首页 > 最新文献

Cancer Communications最新文献

英文 中文
Inhibition of mTOR attenuates the initiation and progression of BRCA1-associated mammary tumors 抑制mTOR可减轻brca1相关乳腺肿瘤的发生和发展。
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-18 DOI: 10.1002/cac2.12663
Hye Jung Baek, Geun Hee Han, Eun Joo Cho, Jihao Xu, Min Kyung Ki, Eun Jung Park, Tae Hyun Kim, Dong Hoon Shin, Heesun Cheong, Chu-Xia Deng, Sung Chul Lim, Chang-il Hwang, Daehee Hwang, Sang Soo Kim
<p>Inherited mutation in breast cancer susceptibility gene 1 (<i>BRCA1</i>) is strongly associated with mammary tumors that exhibit triple-negative characteristics, are insensitive to endocrine-targeted therapies, and show basal-like properties, including aggressive phenotypes [<span>1, 2</span>]. It has been reported that the average cumulative risk of breast cancer for <i>BRCA1</i> mutation carriers by age 70 years is 57% (95% confidence interval [CI]: 47%-66%) [<span>3</span>]. Despite the high incidence and aggressive characteristics of <i>BRCA1</i>-associated breast cancer, few substantial improvements in preventing or treating this cancer have been made, largely due to the challenges of clinic-based cohort studies. During malignant transformation, cancer progression is facilitated by metabolic reprogramming–one of the hallmark characteristics of cancer. Previously, we found that inhibition of AKT is a potential strategy for the prevention and therapeutic management of <i>Brca1</i>-mutant mammary tumors. However, pharmacological inhibition proved less effective and less safe compared to genetic perturbation, limiting its potential for clinical application [<span>4</span>]. Meanwhile, mTOR, a key regulator of metabolism and a downstream target of the PI3K/AKT signaling pathway, has emerged as a promising therapeutic target for several diseases, including treatment of cancer [<span>5</span>].</p><p>In addition to identifying the contribution of mTOR signaling to BRCA1-deficient cells (Supplementary Figure S1), we provide genetic and pharmacological evidence using multi-orthogonal preclinical models [<span>6-8</span>] that mTOR is closely involved in the development and growth of <i>Brca1</i>-mutated mammary tumors (Figure 1A). To investigate the role of mTOR in the absence of BRCA1, we assessed the development of mammary glands in post-pubertal <i>Brca1/Mtor</i>-mutant mice by examining ductal and lobular development of the fourth mammary gland. Measurements of mammary gland density using the Branch software (ver. 1.1 [<span>9</span>]) showed that ductal length and branching were significantly diminished in the mammary glands of <i>Brca1<sup>co/co</sup>Mtor<sup>co/co</sup>MMTV-Cre</i> mice (Figure 1B,C, Supplementary Figure S2). To determine whether mTOR contributes to BRCA1-deficient mammary tumor formation, we examined tumor formation in cohorts of <i>Brca1<sup>co/co</sup></i> (<i>n</i> = 28), <i>Brca1<sup>co/co</sup>Mtor<sup>co/co</sup></i> (<i>n</i> = 30), <i>Brca1<sup>co/co</sup>MMTV-Cre</i> (<i>n</i> = 24), and <i>Brca1<sup>co/co</sup>Mtor<sup>co/co</sup>MMTV-Cre</i> (<i>n</i> = 29) mice (Top left of Figure 1A). <i>Brca1<sup>co/co</sup></i> and <i>Brca1<sup>co/co</sup>Mtor<sup>co/co</sup></i> mice showed no signs of mammary abnormalities, including tumors, up to 24 months of age. In contrast, <i>Brca1<sup>co/co</sup>MMTV-Cre</i> mutant mice developed breast cancer, reaching a high incidence (37.5%; 9/24) by 24 months of age. During the s
乳腺癌易感基因1 (BRCA1)的遗传突变与乳腺肿瘤表现出三阴性特征、对内分泌靶向治疗不敏感、基底样特征(包括侵袭性表型)密切相关[1,2]。据报道,BRCA1突变携带者在70岁时患乳腺癌的平均累积风险为57%(95%置信区间[CI]: 47%-66%)。尽管brca1相关乳腺癌具有高发病率和侵袭性的特点,但由于临床队列研究的挑战,在预防或治疗这种癌症方面几乎没有实质性的进展。在恶性转化过程中,代谢重编程促进了癌症的进展,这是癌症的标志性特征之一。先前,我们发现抑制AKT是预防和治疗brca1突变乳腺肿瘤的潜在策略。然而,与遗传干扰相比,药物抑制被证明不太有效和不太安全,限制了其临床应用的潜力。同时,作为代谢的关键调节因子和PI3K/AKT信号通路的下游靶点,mTOR已成为多种疾病的有希望的治疗靶点,包括癌症的治疗。除了确定mTOR信号传导对brca1缺陷细胞的贡献(补充图S1)外,我们还通过多正交临床前模型[6-8]提供了遗传学和药理学证据,证明mTOR密切参与brca1突变乳腺肿瘤的发生和生长(图1A)。为了研究mTOR在BRCA1缺失中的作用,我们通过检查第四乳腺的导管和小叶发育来评估青春期后BRCA1 / mTOR突变小鼠的乳腺发育。使用Branch软件测量乳腺密度。1.1[9])显示Brca1co/coMtorco/coMMTV-Cre小鼠乳腺导管长度和分支明显减少(图1B,C,补充图S2)。为了确定mTOR是否有助于brca1缺陷乳腺肿瘤的形成,我们检测了Brca1co/co (n = 28)、Brca1co/coMtorco/co (n = 30)、Brca1co/coMMTV-Cre (n = 24)和Brca1co/coMtorco/coMMTV-Cre (n = 29)小鼠的肿瘤形成情况(图1A左上角)。Brca1co/co和Brca1co/coMtorco/co小鼠直到24个月大时均未出现包括肿瘤在内的乳腺异常迹象。相比之下,Brca1co/coMMTV-Cre突变小鼠发生乳腺癌,发病率高(37.5%;9/24)到24个月大。在同一时期,Brca1co/coMtorco/coMMTV-Cre小鼠的乳腺癌发病率较低(6.9%;2/29),与Brca1co/coMMTV-Cre小鼠相比,无瘤生存率显著提高(P = 0.008, log-rank检验)(图1D)。接下来,我们研究了使用临床适用的药理学方法抑制mTOR是否会产生与基因消融相似的效果。为了测试mTOR的药理学抑制作用,我们给4个月大的Brca1co/coMMTV-Cre小鼠伊维莫司(20 mg/kg,口服,5次/周)或对照药11个月(图1A左下,补充图S3)。在此期间,两组Brca1co/coMMTV-Cre小鼠自发出现可触及的乳腺肿瘤。在研究期结束时(15个月大),载药处理的Brca1co/coMMTV-Cre小鼠显示出较高的乳腺肿瘤发生率(93%;14中的13)。在同一时期,依维莫司治疗的Brca1co/coMMTV-Cre小鼠的乳腺癌发病率为46%(5 / 11),无瘤生存期明显长于对照组(P = 0.0117, log-rank检验)(图1E)。此外,14只给药小鼠中有2只(14%)发现多发性肿瘤,而依维莫司处理的小鼠未发现多发性肿瘤(图1F)。除了肿瘤形成外,非肿瘤乳腺的全片分析显示,与载体治疗相比,依维莫司治疗减少了总导管长度和分支数量约30%(补充图S3)。值得注意的是,依维莫司治疗显著减少了异常增生性灶的形成(0.6 vs. 5.5灶/乳腺;P & lt;0.01)在brca1突变小鼠的非荷瘤乳腺中(图1G,H)。综上所述,这些结果表明,基因消融和药物抑制mTOR信号可以阻止brca1突变小鼠乳腺上皮细胞的增殖并减少肿瘤的形成。为了确定mTOR抑制是否也能抑制brca1相关乳腺癌的进展,我们通过定期观察和触诊测试了依维莫司对Brca1co/coMMTV-Cre小鼠自发发生的乳腺肿瘤的疗效。荷瘤小鼠(大小&lt;0. 5 cm3),然后随机分配,通过口服灌胃接受载药或依维莫司(图1A右上方,补充图S4)。在基线和进展期间,每周使用磁共振成像(MRI)测量肿瘤体积,直到肿瘤体积达到~ 3 cm3(图1I)。与依维莫司处理的小鼠相比,药物处理小鼠的肿瘤生长速度更快(图1J,左面板)。一项对周进展的分析显示,在药物治疗的小鼠中,73%(38 / 28)的肿瘤进展大于50%,而在依维莫司治疗的小鼠中,只有33%(141 / 46)的肿瘤进展大于50%(图1J,右图;P = 0.0002,卡方检验)。此外,依维莫司治疗组每周肿瘤体积的增幅(51.0%,95% CI: 40.3%-61.8%)显著低于对照组(P &lt;0.001),高于载药组(89.1%,95% CI: 70.4% ~ 107.7%)。此外,依维莫司处理的小鼠的生存期明显长于药物处理小鼠(平均2.8倍)(图1K;P & lt;0.001)。重要的是,虽然依维莫司治疗显著改善了brca1突变肿瘤的治疗结果,但对依维莫司的反应在个体小鼠中表现出异质性。具体来说,15只小鼠中有8只被指定为应答小鼠,在对依维莫司的反应中表现出肿瘤体积比(RTV)的显著降低。相比之下,其余7只小鼠,被指定为无应答者,其RTV高于应答者和给药小鼠(图1L,M)。此外,应答者的生存期(13.0周)几乎是无应答者(6.6周)的两倍(图1N)。为了进一步检验依维莫司的治疗效果,我们采用移植物模型进行临床前评估。从22例Brca1co/coMMTV-Cre小鼠自发发生的乳腺肿瘤中收集肿瘤组织,原位移植到裸雌性小鼠中,扩增,再移植,随后用对照物或依维莫司治疗。监测肿瘤进展(图1A右下角,补充图S5),当给药组或依维莫司组中任何肿瘤达到~ 3 cm3时,所有小鼠均被处死(图10,补充图S6)。与药物处理小鼠的肿瘤相比,依维莫司处理小鼠的肿瘤的RTV(43%)和重量(38%)显著降低(图1P,补充图S5)。这些发现提示通过药物mTOR抑制brca1相关乳腺癌的有效管理。为了探索这种异质性,我们对载体和依维莫司治疗的同种异体移植物肿瘤进行了全球蛋白质组学和磷酸化蛋白质组学分析(补充图S7A)。两个不同的样本簇(Sub1和Sub2)通过蛋白质和磷酸肽数据被识别出来(补充图S7B,C)。我们分别在Sub1和Sub2中发现了304个和323个蛋白上调,251个和291个磷酸化肽上调(图1Q)。具有较高rtv和权重的Sub2代表无应答者,而Sub1对应应答者(图1R)。Sub2中上调的蛋白和磷酸化蛋白与中性粒细胞胞外陷阱形成(NETosis)和白三烯代谢有关(图1S)。参与磷脂酰肌醇和花生四烯酸形成/代谢的酶在无应答者中上调,导致白三烯释放(图1T)。在白三烯结合后,(1)介导中性粒细胞迁移所需的肌动蛋白聚合的蛋白和磷酸化,以及(2)参与NETosis的蛋白在无应答者中上调(图1T)。Western blotting和免疫组织化学证实白三烯和NETosis通路的代表性标记上调(图1U,补充图S7D,E)。因此,我们的研究结果提供了临床前证据,表明靶向mTOR
{"title":"Inhibition of mTOR attenuates the initiation and progression of BRCA1-associated mammary tumors","authors":"Hye Jung Baek,&nbsp;Geun Hee Han,&nbsp;Eun Joo Cho,&nbsp;Jihao Xu,&nbsp;Min Kyung Ki,&nbsp;Eun Jung Park,&nbsp;Tae Hyun Kim,&nbsp;Dong Hoon Shin,&nbsp;Heesun Cheong,&nbsp;Chu-Xia Deng,&nbsp;Sung Chul Lim,&nbsp;Chang-il Hwang,&nbsp;Daehee Hwang,&nbsp;Sang Soo Kim","doi":"10.1002/cac2.12663","DOIUrl":"10.1002/cac2.12663","url":null,"abstract":"&lt;p&gt;Inherited mutation in breast cancer susceptibility gene 1 (&lt;i&gt;BRCA1&lt;/i&gt;) is strongly associated with mammary tumors that exhibit triple-negative characteristics, are insensitive to endocrine-targeted therapies, and show basal-like properties, including aggressive phenotypes [&lt;span&gt;1, 2&lt;/span&gt;]. It has been reported that the average cumulative risk of breast cancer for &lt;i&gt;BRCA1&lt;/i&gt; mutation carriers by age 70 years is 57% (95% confidence interval [CI]: 47%-66%) [&lt;span&gt;3&lt;/span&gt;]. Despite the high incidence and aggressive characteristics of &lt;i&gt;BRCA1&lt;/i&gt;-associated breast cancer, few substantial improvements in preventing or treating this cancer have been made, largely due to the challenges of clinic-based cohort studies. During malignant transformation, cancer progression is facilitated by metabolic reprogramming–one of the hallmark characteristics of cancer. Previously, we found that inhibition of AKT is a potential strategy for the prevention and therapeutic management of &lt;i&gt;Brca1&lt;/i&gt;-mutant mammary tumors. However, pharmacological inhibition proved less effective and less safe compared to genetic perturbation, limiting its potential for clinical application [&lt;span&gt;4&lt;/span&gt;]. Meanwhile, mTOR, a key regulator of metabolism and a downstream target of the PI3K/AKT signaling pathway, has emerged as a promising therapeutic target for several diseases, including treatment of cancer [&lt;span&gt;5&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;In addition to identifying the contribution of mTOR signaling to BRCA1-deficient cells (Supplementary Figure S1), we provide genetic and pharmacological evidence using multi-orthogonal preclinical models [&lt;span&gt;6-8&lt;/span&gt;] that mTOR is closely involved in the development and growth of &lt;i&gt;Brca1&lt;/i&gt;-mutated mammary tumors (Figure 1A). To investigate the role of mTOR in the absence of BRCA1, we assessed the development of mammary glands in post-pubertal &lt;i&gt;Brca1/Mtor&lt;/i&gt;-mutant mice by examining ductal and lobular development of the fourth mammary gland. Measurements of mammary gland density using the Branch software (ver. 1.1 [&lt;span&gt;9&lt;/span&gt;]) showed that ductal length and branching were significantly diminished in the mammary glands of &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;Mtor&lt;sup&gt;co/co&lt;/sup&gt;MMTV-Cre&lt;/i&gt; mice (Figure 1B,C, Supplementary Figure S2). To determine whether mTOR contributes to BRCA1-deficient mammary tumor formation, we examined tumor formation in cohorts of &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;&lt;/i&gt; (&lt;i&gt;n&lt;/i&gt; = 28), &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;Mtor&lt;sup&gt;co/co&lt;/sup&gt;&lt;/i&gt; (&lt;i&gt;n&lt;/i&gt; = 30), &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;MMTV-Cre&lt;/i&gt; (&lt;i&gt;n&lt;/i&gt; = 24), and &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;Mtor&lt;sup&gt;co/co&lt;/sup&gt;MMTV-Cre&lt;/i&gt; (&lt;i&gt;n&lt;/i&gt; = 29) mice (Top left of Figure 1A). &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;&lt;/i&gt; and &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;Mtor&lt;sup&gt;co/co&lt;/sup&gt;&lt;/i&gt; mice showed no signs of mammary abnormalities, including tumors, up to 24 months of age. In contrast, &lt;i&gt;Brca1&lt;sup&gt;co/co&lt;/sup&gt;MMTV-Cre&lt;/i&gt; mutant mice developed breast cancer, reaching a high incidence (37.5%; 9/24) by 24 months of age. During the s","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"486-490"},"PeriodicalIF":20.1,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12663","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy and safety of KN026 and docetaxel for HER2-positive breast cancer: a phase II clinical trial KN026联合多西他赛治疗her2阳性乳腺癌的疗效和安全性:一项II期临床试验
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-18 DOI: 10.1002/cac2.12662
Jianli Ma, Jingxuan Wang, Ting Xu, Quchang Ouyang, Xiaojia Wang, Jingfen Wang, Lu Gan, Zhong Ouyang, Daren Lin, Tao Sun, Changping Shan, Herui Yao, Baochun Zhang, Zhengguang Li, Zhixiang Zhuang, Ying Lu, Hongwei Yang, Jian Huang, Xingwang Yang, Hongmei Sun, Qingyuan Zhang

