Hao Zhang, Li Fu, Xinwen Leiliang, Chunrun Qu, Wantao Wu, Rong Wen, Ning Huang, Qiuguang He, Quan Cheng, Guodong Liu, Yuan Cheng
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
{"title":"Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response","authors":"Hao Zhang, Li Fu, Xinwen Leiliang, Chunrun Qu, Wantao Wu, Rong Wen, Ning Huang, Qiuguang He, Quan Cheng, Guodong Liu, Yuan Cheng","doi":"10.1002/cac2.12597","DOIUrl":"10.1002/cac2.12597","url":null,"abstract":"<p>The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.</p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"44 10","pages":"1130-1167"},"PeriodicalIF":20.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12597","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
{"title":"Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies","authors":"Wenyue Sun, Shunfeng Hu, Xin Wang","doi":"10.1002/cac2.12587","DOIUrl":"10.1002/cac2.12587","url":null,"abstract":"<p>Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.</p>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"44 9","pages":"1071-1097"},"PeriodicalIF":20.1,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengbo Yao, Gaoxiang Zhao, Min Li, Wensheng Qiu, Zhimin Lu
<p>Telomeres maintain chromosome integrity. Loss of telomere function, which is attributed to progressively shortened telomeres in each round of DNA replication, induces end-to-end fusion of chromosomes, anaphase bridges with subsequent chromosome breakage, and eventually leads to senescence and apoptosis in normal cells [<span>1</span>]. In cancer cells, highly activated telomerase synthesizes telomere repeats to promote telomere elongation. For assembling catalytically active telomerase, cytoplasmic telomerase reverse transcriptase (TERT), which is the catalytic protein subunit of telomerase, needs to translocate into the nucleus. This translocation requires AKT-mediated TERT S227 phosphorylation and subsequent binding of the nuclear localization signal (NLS) of TERT to importin α [<span>2</span>]. However, whether cancer cells and normal cells differentially regulate TERT phosphorylation and telomere functions remain largely unknown.</p><p>We recently demonstrated that fructose 1,6-bisphosphatase 1 (FBP1), the rate-limiting gluconeogenic enzyme that converts fructose 1,6-bisphosphate (F-1,6-BP) to fructose 6-phosphate (F-6-P), acts as a protein phosphatase and dephosphorylates TERT [<span>3</span>]. Through analyses of FBP1 immunoprecipitants from hepatocellular carcinoma (HCC) Huh7 cells by mass spectrometry, TERT was identified as an FBP1-associated protein, and this interaction was primarily in the cytosol. An in vitro glutathione S-transferase (GST) pulldown assay showed that FBP1 directly bound to TERT, and truncation and mutagenesis analyses identified that asparagine (N)273 of FBP1 is a key residue involving in binding to TERT. Importantly, a protein dephosphorylation assay showed that wild-type (WT) FBP1, but not FBP1 N273A mutant, dephosphorylated AKT1-phosphorylated TERT at S227. Notably, FBP1 G260R, a metabolically inactive mutant defected in its binding to F-1,6-BP, was still able to dephosphorylate TERT, indicating that FBP1 dephosphorylates TERT independent of its gluconeogenic activity.</p><p>The catalytic domain of conventional protein phosphatases contains a conserved and reduced cysteine (C), which is critical for the dephosphorylation of protein substrates. Molecular docking analyses showed that the phosphorylated S227 residue of TERT was in close proximity to C129 of FBP1 [<span>3</span>]. In addition, during the process of the dephosphorylation, FBP1 formed a covalent phospho-C129 intermediate. FBP1 C129S mutant, which had comparable metabolic activity to its WT counterpart, lost its ability to dephosphorylate TERT pS227 both in vitro and in vivo. Structural analyses revealed that a binding pocket was formed by FBP1 C129, R244 and D128, which interact with the phosphate group of pS227 of TERT. Notably, mutations of FBP1 R244 or D128 also decreased TERT pS227 dephosphorylation by FBP1.</p><p>As expected, FBP1 depletion enhanced the nuclear translocation of TERT and telomerase activity, leading to increased telomere lengths
{"title":"Abrogation of nuclear entry of TERT by fructose 1,6-bisphosphatase 1-mediated dephosphorylation","authors":"Pengbo Yao, Gaoxiang Zhao, Min Li, Wensheng Qiu, Zhimin Lu","doi":"10.1002/cac2.12599","DOIUrl":"10.1002/cac2.12599","url":null,"abstract":"<p>Telomeres maintain chromosome integrity. Loss of telomere function, which is attributed to progressively shortened telomeres in each round of DNA replication, induces end-to-end fusion of chromosomes, anaphase bridges with subsequent chromosome breakage, and eventually leads to senescence and apoptosis in normal cells [<span>1</span>]. In cancer cells, highly activated telomerase synthesizes telomere repeats to promote telomere elongation. For assembling catalytically active telomerase, cytoplasmic telomerase reverse transcriptase (TERT), which is the catalytic protein subunit of telomerase, needs to translocate into the nucleus. This translocation requires AKT-mediated TERT S227 phosphorylation and subsequent binding of the nuclear localization signal (NLS) of TERT to importin α [<span>2</span>]. However, whether cancer cells and normal cells differentially regulate TERT phosphorylation and telomere functions remain largely unknown.</p><p>We recently demonstrated that fructose 1,6-bisphosphatase 1 (FBP1), the rate-limiting gluconeogenic enzyme that converts fructose 1,6-bisphosphate (F-1,6-BP) to fructose 6-phosphate (F-6-P), acts as a protein phosphatase and dephosphorylates TERT [<span>3</span>]. Through analyses of FBP1 immunoprecipitants from hepatocellular carcinoma (HCC) Huh7 cells by mass spectrometry, TERT was identified as an FBP1-associated protein, and this interaction was primarily in the cytosol. An in vitro glutathione S-transferase (GST) pulldown assay showed that FBP1 directly bound to TERT, and truncation and mutagenesis analyses identified that asparagine (N)273 of FBP1 is a key residue involving in binding to TERT. Importantly, a protein dephosphorylation assay showed that wild-type (WT) FBP1, but not FBP1 N273A mutant, dephosphorylated AKT1-phosphorylated TERT at S227. Notably, FBP1 G260R, a metabolically inactive mutant defected in its binding to F-1,6-BP, was still able to dephosphorylate TERT, indicating that FBP1 dephosphorylates TERT independent of its gluconeogenic activity.</p><p>The catalytic domain of conventional protein phosphatases contains a conserved and reduced cysteine (C), which is critical for the dephosphorylation of protein substrates. Molecular docking analyses showed that the phosphorylated S227 residue of TERT was in close proximity to C129 of FBP1 [<span>3</span>]. In addition, during the process of the dephosphorylation, FBP1 formed a covalent phospho-C129 intermediate. FBP1 C129S mutant, which had comparable metabolic activity to its WT counterpart, lost its ability to dephosphorylate TERT pS227 both in vitro and in vivo. Structural analyses revealed that a binding pocket was formed by FBP1 C129, R244 and D128, which interact with the phosphate group of pS227 of TERT. Notably, mutations of FBP1 R244 or D128 also decreased TERT pS227 dephosphorylation by FBP1.</p><p>As expected, FBP1 depletion enhanced the nuclear translocation of TERT and telomerase activity, leading to increased telomere lengths ","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"44 10","pages":"1102-1105"},"PeriodicalIF":20.1,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}