Faria,&nbsp;Lea Altendorf,&nbsp;Paula Aust,&nbsp;Carolin Göbel,&nbsp;Archana Verma,&nbsp;Annika Ballast,&nbsp;Ivan Bedzhov,&nbsp;Rajanya Roy,&nbsp;Daniel Münter,&nbsp;Erik Schüftan,&nbsp;Thomas K. Albert,&nbsp;Claudia Rössig,&nbsp;Pascal Johann,&nbsp;Barbara von Zezschwitz,&nbsp;Sarah Sandmann,&nbsp;Julian Varghese,&nbsp;Christian Thomas,&nbsp;Ulrich Schüller,&nbsp;Jan M. Bruder,&nbsp;Kornelius Kerl","doi":"10.1002/cac2.70074","DOIUrl":"10.1002/cac2.70074","url":null,"abstract":"&lt;p&gt;Brain tumors are the most prevalent solid tumors in pediatrics, with atypical teratoid and rhabdoid tumor (ATRT) and embryonal tumor with multilayered rosettes (ETMR) presenting particularly poor prognoses.&lt;/p&gt;&lt;p&gt;The development of effective therapies is hampered by the lack of in vitro models that accurately reflect the complex tumor microenvironment (TME) and intratumoral heterogeneity observed in vivo. Traditional monolayer and tumorsphere/tumoroid cultures fail to capture these critical aspects [&lt;span&gt;1&lt;/span&gt;], biasing them towards proliferative cell populations that respond differently to drugs than the original tumor. Likewise, in vivo models have fundamental limitations: they lack the primate-specific chromosome 19 microRNA cluster (C19MC) driver central to ETMR [&lt;span&gt;2&lt;/span&gt;], cannot capture human-specific neurotoxicity, and are impractical for scalable drug screens [&lt;span&gt;1, 3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;To address this, we developed a scalable and reproducible tumor-forebrain-organoid (TBO) model for ETMR and ATRT sonic hedgehog (ATRT-SHH) using a novel coaggregation method, which we characterized histologically and transcriptionally, and applied to drug screening, thereby identifying new candidate therapeutics for ETMR (Supplementary File of Methods). The automated workflow ensures high reproducibility and scalability, enabling the parallel generation of thousands of TBOs for high-throughput drug screening on tumor and TME.&lt;/p&gt;&lt;p&gt;To integrate central nervous system embryonal tumors into forebrain organoids (FBOs), which recapitulate key developmental trends and contain comparable cell populations found in first- and second-trimester fetal brains, we modified an automated FBO model [&lt;span&gt;4&lt;/span&gt;] (Supplementary Figures S1, S3). For this, we employed a coaggregation approach, which involved mixing tumor and human-induced pluripotent stem cells (hiPSCs), and subsequently allowing their aggregation and joint maturation to form TBOs (Figure 1A). Confocal microscopy of whole-mount immunostained and cleared organoids revealed a broad and uniform integration of green fluorescent protein (GFP)-tagged human ETMR and ATRT-SHH (hETMR and hATRT-SHH) cells throughout FBOs (Figure 1B). The automated workflow allowed for the parallel generation of highly uniform and reproducible TBOs in 96-well plates, with low-standard error of the mean for the GFP signal intensity, indicative for tumor content, across multiple TBOs for both hETMR-FBO and hATRT-SHH-FBO (Figure 1C).&lt;/p&gt;&lt;p&gt;To comprehensively characterize TBOs, we employed immunohistochemistry (IHC) to examine the phenotype of hETMR- and hATRT-SHH-FBOs, with age-matched FBOs as controls. hETMR tumor areas were identified based on lin-28 homolog A (LIN28A) positivity, multilayered rosettes, and C19MC alterations, along with GFP immunofluorescence (Figure 1D, Supplementary Figure S4A-D). Control 1-month aged FBOs exhibited a predominantly immature phenotype [LIN28A&lt;sup&gt;+&lt;/sup&gt;, SRY-box transcription factor 2 (","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 12","pages":"1670-1675"},"PeriodicalIF":24.9,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12728470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145430387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1