Background

The standard first-line treatment for human epidermal growth factor receptor 2 (HER2)-positive recurrent/metastatic breast cancer currently includes pertuzumab plus trastuzumab and docetaxel. This study aimed to evaluate the effectiveness of KN026, an anti-HER2 bispecific antibody, plus docetaxel in first-line treatment of HER2-positive recurrent/metastatic breast cancer.

Methods

This open-label, single-arm, phase II study enrolled patients with HER2-positive recurrent/metastatic breast cancer in 19 centers across China from December 30, 2019 to May 27, 2021. Patients were administered KN026 (30 mg/kg) plus docetaxel (75 mg/m2) in 21-day cycles. Primary endpoints included the objective response rate (ORR) and duration of response (DOR). In addition, overall survival (OS), progression-free survival (PFS), clinical benefit rate (CBR) and safety profile were examined.

Results

A total of 57 patients were included. In the efficacy analysis set of 55 patients, the ORR was 76.4% (95% confidence interval [CI], 63.0%-86.8%), and the CBR was 85.5% (95% CI, 73.3%-93.5%). The median DOR was not reached (95% CI, 20.7 months-not reached). In the safety set of 57 patients, the median PFS was 27.7 months (95% CI, 18.0 months-not reached). The median OS was not reached, with OS rates at 12, 24 and 30 months of 93.0%, 84.1% and 78.5%, respectively. Grade ≥3 treatment-emergent adverse events (AEs) were detected in 36 (63.2%) patients. No deaths were attributed to KN026 or docetaxel.

Conclusion

KN026 plus docetaxel showed promising efficacy and a manageable safety profile in first-line treatment of HER2-positive recurrent/metastatic breast cancer.

