Gavin P. Dowling, Gordon R. Daly, Aisling Hegarty, Michael Flanagan, Mihaela Ola, Ramón Fallon, Sinéad Cocchiglia, Vikrant Singh, Katherine M. Sheehan, Fiona Bane, Jason McGrath, Louise Watson, Sandra Hembrecht, Bryan Hennessy, Patrick G. Morris, Arnold D. K. Hill, Damir Varešlija, Leonie S. Young
<p>The expression of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) in breast cancer can change in response to treatment and pivotally influence tumor behavior and clinical management [<span>1</span>]. Receptor discordance has been observed at various distant metastatic site (bone, lung, liver, and brain), with a routine loss of ER and gains in HER2 reported [<span>2</span>]. This receptor discordance can influence tumor responsiveness to both HER2 inhibitor and endocrine therapies. Although the mechanisms underlying receptor expression changes are not fully understood, we recently reported gains in <i>ESR1</i> promoter hypermethylation as a potential driver of ER loss during disease progression [<span>3</span>]. In this study, mechanisms underlying altered receptor expression and associated disease outcomes were examined following neoadjuvant trastuzumab treatment.</p><p>We investigated the impact of HER2 inhibition on ER expression. From a cohort of 2,917 patients, 527 tumors were HER2-positive. Of these, 161 patients received neoadjuvant trastuzumab with systemic chemotherapy (Supplementary Figure S1, Supplementary Table S1). In this cohort (<i>n</i> = 161), 89 patients (55.3%) achieved pathological complete response (pCR), while 72 patients (44.7%) had residual disease, and 18 patients developed metastases (Clinical Cohort, Figure 1A, Supplementary Table S1). A statistically significant higher proportion of patients with ER-negative tumors achieved pCR compared to their ER-positive counterparts (<i>P</i> = 0.016, Supplementary Table S1), consistent with previous studies [<span>4</span>]. In patients with residual disease, the most notable finding was the observed gain of ER protein expression and loss of HER2 in a number of patients (33% and 17%, respectively; Figure 1B). ER protein status remained unchanged in 38 patients (53%), with a loss of ER observed in 8 patients (11%) (Figure 1B).</p><p>Epigenetic modifications are a potential mechanism underlying this observed receptor discordance. In this study, the role of DNA methylation in altered receptor expression was investigated (DNA methylation cohort, Figure 1A). Global DNA methylation was assessed in pre- and post-treatment samples (<i>n</i> = 16; Supplementary Table S2), of which 7 patient tumors were matched (biopsy and resection). Differentially methylated gene (DMG) analysis segregated patient tumors into pre- or post-treatment groups, illustrating the dominance of hypomethylation in post-treatment patient tumors (Figure 1C). Notably, pathway analysis identified <i>Estrogen Response Early</i>, <i>Epithelial Mesenchymal Transition</i> (<i>EMT</i>), <i>ERRB</i>, <i>AMPK</i>, and <i>RAS</i> signaling (<i>P</i> < 0.05) as statistically significant pathways (Supplementary Figure S2A-B). Network graph analysis revealed <i>Estrogen Response Early</i>, <i>Estrogen Response Late</i> and <i>EMT</i> as hub pathways (Figure 1D). Estrogen-responsive genes such as <i>
{"title":"Neoadjuvant HER2 inhibition induces ESR1 DNA methylation alterations resulting in clinically relevant ER expression changes in breast cancers","authors":"Gavin P. Dowling, Gordon R. Daly, Aisling Hegarty, Michael Flanagan, Mihaela Ola, Ramón Fallon, Sinéad Cocchiglia, Vikrant Singh, Katherine M. Sheehan, Fiona Bane, Jason McGrath, Louise Watson, Sandra Hembrecht, Bryan Hennessy, Patrick G. Morris, Arnold D. K. Hill, Damir Varešlija, Leonie S. Young","doi":"10.1002/cac2.12640","DOIUrl":"10.1002/cac2.12640","url":null,"abstract":"<p>The expression of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) in breast cancer can change in response to treatment and pivotally influence tumor behavior and clinical management [<span>1</span>]. Receptor discordance has been observed at various distant metastatic site (bone, lung, liver, and brain), with a routine loss of ER and gains in HER2 reported [<span>2</span>]. This receptor discordance can influence tumor responsiveness to both HER2 inhibitor and endocrine therapies. Although the mechanisms underlying receptor expression changes are not fully understood, we recently reported gains in <i>ESR1</i> promoter hypermethylation as a potential driver of ER loss during disease progression [<span>3</span>]. In this study, mechanisms underlying altered receptor expression and associated disease outcomes were examined following neoadjuvant trastuzumab treatment.</p><p>We investigated the impact of HER2 inhibition on ER expression. From a cohort of 2,917 patients, 527 tumors were HER2-positive. Of these, 161 patients received neoadjuvant trastuzumab with systemic chemotherapy (Supplementary Figure S1, Supplementary Table S1). In this cohort (<i>n</i> = 161), 89 patients (55.3%) achieved pathological complete response (pCR), while 72 patients (44.7%) had residual disease, and 18 patients developed metastases (Clinical Cohort, Figure 1A, Supplementary Table S1). A statistically significant higher proportion of patients with ER-negative tumors achieved pCR compared to their ER-positive counterparts (<i>P</i> = 0.016, Supplementary Table S1), consistent with previous studies [<span>4</span>]. In patients with residual disease, the most notable finding was the observed gain of ER protein expression and loss of HER2 in a number of patients (33% and 17%, respectively; Figure 1B). ER protein status remained unchanged in 38 patients (53%), with a loss of ER observed in 8 patients (11%) (Figure 1B).</p><p>Epigenetic modifications are a potential mechanism underlying this observed receptor discordance. In this study, the role of DNA methylation in altered receptor expression was investigated (DNA methylation cohort, Figure 1A). Global DNA methylation was assessed in pre- and post-treatment samples (<i>n</i> = 16; Supplementary Table S2), of which 7 patient tumors were matched (biopsy and resection). Differentially methylated gene (DMG) analysis segregated patient tumors into pre- or post-treatment groups, illustrating the dominance of hypomethylation in post-treatment patient tumors (Figure 1C). Notably, pathway analysis identified <i>Estrogen Response Early</i>, <i>Epithelial Mesenchymal Transition</i> (<i>EMT</i>), <i>ERRB</i>, <i>AMPK</i>, and <i>RAS</i> signaling (<i>P</i> < 0.05) as statistically significant pathways (Supplementary Figure S2A-B). Network graph analysis revealed <i>Estrogen Response Early</i>, <i>Estrogen Response Late</i> and <i>EMT</i> as hub pathways (Figure 1D). Estrogen-responsive genes such as <i>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 2","pages":"198-202"},"PeriodicalIF":20.1,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12640","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}