背景:目前,人类表皮生长因子受体2 (HER2)阳性复发/转移性乳腺癌的标准一线治疗包括帕妥珠单抗联合曲妥珠单抗和多西他赛。本研究旨在评估抗her2双特异性抗体KN026联合多西紫杉醇一线治疗her2阳性复发/转移性乳腺癌的有效性。方法:这项开放标签、单臂、II期研究于2019年12月30日至2021年5月27日在中国19个中心招募了her2阳性复发/转移性乳腺癌患者。患者给予KN026 (30mg /kg)加多西紫杉醇(75mg /m2), 21天为一个周期。主要终点包括客观缓解率(ORR)和缓解持续时间(DOR)。此外,还检查了总生存期(OS)、无进展生存期(PFS)、临床获益率(CBR)和安全性。结果:共纳入57例患者。在55例患者的疗效分析集中,ORR为76.4%(95%可信区间[CI], 63.0% ~ 86.8%), CBR为85.5% (95% CI, 73.3% ~ 93.5%)。中位DOR未达到(95% CI, 20.7个月未达到)。在57例患者的安全组中,中位PFS为27.7个月(95% CI, 18.0个月-未达到)。未达到中位OS, 12、24和30个月的OS率分别为93.0%、84.1%和78.5%。36例(63.2%)患者检测到≥3级治疗不良事件(ae)。没有死亡归因于KN026或多西紫杉醇。结论:KN026联合多西他赛在一线治疗her2阳性复发/转移性乳腺癌中具有良好的疗效和可管理的安全性。
{"title":"Efficacy and safety of KN026 and docetaxel for HER2-positive breast cancer: a phase II clinical trial","authors":"Jianli Ma,&nbsp;Jingxuan Wang,&nbsp;Ting Xu,&nbsp;Quchang Ouyang,&nbsp;Xiaojia Wang,&nbsp;Jingfen Wang,&nbsp;Lu Gan,&nbsp;Zhong Ouyang,&nbsp;Daren Lin,&nbsp;Tao Sun,&nbsp;Changping Shan,&nbsp;Herui Yao,&nbsp;Baochun Zhang,&nbsp;Zhengguang Li,&nbsp;Zhixiang Zhuang,&nbsp;Ying Lu,&nbsp;Hongwei Yang,&nbsp;Jian Huang,&nbsp;Xingwang Yang,&nbsp;Hongmei Sun,&nbsp;Qingyuan Zhang","doi":"10.1002/cac2.12662","DOIUrl":"10.1002/cac2.12662","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The standard first-line treatment for human epidermal growth factor receptor 2 (HER2)-positive recurrent/metastatic breast cancer currently includes pertuzumab plus trastuzumab and docetaxel. This study aimed to evaluate the effectiveness of KN026, an anti-HER2 bispecific antibody, plus docetaxel in first-line treatment of HER2-positive recurrent/metastatic breast cancer.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>This open-label, single-arm, phase II study enrolled patients with HER2-positive recurrent/metastatic breast cancer in 19 centers across China from December 30, 2019 to May 27, 2021. Patients were administered KN026 (30 mg/kg) plus docetaxel (75 mg/m<sup>2</sup>) in 21-day cycles. Primary endpoints included the objective response rate (ORR) and duration of response (DOR). In addition, overall survival (OS), progression-free survival (PFS), clinical benefit rate (CBR) and safety profile were examined.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>A total of 57 patients were included. In the efficacy analysis set of 55 patients, the ORR was 76.4% (95% confidence interval [CI], 63.0%-86.8%), and the CBR was 85.5% (95% CI, 73.3%-93.5%). The median DOR was not reached (95% CI, 20.7 months-not reached). In the safety set of 57 patients, the median PFS was 27.7 months (95% CI, 18.0 months-not reached). The median OS was not reached, with OS rates at 12, 24 and 30 months of 93.0%, 84.1% and 78.5%, respectively. Grade ≥3 treatment-emergent adverse events (AEs) were detected in 36 (63.2%) patients. No deaths were attributed to KN026 or docetaxel.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>KN026 plus docetaxel showed promising efficacy and a manageable safety profile in first-line treatment of HER2-positive recurrent/metastatic breast cancer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"476-485"},"PeriodicalIF":20.1,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12662","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioequivalence of alternative pembrolizumab dosing regimens: current practice and future perspectives 替代性派姆单抗给药方案的生物等效性:当前实践和未来展望
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-16 DOI: 10.1002/cac2.12661
Ruben Malmberg, Bram C. Agema, Maaike M. Hofman, Stefani Oosterveld, Sander Bins, Daphne W. Dumoulin, Arjen Joosse, Joachim G. J. V. Aerts, Reno Debets, Birgit C. P. Koch, Astrid A. M. van der Veldt, Roelof W. F. van Leeuwen, Ron H. J. Mathijssen
<p>Immune checkpoint inhibitors (ICIs), including humanized anti-programmed cell death protein 1/programmed death-ligand 1 (anti-PD-1/PD-L1) monoclonal antibodies (mAbs), such as pembrolizumab, have transformed cancer treatment. Pembrolizumab was initially approved as a three-weekly (Q3W) 2 mg/kg weight-based dose by the Food and Drug Administration (FDA), which was later replaced by a 200 mg Q3W fixed-dose, mainly based on in silico simulations. Later, a fixed 400 mg six-weekly (Q6W) regimen was approved based on pharmacokinetic simulations [<span>1</span>].</p><p>Due to increasing ICI use and high costs per treatment, increasingly large portions of healthcare budgets are shifted to ICI treatment. Therefore, it is important to handle ICIs as efficiently and cost-effectively as possible. Hence, the Q6W regimen was introduced, lowering the total amount of ICI administrations per patient and the strain on healthcare capacity, and improving patient convenience. The cost-effectiveness of ICI treatment could be optimized further by using alternative dosing strategies (ADS) [<span>1</span>]. Some of these ADS have already been tested for pembrolizumab in some countries [<span>2, 3</span>].</p><p>Recently, the FDA provided bioequivalence guidelines for ADS, specifically for anti-PD-1/PD-L1 mAbs [<span>4</span>]. These guidelines support the use of pharmacokinetic-modeling to simulate steady-state trough concentrations (C<sub>trough,ss</sub>) and area under the curve (AUC; exposure) to establish bioequivalence for anti-PD-1/PD-L1 mAbs. In these guidelines, ADS are considered bioequivalent when both C<sub>trough,ss</sub> and exposure are at most 20% lower compared to the dosing regimen used while establishing efficacy in clinical trials (i.e. the reference dosing regimen). A maximum of 25% increase in the maximum concentration (C<sub>max</sub>) is used as the upper boundary, unless adequate clinical evidence shows that increasing the C<sub>max</sub> does not increase toxicity. For pembrolizumab, incidences of toxicities were generally consistent across a 2-10 mg/kg dose range in multiple trials [<span>5</span>].</p><p>To verify whether various ADS (Figure 1, Supplementary Table S1) are bioequivalent following the current FDA guidelines, we assessed bioequivalence using pharmacokinetic modelling. Using pharmacokinetic data from a real-world cohort, the best performing model was selected with which bioequivalence was assessed in extrapolations from this cohort (“extrapolation”) and also from a virtual (“simulation”) cohort. Details on both cohorts, as well as modelling procedures, are depicted in the Supplementary Material and Methods. As a reference, the Q3W 2 mg/kg dosing regimen was used, as this regimen was used in the original approval. Results of these analyses are shown in Figure 1. The simulated ADS for pembrolizumab given every 3 or 4 weeks (Q3/4W) were bioequivalent according to the FDA guidelines. Interestingly, despite meeting the criteria for e
免疫检查点抑制剂(ICIs),包括人源化抗程序性细胞死亡蛋白1/程序性死亡配体1(抗pd -1/PD-L1)单克隆抗体(mab),如派姆单抗,已经改变了癌症治疗。Pembrolizumab最初被美国食品和药物管理局(FDA)批准为3周(Q3W) 2 mg/kg基于体重的剂量,后来被200 mg Q3W固定剂量所取代,主要基于计算机模拟。随后,基于药代动力学模拟[1],一个固定的400mg 6周(Q6W)方案被批准。由于ICI使用的增加和每次治疗的高成本,越来越多的医疗预算转移到ICI治疗上。因此,尽可能高效和经济地处理ici非常重要。因此,引入了Q6W方案,降低了每位患者的ICI管理总量和医疗保健能力的压力,并改善了患者的便利性。采用替代给药策略(ADS)可以进一步优化ICI治疗的成本效益。其中一些ADS已经在一些国家进行了派姆单抗测试[2,3]。最近,FDA提供了ADS的生物等效性指南,特别是抗pd -1/PD-L1单克隆抗体[4]。这些指南支持使用药代动力学模型来模拟稳态波谷浓度(Ctrough,ss)和曲线下面积(AUC;暴露)以建立抗pd -1/PD-L1单克隆抗体的生物等效性。在这些指南中,与临床试验中确定疗效时所使用的给药方案(即参考给药方案)相比,当Ctrough、ss和暴露量最多降低20%时,ADS被认为具有生物等效性。最大浓度(Cmax)最大增加25%作为上限,除非有足够的临床证据表明增加Cmax不会增加毒性。对于派姆单抗,在多个试验中,2- 10mg /kg剂量范围内的毒性发生率通常是一致的。为了验证不同的ADS(图1,补充表S1)是否遵循FDA现行指南具有生物等效性,我们使用药代动力学模型评估了生物等效性。使用来自真实世界队列的药代动力学数据,选择了表现最佳的模型,并在该队列(“外推”)和虚拟(“模拟”)队列的外推中评估生物等效性。关于这两个队列的详细信息,以及建模程序,在补充材料和方法中描述。作为参考,使用了Q3W 2mg /kg给药方案,因为该方案在最初的批准中使用。分析结果如图1所示。根据FDA指南,每3或4周(Q3/4W)给予派姆单抗的模拟ADS具有生物等效性。有趣的是,尽管符合暴露标准,但没有(未注册的)模拟Q6W ADS具有生物等效性,因为不符合cough,ss的标准。通常采用药代动力学生物等效性来保证药效等效。然而,FDA指南中提出的阈值的适用性可能会受到质疑,因为它忽略了有关暴露-反应关系的临床药理学数据(Cmax除外)。因此,不遵守生物等效性标准的含义尚不清楚。为了探讨不依从性的可能影响,我们将在下一节中研究支持和反对fda抗pd -1/PD-L1单克隆抗体生物等效性指南的论点。首先,这些指南中的阈值来源于小分子生物等效性指南。然而,抗pd -1/PD-L1单克隆抗体对大多数小分子并不表现出类似的暴露-反应关系。因此,相似的抗pd -1/PD-L1单抗药代动力学可能不是保证相似疗效的必要条件。例如,在2-10 mg/kg剂量范围内,没有观察到疗效的显著差异。此外,没有足够有力的前瞻性研究证实了FDA的暴露标准(也不是cough,ss)。这在pembrolizumab 400mg Q6W给药方案[5]的注册过程中得到了例证。FDA最初拒绝了该方案,因为药代动力学模型预测400mg Q6W与200mg Q3W方案不具有生物等效性。尽管如此,基于一项有限的描述性中期分析(n = 44),在一个非随机队列中,客观反应率获得了有条件的批准,其中反应率与文献值[5]进行了比较。此外,临床药理学数据表明,批准的派姆单抗剂量高于达到最大疗效所需的剂量。这可能是由于在I期试验中关注的是最大耐受剂量,而不是最低的最大有效剂量。例如,已证明剂量≥0.1 mg/kg可导致近乎完全的(&gt;95%)受体在血液中的占用。 早期对纳武单抗的研究表明,当受体几乎完全占据时,达到最大疗效[1,6]。然而,后续试验只选择剂量≥2mg /kg,因为模拟表明,这将导致首次给药后几乎完全占据肿瘤内受体,这被认为是最大疗效[1]的替代标志。第一次给药后,200 mg Q3W的几何平均值≥10.7µg/mL。因此,批准剂量导致的穿透率ss远高于要求,这表明ADS导致的穿透率ss水平≥10.7µg/mL(对应于模拟剂量≥0.85 mg/kg Q3W或≥2.58 mg/kg Q6W,补充材料和方法)也将是最大有效的[7]。据报道,较低的派姆单抗暴露与较差的预后相关,表明暴露-反应关系。然而,Keynote-002和Keynote-010研究的事后分析表明,更差的临床结果与派姆单抗清除率增加有关。这些发现可以解释在2-10 mg/kg剂量范围内,尽管Ctrough,ss (2 mg/kg Q3W (Ctrough,ss范围:1.13-127µg/mL)有很大变化,但总体生存率相似,没有暴露-反应关系[1,5]。这强调了生物等效暴露并不总是表明结果,并且可以解释在I-II期试验中停止治疗后反应延长的报告[10]。来自不同肿瘤类型的各种派姆单抗试验的临床证据也支持非生物等效剂量,其剂量低于EMA/FDA批准的剂量。例如,一项针对非小细胞肺癌(NSCLC)患者的回顾性研究发现,给予Q3W-Q6W ADS (n = 604)的总生存率与标准剂量(n = 1362)相当。此外,加拿大的三项小型研究回顾性分析了2mg /kg Q3W和4mg /kg Q6W治疗的NSCLC患者队列(合并n = 139),得出4mg /kg Q6W同样有效的结论。然而,在体内测量受体占用存在不确定性,因为这是一项复杂的技术努力。因此,肿瘤内受体占用研究是使用体外数据在计算机上进行的,所开发的模型从未在体内得到验证。因此,其临床预测价值尚不清楚。此外,即使在最优条件下,通过2mg /kg给药方案获得接近完全的受体占用,也只有15%-50%的实体瘤患者有反应[5,9]。这表明治疗的有效性并不仅仅取决于受体占用和药代动力学参数,表明影响疗效的非药代动力学因素更为复杂,如肿瘤类型、肿瘤突变负担、t细胞浸润和肿瘤内活化的能力,以及PD-L1表达和某些基因组改变[10]的表达。随机对照试验(RCTs)是确定ADS疗效和安全性的黄金标准。目前,正在进行的多项研究表明,ADS (NCT04913025、NCT04295863、NCT05692999和NCT04909684)的需求尚未得到满足(详细描述见补充表S2)。然而,目前还没有足够有力的随机对照试验来评估剂量的疗效。目前还没有完成2毫克/公斤,因为这既耗时又昂贵。总之,有迹象表明,FDA规定的标准并不能反映派姆单抗的真实暴露-反应关系,从而强调了ADS提高治疗成本效益的潜力。然而,我们仍然不完全了解ICI疗效的驱动机制,最大疗效的确切阈值仍然难以捉摸。因此,在日常实践中实施与参考给药方案不具有生物等效性的ADS的影响尚未完全了解。然而,偏离生物等效性标准的较低剂量可能导致暴露低于最大效力阈值,从而可能导致效力降低。需要更复杂的方法以更快的方式确定最小有效阈值,并提供足够的指导来支持派姆单抗的ADS。对于未来的剂量优化研究,Tannock等人建议放弃对非劣效性试验的要求。此外,我们建
{"title":"Bioequivalence of alternative pembrolizumab dosing regimens: current practice and future perspectives","authors":"Ruben Malmberg,&nbsp;Bram C. Agema,&nbsp;Maaike M. Hofman,&nbsp;Stefani Oosterveld,&nbsp;Sander Bins,&nbsp;Daphne W. Dumoulin,&nbsp;Arjen Joosse,&nbsp;Joachim G. J. V. Aerts,&nbsp;Reno Debets,&nbsp;Birgit C. P. Koch,&nbsp;Astrid A. M. van der Veldt,&nbsp;Roelof W. F. van Leeuwen,&nbsp;Ron H. J. Mathijssen","doi":"10.1002/cac2.12661","DOIUrl":"10.1002/cac2.12661","url":null,"abstract":"&lt;p&gt;Immune checkpoint inhibitors (ICIs), including humanized anti-programmed cell death protein 1/programmed death-ligand 1 (anti-PD-1/PD-L1) monoclonal antibodies (mAbs), such as pembrolizumab, have transformed cancer treatment. Pembrolizumab was initially approved as a three-weekly (Q3W) 2 mg/kg weight-based dose by the Food and Drug Administration (FDA), which was later replaced by a 200 mg Q3W fixed-dose, mainly based on in silico simulations. Later, a fixed 400 mg six-weekly (Q6W) regimen was approved based on pharmacokinetic simulations [&lt;span&gt;1&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Due to increasing ICI use and high costs per treatment, increasingly large portions of healthcare budgets are shifted to ICI treatment. Therefore, it is important to handle ICIs as efficiently and cost-effectively as possible. Hence, the Q6W regimen was introduced, lowering the total amount of ICI administrations per patient and the strain on healthcare capacity, and improving patient convenience. The cost-effectiveness of ICI treatment could be optimized further by using alternative dosing strategies (ADS) [&lt;span&gt;1&lt;/span&gt;]. Some of these ADS have already been tested for pembrolizumab in some countries [&lt;span&gt;2, 3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Recently, the FDA provided bioequivalence guidelines for ADS, specifically for anti-PD-1/PD-L1 mAbs [&lt;span&gt;4&lt;/span&gt;]. These guidelines support the use of pharmacokinetic-modeling to simulate steady-state trough concentrations (C&lt;sub&gt;trough,ss&lt;/sub&gt;) and area under the curve (AUC; exposure) to establish bioequivalence for anti-PD-1/PD-L1 mAbs. In these guidelines, ADS are considered bioequivalent when both C&lt;sub&gt;trough,ss&lt;/sub&gt; and exposure are at most 20% lower compared to the dosing regimen used while establishing efficacy in clinical trials (i.e. the reference dosing regimen). A maximum of 25% increase in the maximum concentration (C&lt;sub&gt;max&lt;/sub&gt;) is used as the upper boundary, unless adequate clinical evidence shows that increasing the C&lt;sub&gt;max&lt;/sub&gt; does not increase toxicity. For pembrolizumab, incidences of toxicities were generally consistent across a 2-10 mg/kg dose range in multiple trials [&lt;span&gt;5&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;To verify whether various ADS (Figure 1, Supplementary Table S1) are bioequivalent following the current FDA guidelines, we assessed bioequivalence using pharmacokinetic modelling. Using pharmacokinetic data from a real-world cohort, the best performing model was selected with which bioequivalence was assessed in extrapolations from this cohort (“extrapolation”) and also from a virtual (“simulation”) cohort. Details on both cohorts, as well as modelling procedures, are depicted in the Supplementary Material and Methods. As a reference, the Q3W 2 mg/kg dosing regimen was used, as this regimen was used in the original approval. Results of these analyses are shown in Figure 1. The simulated ADS for pembrolizumab given every 3 or 4 weeks (Q3/4W) were bioequivalent according to the FDA guidelines. Interestingly, despite meeting the criteria for e","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"471-475"},"PeriodicalIF":20.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12661","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell transcriptomics and epigenomics point to CD58-CD2 interaction in controlling primary melanoma growth and immunity 单细胞转录组学和表观基因组学指出CD58-CD2相互作用控制原发性黑色素瘤的生长和免疫。
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-15 DOI: 10.1002/cac2.12651
Antonia Stubenvoll, Maria Schmidt, Johanna Moeller, Max Alexander Lingner Chango, Carolyn Schultz, Olga Antoniadou, Henry Loeffler-Wirth, Stephan Bernhart, Florian Große, Beatrice Thier, Annette Paschen, Ulf Anderegg, Jan C. Simon, Mirjana Ziemer, Clara T. Schoeder, Hans Binder, Manfred Kunz

Immunotherapy is currently one of the most promising treatment options for malignant melanoma [1]. To uncover new immunological targets for future treatment approaches, single-cell transcriptomic and epigenomic analyses were performed on human primary melanoma (MM) and melanocytic nevus (Nev) samples (Figure 1A). The detailed methods of this study are described in the Supplementary Material.

MM and Nev biopsies (Supplementary Figure S1; Supplementary Table S1) were analyzed by single-cell RNA sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) (Supplementary Figure S2; Supplementary Tables S2 and S3). Using Uniform Manifold Approximation and Projection (UMAP), 28 distinct cellular clusters were identified and annotated based on scRNA-seq data from a previous report and manual curation (Figure 1B; Supplementary Figure S3A) [2]. Examples of gene expression patterns for individual cell types are provided in Supplementary Table S4. Lesional T lymphocytes were quantified using scRNA-seq data and anti-CD3 immunofluorescence staining, which revealed three distinct immune states: hot (>25 % T cells), intermediate (>6-25 % T cells), and cold (0-6 % T cells) (Supplementary Table S5).

Based on a previous study examining melanoma cell differentiation statuses, the melanoma cell cluster was divided into 8 distinct subclusters (Supplementary Figure S3B, C) [3]. Unsupervised clustering further refined these findings, predicting 11 cellular subclusters of melanoma cells (Figure 1C, Supplementary Table S6) [3].

To investigate the molecular mechanisms underlying melanoma cell dedifferentiation, RNA velocity and latent time (LT) analyses were performed (Supplementary Material and Methods). These analyses measure developmental processes based on the gene expression patterns of spliced and unspliced genes [4], with LT more directly reflecting transcriptional dynamics. As shown in Figure 1C, RNA velocity arrows indicate a trajectory from the melanoma subcluster of undifferentiated, neural crest (nc)-like cells on the left toward the more differentiated Mel_trans-melan_c7 and Mel_trans-melan_c8 subclusters at the right edge. LT analysis (Figure 1C) and the latent time heatmap (Figure 1D) revealed an opposing trajectory toward a more dedifferentiated state, exemplified by the Mel_trans subcluster. Here, melanoma cell dedifferentiation was linked to gene sets enriched in antigen presentation and the induction of T cell receptor signaling (Figure 1D). This aligns with the known association between high immune cell infiltrates and dedifferentiated tumors. Notably, Serpin Family E Member 2 (SERPINE2) has been identified as a mediator of melanoma metastasis and tumor progression [5].

Next, we performed regulon analysis (https://github.com/aertslab/pySCENIC) of the melanoma cell clusters, which refers to a

免疫疗法是目前最有希望的恶性黑色素瘤治疗方案之一。为了发现未来治疗方法的新免疫靶点,对人类原发性黑色素瘤(MM)和黑素细胞痣(Nev)样本进行了单细胞转录组学和表观基因组学分析(图1A)。本研究的详细方法见补充资料。MM和Nev活检(补充图S1;通过单细胞RNA测序(scRNA-seq)和单细胞转座酶可及染色质测序(scATAC-seq)分析(补充图S2;补充表S2和S3)。使用统一流形近似和投影(UMAP),基于先前报告和人工整理的scRNA-seq数据,识别和注释了28个不同的细胞簇(图1B;补充图S3A) [2]个别细胞类型的基因表达模式示例见补充表S4。使用scRNA-seq数据和抗cd3免疫荧光染色对病变T淋巴细胞进行定量,结果显示三种不同的免疫状态:热(&gt; 25% T细胞)、中(&gt;6- 25% T细胞)和冷(0- 6% T细胞)(补充表S5)。根据先前对黑色素瘤细胞分化状态的研究,将黑色素瘤细胞簇分为8个不同的亚簇(Supplementary Figure S3B, C)[3]。无监督聚类进一步完善了这些发现,预测了黑色素瘤细胞的11个细胞亚簇(图1C,补充表S6)[3]。为了研究黑色素瘤细胞去分化的分子机制,进行了RNA速度和潜伏时间(LT)分析(补充材料和方法)。这些分析基于剪接和未剪接基因[4]的基因表达模式来衡量发育过程,而LT更直接地反映了转录动力学。如图1C所示,RNA速度箭头显示了从左侧未分化的神经嵴(nc)样细胞的黑色素瘤亚簇到右侧边缘分化程度更高的Mel_trans-melan_c7和Mel_trans-melan_c8亚簇的轨迹。LT分析(图1C)和潜在时间热图(图1D)显示了一个相反的轨迹,趋向于更加去分化的状态,Mel_trans亚簇就是一个例子。在这里,黑色素瘤细胞去分化与富含抗原呈递和诱导T细胞受体信号传导的基因集有关(图1D)。这与已知的高免疫细胞浸润与去分化肿瘤之间的关联一致。值得注意的是,Serpin家族E成员2 (SERPINE2)已被确定为黑色素瘤转移和肿瘤进展的中介。接下来,我们对黑色素瘤细胞簇进行了调控分析(https://github.com/aertslab/pySCENIC),这是指由相同转录因子[6]调控的一组基因。我们发现了许多与nc样和更多去分化黑色素瘤细胞相关的调控因子,如类维生素a X受体γ (RXRG)、SRY-Box转录因子2 (SOX2)、CAMP响应元件结合蛋白5 (CREB5)、BTB结构域和CNC同源物(BACH1)和转录因子12 (TCF12),以及与更多分化的黑素细胞相关的调控因子,如黑素细胞诱导转录因子(MITF)、SOX10、配对盒3 (PAX3)、TEA结构域转录因子1 (TEAD1)和SOX4(补充图S4)。与此相一致,我们知道BACH1激活参与细胞运动和转移的基因表达,在先天和适应性免疫反应[7]中都起着重要作用。综上所述,黑色素瘤细胞去分化过程可能由激活的免疫反应和特定的转录机制来定义。接下来,我们使用LIANA软件(https://saezlab.github.io/liana/),通过分析配体与受体的相互作用,重点分析细胞毒性T细胞,专注于黑色素瘤与免疫细胞的相互作用(图1E;补充表S7和S8)。为了进行更集中的分析,我们从随后的分析中删除了HLA和胶原蛋白基因。如图1E所示,细胞毒性T细胞上的CD2是黑色素瘤细胞中几种分子的主要相互作用伙伴,尤其是CD58和CD59。这种相互作用在高温肿瘤中最为突出。最近一项使用CRISPR/Cas敲除筛选的研究提供了证据,证明CD58-CD2相互作用可能确实是黑色素瘤免疫控制[8]的主要机制。我们的数据表明,CD58和CD59都与CD2相互作用,可能控制T细胞-黑色素瘤细胞相互作用。相比之下,冷肿瘤中最突出的相互作用是纤维连接蛋白1 (FN1)和整合素亚单位β 1 (ITGB1)之间的相互作用。已知纤维连接蛋白-整合素β1相互作用可拮抗整合素β3,因此可能对整合素下游信号通路[9]具有失活作用。 免疫荧光染色检测黑色素瘤/痣样本中CD58、CD59和CD2的表达(补充图S5;补充表S9)显示,与冷肿瘤/痣相比,热/中度肿瘤中黑色素瘤细胞附近的CD2+免疫细胞数量更高。然而,痣确实同时表达CD58和CD2。此外,CD58在热/中间样品中的表达更高,并随着LT的增加而增加(补充图S5)。利用癌症基因组图谱(TCGA)黑色素瘤队列(https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas)的数据,我们证明高CD58和高CD2表达可显著改善黑色素瘤患者的预后(图1F,补充图S6)。同样,在最近发表的一项黑色素瘤免疫治疗研究中,CD2表达与总生存率相关,使其成为免疫治疗的可能靶点(补充图S6)。接下来,我们使用从黑色素瘤患者的肿瘤组织中分离的肿瘤浸润淋巴细胞(til)富集肿瘤反应性CD8+ T细胞。如图1G和补充图S7所示,通过细胞内干扰素γ (IFN-γ)表达来确定的T细胞活化,通过阻断CD58而非CD59来降低自体黑色素瘤细胞的活化。此外,在T细胞存在下,黑色素瘤细胞的杀伤可以通过添加抗cd58抗体来抑制(图1G)。然后利用CD58、CD59和CD2的可溶性重组细胞外结构域分别测定CD2与CD58和CD59的结合亲和力(图1H)。这些分析显示CD2与CD58的结合活性高,而与CD59的结合活性低,这进一步支持了CD58-CD2的激活作用,而不是CD59-CD2。总的来说,除了已知的在膜攻击复合体上的失活能力外,CD59似乎需要一个特定的构象才能在CD2免疫环境中活跃,这可能解释了它在我们的环境中的失活。最后,在T细胞群中分析6个MM和1个Nev样本的scATAC-seq数据(图1I;补充表S10和S11)。免疫热样品中T细胞的十大开放染色质区域包括CD3D、干扰素γ (IFNG)、CD28、CD2、CD3G和颗粒酶A (GZMA)。与此相一致的是,CD2在scATAC-seq UMAP和scRNA-seq UMAP的T细胞和NK细胞簇中表达最为突出(Supplementary Figure S8)。通过分析染色质可及网络(CAN),我们发现CD2基因上游有一个开放的染色质区域(图1I),该区域含有多种转录因子的结合基元,包括CAMP响应元件结合蛋白1 (CREB1)、锌指蛋白143 (ZNF143)、MYB原癌基因样2 (MYBL2)、免疫球蛋白Kappa J区重组信号结合蛋白(RBPJ)、Jun原癌基因、AP-1转录因子亚基(Jun)、JunB原癌基因(JunB)和FOS Like 2, AP-1转录因子亚基(FOSL2)(图1J,补充图S8,补充图S9)。RBPJ可能在这种情况下发挥重要作用,因为它与肝细胞癌中的T细胞免疫反应有关,因此可能是免疫治疗的靶点。综上所述,本文提供了MM和Nev病变中黑色素瘤单细胞分化步骤的详细图谱,支持了不同黑色素瘤细胞亚群向高免疫表型的发展轨迹。CD58-CD2相互作用似乎在黑色素瘤免疫反应中发挥着重要作用,这可能在
{"title":"Single-cell transcriptomics and epigenomics point to CD58-CD2 interaction in controlling primary melanoma growth and immunity","authors":"Antonia Stubenvoll,&nbsp;Maria Schmidt,&nbsp;Johanna Moeller,&nbsp;Max Alexander Lingner Chango,&nbsp;Carolyn Schultz,&nbsp;Olga Antoniadou,&nbsp;Henry Loeffler-Wirth,&nbsp;Stephan Bernhart,&nbsp;Florian Große,&nbsp;Beatrice Thier,&nbsp;Annette Paschen,&nbsp;Ulf Anderegg,&nbsp;Jan C. Simon,&nbsp;Mirjana Ziemer,&nbsp;Clara T. Schoeder,&nbsp;Hans Binder,&nbsp;Manfred Kunz","doi":"10.1002/cac2.12651","DOIUrl":"10.1002/cac2.12651","url":null,"abstract":"<p>Immunotherapy is currently one of the most promising treatment options for malignant melanoma [<span>1</span>]. To uncover new immunological targets for future treatment approaches, single-cell transcriptomic and epigenomic analyses were performed on human primary melanoma (MM) and melanocytic nevus (Nev) samples (Figure 1A). The detailed methods of this study are described in the Supplementary Material.</p><p>MM and Nev biopsies (Supplementary Figure S1; Supplementary Table S1) were analyzed by single-cell RNA sequencing (scRNA-seq) and single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq) (Supplementary Figure S2; Supplementary Tables S2 and S3). Using Uniform Manifold Approximation and Projection (UMAP), 28 distinct cellular clusters were identified and annotated based on scRNA-seq data from a previous report and manual curation (Figure 1B; Supplementary Figure S3A) [<span>2</span>]. Examples of gene expression patterns for individual cell types are provided in Supplementary Table S4. Lesional T lymphocytes were quantified using scRNA-seq data and anti-CD3 immunofluorescence staining, which revealed three distinct immune states: hot (&gt;25 % T cells), intermediate (&gt;6-25 % T cells), and cold (0-6 % T cells) (Supplementary Table S5).</p><p>Based on a previous study examining melanoma cell differentiation statuses, the melanoma cell cluster was divided into 8 distinct subclusters (Supplementary Figure S3B, C) [<span>3</span>]. Unsupervised clustering further refined these findings, predicting 11 cellular subclusters of melanoma cells (Figure 1C, Supplementary Table S6) [<span>3</span>].</p><p>To investigate the molecular mechanisms underlying melanoma cell dedifferentiation, RNA velocity and latent time (LT) analyses were performed (Supplementary Material and Methods). These analyses measure developmental processes based on the gene expression patterns of spliced and unspliced genes [<span>4</span>], with LT more directly reflecting transcriptional dynamics. As shown in Figure 1C, RNA velocity arrows indicate a trajectory from the melanoma subcluster of undifferentiated, neural crest (nc)-like cells on the left toward the more differentiated Mel_trans-melan_c7 and Mel_trans-melan_c8 subclusters at the right edge. LT analysis (Figure 1C) and the latent time heatmap (Figure 1D) revealed an opposing trajectory toward a more dedifferentiated state, exemplified by the Mel_trans subcluster. Here, melanoma cell dedifferentiation was linked to gene sets enriched in antigen presentation and the induction of T cell receptor signaling (Figure 1D). This aligns with the known association between high immune cell infiltrates and dedifferentiated tumors. Notably, Serpin Family E Member 2 <i>(SERPINE2)</i> has been identified as a mediator of melanoma metastasis and tumor progression [<span>5</span>].</p><p>Next, we performed regulon analysis (https://github.com/aertslab/pySCENIC) of the melanoma cell clusters, which refers to a ","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"465-470"},"PeriodicalIF":20.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting ferroptosis resistance resensitizes metastatic HR+HER2− breast cancer cells to palbociclib-hormone therapy 靶向铁下垂耐药性使转移性HR+HER2乳腺癌细胞对palbociclib-激素治疗重新敏感。
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-13 DOI: 10.1002/cac2.12646
Charles Pottier, Laetitia Montero-Ruiz, Robin Jehay, Coline Wery, Dominique Baiwir, Gabriel Mazzucchelli, Sophie Bekisz, Romain Thissen, Claire Josse, Andrée Rorive, Stéphanie Gofflot, Ahmed Dahmani, Ludivine Morisset, Joëlle Collignon, Philipe Delvenne, Elisabetta Marangoni, Agnès Noël, Guy Jerusalem, Nor Eddine Sounni
<p>Metastatic hormone receptor-positive (HR<sup>+</sup>), human epidermal growth factor receptor 2-negative (HER2<sup>−</sup>) breast cancer often develops resistance to first-line treatment, typically combining cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) with hormone therapy (HT) [<span>1, 2</span>]. After an initial response, most patients become resistant, and compensatory mechanisms are not fully uncovered [<span>3</span>]. To address this, we analyzed HR<sup>+</sup> resistant CAMA1 and 747D cells using whole-exome and RNA sequencing, supplemented by proteomics and target validation with human samples. Additionally, we conducted combination therapy trials using xenografts and patient-derived xenografts (PDXs). Detailed study designs and methods are provided in the Supplementary file.</p><p>In a cohort of 27 patients with metastatic breast cancer, we observed reduced progression-free survival in second- and third-line therapies following progression post palbociclib-HT treatment (Supplementary Figure S1A and Supplementary Table S1). Resistant tumors showed reduced estrogen receptor alpha (ERα) and progesterone receptor (PR) and increased proliferation rates (Supplementary Figure S1B-D). CAMA1 and T47D cells, treated with palbociclib and fulvestrant (PF) for 2 years, developed resistance (CAMA1-PFR and T47D-PFR) confirmed by proliferation assays and elevated half-maximal inhibitory concentrations. Resistant cells exhibited reduced levels of ERα and retinoblastoma protein (Supplementary Figure S2). Exome analysis revealed no drug resistance-related mutations (Supplementary Tables S2-S3), suggesting non-genetic factors.</p><p>RNA sequencing of T47D cells treated with DMSO or PF for 20 days and T47D-PFR cells revealed 1,172 upregulated genes and 824 downregulated genes in the resistant cells (Supplementary Figure S3A). Gene set enrichment analysis indicated increased fatty acid localization (Supplementary Figure S3B), with a heatmap showing elevated fatty acid uptake and metabolism-related genes, such as fatty acid binding protein-6 (FABP6), FABP7, cluster of differentiation-36 (CD36), and proteasome proliferator-activated receptor-gamma (PPARγ) in T47D-PFR cells (Figure 1A). Lipid droplets accumulated in PF-treated parental and PF-resistant T47D and CAMA1 cells (Figure 1B and Supplementary Figure S3C). FABP6 levels were elevated in PF-treated parental and PF-resistant cells, with CD36 overexpression unique to T47D-PFR cells at both protein and mRNA levels (Figure 1C and Supplementary Figure S3D-E), suggesting that lipid uptake might be an adaptive response to oxidative stress [<span>4, 5</span>]. This was supported by elevated reactive oxygen species (ROS) levels in PF-treated parental cells (Figure 1D). Furthermore, proteomic analysis in human biopsies revealed a functional network of 11 oxidative stress-triggered proteasomes (Supplementary Figure S4A and Supplementary Tables S4-S5) as indicators of oxidative stress [<span>6</span>]. Im
单独使用RSL3不影响CAMA1-PFR肿瘤的生长,而PF-RSL3显示出很强的抗肿瘤作用(图1J),这表明RSL3使CAMA1-PFR细胞对PF敏感,反之亦然。同样,Ep单独不能抑制CAMA1-PFR肿瘤生长,但与PF联合完全抑制肿瘤生长(图1J)。为了评价治疗对肿瘤细胞增殖和死亡的影响,我们采用免疫组化方法检测了肿瘤组织中Ki67、caspase-3和羟基壬烯醛(HNE)的表达。亲代CAMA1肿瘤经PF治疗后Ki67显著降低,对caspase-3无影响,而CAMA1- pfr肿瘤经PF、PFEp或PF- rsl3治疗后两种标志物均无显著变化(补充图S6A-D)。HNE标记显示PF和载药治疗的CAMA1肿瘤之间没有差异(补充图S6E),但在用RSL3治疗的CAMA1- pfr肿瘤中HNE适度增加,而在PFEp或PF-RSL3治疗的CAMA1- pfr肿瘤中HNE显著增加(补充图S6F),表明可能因铁凋亡导致细胞死亡。尽管CAMA1-PFR异种移植物与人类活检相比显示基础表达显著增加,但在两种肿瘤类型中,治疗均未影响CD36表达(补充图S6G-J)。为了加强我们研究结果的转化影响,我们使用了来自没有p53突变的HR+HER2 -乳腺癌患者的患者来源的异种移植物(pdx) (Supplementary Figure S7A)。与人类样本一致,与palbociclib-HT-naïve PDX模型(HBCx-124)相比,palbociclib- ht耐药PDX模型(HBCx-180)中GPX4蛋白表达上调(补充图S7B)。虽然GPX4 mRNA水平在耐药细胞中不受影响,但其在HBCx-180中的表达明显更高(补充图S7C),这表明在体外和体内环境下,GPX4 mRNA的特异性转录/翻译调控不同。在HBCx-124模型中,所有肿瘤(n = 5)对PF反应良好,Ep (PFEp)没有额外的益处,尽管对Ep单药治疗有部分反应(图1K)。相反,HBCx-180模型对PF或Ep没有明显的反应,PFEp组与对照组和Ep组之间的肿瘤体积从第25天开始有显著差异(P &lt;0.05)(图1L)。这些结果证实,在PF耐药肿瘤中加入Ep可产生较强的抗肿瘤作用。在HBCx-124 PDX中,Ki67标记随着PF而降低,而在HBCx-180 PDX中则没有(补充图S8A-B)。除了PF处理的HBCx-124中caspase-3标记减少外,Ep或PFEp没有观察到明显的变化,并且这些处理条件都没有影响HBCx-180(补充图S8C-D),表明HBCx-180的增殖和凋亡没有受到影响。HNE标记表明,PF促进HBCx-124中的铁下垂,而HBCx-180中只有PFEp治疗的肿瘤与对照相比出现显著的HNE增加(补充图S8E-F)。PF使HBCx-124的HNE略有增加,但无显著性,但HBCx-180的唯一易感性归因于PFEp诱导的铁下垂。我们排除了eprenetapopt的p53依赖性抗肿瘤作用,因为p53在亲本细胞、pfx耐药细胞和pdx中表达相似,而在耐药的人类肿瘤中略有升高(补充图S9)。最后,在PF中添加Ep或RSL3不会对小鼠产生明显的肾、肝或血液学毒性(Supplementary Figure S10)。总之,对palbociclib-HT耐药的HR+HER2−肿瘤易受铁下垂诱导剂的影响,这突出了旁系药物敏感性的潜力,以及开发促铁下垂药物治疗耐药转移性乳腺癌的前景(Supplementary Figure S11)。概念和设计:CP和NES。方法论的发展:CP, LMR, NES。数据采集:CP、LMR、RT、CW、RJ、AR、JC、CJ、SG、SB、AD、PD、LM和EM。数据分析和解释(如统计分析、生物统计学):CP、LMR、DB、GM、RT、CJ和NES。撰写,审查和/或修改稿件:CP, GJ, AN和NES。研究指导:GJ和NES。除Guy Jerusalem博士外,作者声明没有竞争利益,他声明获得了资助支持,支付给他的机构,顾问费,讲课费,旅行支持以及诺华,罗氏和辉瑞的写作帮助。本文全文提供了披露信息。未报告与本文相关的其他潜在利益冲突。这项工作得到了比利时国家科学研究基金(NFSR-FNRS)的资助(NES: PDR T.023020;CDR J.0178.22);列日大学信贷部门(NES: FSR-S-SS-22/61);FSR-S-SS-22/64);和比利时癌症防治基金会(NES和AN: FCC-2022-181)。
{"title":"Targeting ferroptosis resistance resensitizes metastatic HR+HER2− breast cancer cells to palbociclib-hormone therapy","authors":"Charles Pottier,&nbsp;Laetitia Montero-Ruiz,&nbsp;Robin Jehay,&nbsp;Coline Wery,&nbsp;Dominique Baiwir,&nbsp;Gabriel Mazzucchelli,&nbsp;Sophie Bekisz,&nbsp;Romain Thissen,&nbsp;Claire Josse,&nbsp;Andrée Rorive,&nbsp;Stéphanie Gofflot,&nbsp;Ahmed Dahmani,&nbsp;Ludivine Morisset,&nbsp;Joëlle Collignon,&nbsp;Philipe Delvenne,&nbsp;Elisabetta Marangoni,&nbsp;Agnès Noël,&nbsp;Guy Jerusalem,&nbsp;Nor Eddine Sounni","doi":"10.1002/cac2.12646","DOIUrl":"10.1002/cac2.12646","url":null,"abstract":"&lt;p&gt;Metastatic hormone receptor-positive (HR&lt;sup&gt;+&lt;/sup&gt;), human epidermal growth factor receptor 2-negative (HER2&lt;sup&gt;−&lt;/sup&gt;) breast cancer often develops resistance to first-line treatment, typically combining cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) with hormone therapy (HT) [&lt;span&gt;1, 2&lt;/span&gt;]. After an initial response, most patients become resistant, and compensatory mechanisms are not fully uncovered [&lt;span&gt;3&lt;/span&gt;]. To address this, we analyzed HR&lt;sup&gt;+&lt;/sup&gt; resistant CAMA1 and 747D cells using whole-exome and RNA sequencing, supplemented by proteomics and target validation with human samples. Additionally, we conducted combination therapy trials using xenografts and patient-derived xenografts (PDXs). Detailed study designs and methods are provided in the Supplementary file.&lt;/p&gt;&lt;p&gt;In a cohort of 27 patients with metastatic breast cancer, we observed reduced progression-free survival in second- and third-line therapies following progression post palbociclib-HT treatment (Supplementary Figure S1A and Supplementary Table S1). Resistant tumors showed reduced estrogen receptor alpha (ERα) and progesterone receptor (PR) and increased proliferation rates (Supplementary Figure S1B-D). CAMA1 and T47D cells, treated with palbociclib and fulvestrant (PF) for 2 years, developed resistance (CAMA1-PFR and T47D-PFR) confirmed by proliferation assays and elevated half-maximal inhibitory concentrations. Resistant cells exhibited reduced levels of ERα and retinoblastoma protein (Supplementary Figure S2). Exome analysis revealed no drug resistance-related mutations (Supplementary Tables S2-S3), suggesting non-genetic factors.&lt;/p&gt;&lt;p&gt;RNA sequencing of T47D cells treated with DMSO or PF for 20 days and T47D-PFR cells revealed 1,172 upregulated genes and 824 downregulated genes in the resistant cells (Supplementary Figure S3A). Gene set enrichment analysis indicated increased fatty acid localization (Supplementary Figure S3B), with a heatmap showing elevated fatty acid uptake and metabolism-related genes, such as fatty acid binding protein-6 (FABP6), FABP7, cluster of differentiation-36 (CD36), and proteasome proliferator-activated receptor-gamma (PPARγ) in T47D-PFR cells (Figure 1A). Lipid droplets accumulated in PF-treated parental and PF-resistant T47D and CAMA1 cells (Figure 1B and Supplementary Figure S3C). FABP6 levels were elevated in PF-treated parental and PF-resistant cells, with CD36 overexpression unique to T47D-PFR cells at both protein and mRNA levels (Figure 1C and Supplementary Figure S3D-E), suggesting that lipid uptake might be an adaptive response to oxidative stress [&lt;span&gt;4, 5&lt;/span&gt;]. This was supported by elevated reactive oxygen species (ROS) levels in PF-treated parental cells (Figure 1D). Furthermore, proteomic analysis in human biopsies revealed a functional network of 11 oxidative stress-triggered proteasomes (Supplementary Figure S4A and Supplementary Tables S4-S5) as indicators of oxidative stress [&lt;span&gt;6&lt;/span&gt;]. Im","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"460-464"},"PeriodicalIF":20.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Training the synergy between Bacillus Calmette-Guérin and immune checkpoint-blocking antibodies in bladder cancer 培养卡介苗与免疫检查点阻断抗体在膀胱癌中的协同作用。
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-10 DOI: 10.1002/cac2.12647
Renate Pichler, Martin Thurnher
<p>Fifty years after the introduction of Bacillus Calmette-Guérin (BCG), a live attenuated strain of <i>Mycobacterium bovis</i> [<span>1</span>], it is still the most effective and successful adjuvant immunotherapy of non-muscle invasive bladder cancer (NMIBC) [<span>2</span>]. The guidelines of the European Association of Urology (EAU) suggest a 6-weekly induction phase followed by a maintenance schedule of BCG once weekly for 3 weeks and at 3, 6, 12, 18, 24, 30, and 36 months for 1 to 3 years [<span>2</span>]. However, patients with BCG-unresponsive disease - defined as BCG-refractory tumors (T1 high-grade disease after at least 5 out of 6 doses of BCG induction, any high-grade disease during BCG maintenance, carcinoma in situ/Ta high-grade disease after induction, followed by recurrence after reinduction or one maintenance cycle) or early relapse including recurrence with any high-grade disease within 6 months or carcinoma in situ within 12 months after adequate BCG exposure - are unlikely to respond to further BCG alone (BCG reinduction), resulting in the necessity of radical cystectomy (RC) as a next therapeutic step [<span>2</span>].</p><p>Various ongoing studies with novel bladder-preserving strategies are therefore currently investigating whether RC can be prevented in BCG-unresponsive patients and whether the BCG-induced antitumor effect can be enhanced in BCG-naïve high-risk NMIBC by combining BCG with immune-enhancing agents, Supplementary Table S1.</p><p>A recently published clinical phase 1 trial (ADAPT-BLADDER) was able to show that the combination of the immune checkpoint inhibitor durvalumab and BCG is an effective therapy for BCG-unresponsive NMIBC [<span>3</span>]. In detail, within the durvalumab + BCG cohort, the 3-, and 12-month complete response rate was high with 85% and 73%, respectively [<span>3</span>]. Although this first encouraging preliminary data suggest that combinatory approaches synergistically improve antitumor response of BCG in patients with BCG-unresponsive NMIBC [<span>3</span>], a better understanding of the immunological mechanisms underlying BCG activity and other combination agents is essential for patient selection, biomarker and future drug development.</p><p>BCG is a very special vaccine because of its ability to reprogram macrophages metabolically and epigenetically. As a result, repetitive administration of BCG increases macrophage responsiveness, a phenomenon referred to as “trained immunity”. BCG is an effective stimulus for inducing trained immunity. Upon detection of BCG by pattern recognition receptors [<span>4</span>], activation of the Akt/mTOR pathway is crucial to shift cellular metabolism towards glycolysis and glutaminolysis, which - in turn - are required for the induction of trained immunity in human monocytes by BCG. Moreover, epigenetic mechanisms regulate the induction of these pathways at the level of chromatin organization. Specifically, an increase of H3K4me3, a histone mark denot
随后fcr介导的免疫球蛋白G (IgG)包被靶标的吞噬作用为外周的病原体清除服务,同样可能有助于肿瘤细胞的清除。一项新的研究表明,先前的FcR激活使巨噬细胞在再次遇到[13]时更有可能吞噬igg包被的肿瘤细胞。换句话说,先前具有阈下Fc受体激活的巨噬细胞“吃掉”更多与igg结合的人类癌细胞。这项研究表明,IgG诱导巨噬细胞增加吞噬,这表明在初始诱导剂量后,治疗性抗体可能会变得更有效,这与BCG诱导细胞因子产生非常相似,见图1。目前正在与卡介苗联合试验的免疫检查点阻断抗体有派姆单抗、沙沙单抗、durvalumab和atezolizumab,它们通过阻断抑制性程序性细胞死亡配体1/程序性细胞死亡蛋白1 (PD-L1/PD-1)信号通路激活T细胞。虽然PD-L1/PD-1信号通路对T细胞的抑制作用已经得到了很好的研究,但人们对这一信号通路在肿瘤相关巨噬细胞(tam)中的作用知之甚少。在tam中,PD-1激活的一个公认的作用是抑制吞噬。研究表明,TAM对肿瘤细胞的吞噬能力与PD-1表达呈负相关,体内阻断PD-1/PD-L1后,巨噬细胞吞噬能力增加。这些观察结果表明,免疫检查点阻断抗体不仅可以促进T细胞活化,还可以支持tam恢复肿瘤细胞的吞噬作用,这代表了免疫检查点抑制剂增强抗肿瘤作用的另一种机制。而且,一旦TAM的吞噬功能恢复,IgG的训练效应就可以开始发挥作用,使肿瘤细胞的吞噬更加有效[13]。FcR的作用不仅限于吞噬作用,还可能包括细胞因子的产生以及抗体依赖性和FcR介导的肿瘤细胞杀伤[11]。需要进一步的研究来阐明这些功能是否也可以通过先前的FcR激活来训练。除了训练先天免疫应答外,卡介苗接种还可以增强功能性抗体[15]的产生,这种抗体原则上也可能针对肿瘤细胞。这提出了一种可能性,即治疗性检查点抑制抗体预先激活TAMs中的FcR,促进了卡介苗接种引发的抗肿瘤抗体介导的肿瘤细胞杀伤,从而在卡介苗和ICI之间产生协同效应。总之,我们有必要进一步研究BCG与IgG治疗性抗体之间的串扰,以增强训练免疫介导的膀胱癌抗肿瘤免疫应答。低技术含量的卡介苗训练巨噬细胞产生促炎细胞因子,而高技术含量的免疫检查点阻断抗体通过TAM恢复和训练肿瘤细胞吞噬。培养卡介苗与免疫检查点阻断抗体之间的协同作用,使巨噬细胞在对抗膀胱癌的过程中充分发挥其潜能,并可在不同水平上进一步提高:一方面,通过基因工程[16]使卡介苗更有效,另一方面,免疫检查点阻断抗体的fc工程可能有助于增强预激活巨噬细胞[17]吞噬肿瘤细胞的训练效果。在这些考虑的延续,物理结合免疫检查点阻断抗体卡介苗可能是有吸引力的,并可能给膀胱癌免疫治疗的一个新的转折。概念和设计:Renate Pichler和Martin Thurnher。数据获取:Renate Pichler和Martin Thurnher。文献检索:Renate Pichler和Martin Thurnher。撰写草稿和修改手稿:Renate Pichler和Martin Thurnher。最终批准出版的版本:Renate Pichler和Martin Thurnher。两位作者都已阅读、审阅并同意稿件的出版版本。作者宣称他们没有竞争利益。不适用。
{"title":"Training the synergy between Bacillus Calmette-Guérin and immune checkpoint-blocking antibodies in bladder cancer","authors":"Renate Pichler,&nbsp;Martin Thurnher","doi":"10.1002/cac2.12647","DOIUrl":"10.1002/cac2.12647","url":null,"abstract":"&lt;p&gt;Fifty years after the introduction of Bacillus Calmette-Guérin (BCG), a live attenuated strain of &lt;i&gt;Mycobacterium bovis&lt;/i&gt; [&lt;span&gt;1&lt;/span&gt;], it is still the most effective and successful adjuvant immunotherapy of non-muscle invasive bladder cancer (NMIBC) [&lt;span&gt;2&lt;/span&gt;]. The guidelines of the European Association of Urology (EAU) suggest a 6-weekly induction phase followed by a maintenance schedule of BCG once weekly for 3 weeks and at 3, 6, 12, 18, 24, 30, and 36 months for 1 to 3 years [&lt;span&gt;2&lt;/span&gt;]. However, patients with BCG-unresponsive disease - defined as BCG-refractory tumors (T1 high-grade disease after at least 5 out of 6 doses of BCG induction, any high-grade disease during BCG maintenance, carcinoma in situ/Ta high-grade disease after induction, followed by recurrence after reinduction or one maintenance cycle) or early relapse including recurrence with any high-grade disease within 6 months or carcinoma in situ within 12 months after adequate BCG exposure - are unlikely to respond to further BCG alone (BCG reinduction), resulting in the necessity of radical cystectomy (RC) as a next therapeutic step [&lt;span&gt;2&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Various ongoing studies with novel bladder-preserving strategies are therefore currently investigating whether RC can be prevented in BCG-unresponsive patients and whether the BCG-induced antitumor effect can be enhanced in BCG-naïve high-risk NMIBC by combining BCG with immune-enhancing agents, Supplementary Table S1.&lt;/p&gt;&lt;p&gt;A recently published clinical phase 1 trial (ADAPT-BLADDER) was able to show that the combination of the immune checkpoint inhibitor durvalumab and BCG is an effective therapy for BCG-unresponsive NMIBC [&lt;span&gt;3&lt;/span&gt;]. In detail, within the durvalumab + BCG cohort, the 3-, and 12-month complete response rate was high with 85% and 73%, respectively [&lt;span&gt;3&lt;/span&gt;]. Although this first encouraging preliminary data suggest that combinatory approaches synergistically improve antitumor response of BCG in patients with BCG-unresponsive NMIBC [&lt;span&gt;3&lt;/span&gt;], a better understanding of the immunological mechanisms underlying BCG activity and other combination agents is essential for patient selection, biomarker and future drug development.&lt;/p&gt;&lt;p&gt;BCG is a very special vaccine because of its ability to reprogram macrophages metabolically and epigenetically. As a result, repetitive administration of BCG increases macrophage responsiveness, a phenomenon referred to as “trained immunity”. BCG is an effective stimulus for inducing trained immunity. Upon detection of BCG by pattern recognition receptors [&lt;span&gt;4&lt;/span&gt;], activation of the Akt/mTOR pathway is crucial to shift cellular metabolism towards glycolysis and glutaminolysis, which - in turn - are required for the induction of trained immunity in human monocytes by BCG. Moreover, epigenetic mechanisms regulate the induction of these pathways at the level of chromatin organization. Specifically, an increase of H3K4me3, a histone mark denot","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"438-441"},"PeriodicalIF":20.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12647","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To what extent is the association between obesity and colorectal cancer risk mediated by systemic inflammation? 肥胖和结直肠癌风险之间的关联在多大程度上由全身性炎症介导?
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-10 DOI: 10.1002/cac2.12659
Fatemeh Safizadeh, Marko Mandic, Michael Hoffmeister, Hermann Brenner
<p>Both overall and abdominal obesity are well-established risk factors for various cancer types, including colorectal cancer (CRC) [<span>1</span>]. However, how adiposity impacts CRC development has been insufficiently investigated. Three primary hypotheses have been suggested to elucidate the biological pathways that link adiposity and CRC: alterations in insulin signaling, dysregulation of adipose tissue-derived inflammation, and sex hormone metabolism [<span>2, 3</span>]. New mechanisms are also emerging, including altered gut microbiome and gut hormones, such as Ghrelin and nonalcoholic fatty liver disease (NAFLD). One of the key mechanisms proposed, and a common feature in most pathways, is inflammation [<span>3</span>].</p><p>Adiposity is associated with a systemic subclinical inflammation and higher levels of inflammatory biomarkers such as C-reactive protein (CRP), tumor necrosis factor (TNF), interleukin‑1β (IL‑1β), IL‑6, and IL‑18 [<span>2</span>]. Inflammation can contribute to cancer development through mechanisms, such as the production of free radicals, including reactive oxygen intermediates, by suppressing the immune system, causing abnormal cell signaling, which promotes proliferative and anti-apoptotic pathways, angiogenesis, and cell migration [<span>3</span>].</p><p>To quantify how much of the association between adiposity and CRC risk might be explained by inflammation, as reflected in increased serum levels of CRP —a nonspecific marker of systemic inflammation, we used body mass index (BMI) as a measure of general obesity, and waist circumference (WC) and waist-to-hip ratio (WHR) as measures of abdominal obesity, and we paid particular attention to a potential role of reverse causation due to cancer-related changes in body weight and CRP levels.</p><p>Data from 499,926 UK Biobank study participants aged 40-69, collected from 22 UK Biobank assessment centers, were utilized. Detailed information on the study population and design, exposure and outcome assessments, and statistical analysis is provided in the Supplementary Materials and Methods. After excluding participants with previous cancer diagnosis (except non-melanoma skin cancer), missing BMI, WHR, WC, and CRP, 429,073 participants remained and were included in the analysis (Supplementary Figure S1). Of these, 5,544 were diagnosed with CRC during a median follow-up of 11.8 years (interquartile range: 11.0-12.5). Main characteristics of the cohort are shown in Supplementary Table S1. Median age at baseline was 57 years, 53.2% of participants were female, and 94.6% were white. Median BMI, WC, and WHR for the whole cohort population were 26.7 kg/m<sup>2</sup>, 90.0 cm, and 0.87, respectively. Furthermore, approximately 22% of the population had CRP levels greater than or equal to 3 mg/L at baseline.</p><p>Individuals classified as overweight or obese exhibited elevated CRP levels compared to those with a normal BMI. Additionally, participants in higher quartiles for both
整体肥胖和腹部肥胖都是各种癌症类型的危险因素,包括结直肠癌(CRC)[1]。然而,肥胖如何影响结直肠癌的发展尚未得到充分的研究。为了阐明肥胖和结直肠癌之间的生物学途径,人们提出了三个主要假设:胰岛素信号的改变、脂肪组织源性炎症的失调和性激素代谢[2,3]。新的机制也正在出现,包括改变肠道微生物群和肠道激素,如胃饥饿素和非酒精性脂肪性肝病(NAFLD)。提出的关键机制之一,也是大多数途径的共同特征,是炎症[3]。肥胖与全身性亚临床炎症和较高水平的炎症生物标志物(如c -反应蛋白(CRP)、肿瘤坏死因子(TNF)、白细胞介素- 1β (IL - 1β)、IL - 6和IL - 18[2])有关。炎症可以通过抑制免疫系统产生自由基(包括活性氧中间体)等机制促进癌症的发展,引起异常的细胞信号传导,从而促进增殖和抗凋亡途径、血管生成和细胞迁移[3]。为了量化炎症在肥胖和结直肠癌风险之间的关联程度,正如血清CRP水平升高所反映的那样,我们使用体重指数(BMI)作为一般肥胖的衡量标准,腰围(WC)和腰臀比(WHR)作为腹部肥胖的衡量标准,我们特别关注了由于体重和CRP水平的癌症相关变化而导致的反向因果关系的潜在作用。数据来自499,926名年龄在40-69岁之间的英国生物银行研究参与者,来自22个英国生物银行评估中心。关于研究人群和设计、暴露和结果评估以及统计分析的详细信息在补充材料和方法中提供。排除既往有癌症诊断(非黑色素瘤皮肤癌除外)、BMI、WHR、WC和CRP缺失的参与者后,429,073名参与者被纳入分析(补充图S1)。其中,5544人在中位随访11.8年(四分位数范围:11.0-12.5)期间被诊断为结直肠癌。该队列的主要特征见补充表S1。基线时的中位年龄为57岁,53.2%的参与者为女性,94.6%为白人。整个队列人群的中位BMI、WC和WHR分别为26.7 kg/m2、90.0 cm和0.87。此外,大约22%的人群在基线时CRP水平大于或等于3mg /L。与BMI正常的人相比,超重或肥胖的人表现出CRP水平升高。此外,与最低四分位数的参与者相比,WC和WHR高四分位数的参与者的CRP值明显更高(补充图S2)。此外,在随访的前四年确诊的CRC病例中,所有类别的所有人体测量指标中CRP水平均高于后来确诊的CRC病例,这表明临床前癌症对CRP浓度有潜在影响(补充图S3)。各种人体测量值与CRP水平之间关系的Spearman等级相关系数最高的是BMI(0.44),其次是WC(0.38),最低的是WHR(0.23),与男性相比,女性的BMI和WC之间的相关性更强。(补充表S2)。在包括整个随访时间的标准分析中,与正常BMI相比,超重的风险比(hr)和95%置信区间(CIs)从1.12(1.05-1.20)降至1.09(1.02-1.17),肥胖的风险比(hr)从1.24(1.15-1.34)降至1.17(1.08-1.26),调整了基线(mg/L) CRP水平的自然对数(ln)。在调整ln (CRP)后,最高四分位数与最低四分位数的相关性分别从1.38(1.27-1.49)降至1.32(1.21-1.43),从1.35(1.24-1.47)降至1.27 (1.17-1.39),ln (CRP)本身就表明与CRC风险增加有明确的关联(表1)。为了尽量减少反向因果关系的潜在作用,排除头四年的随访导致BMI与CRC风险之间的相关性更强,而WC、WHR和CRC风险基本保持不变。然而,在所有肥胖测量中,在模型中加入ln (CRP)后,这种关联的衰减基本上消失了。例如,与正常BMI相比,超重和肥胖的hr (95% ci)在调整ln (CRP)之前分别为1.13(1.05-1.23)和1.30(1.19-1.42),调整后分别为1.13(1.04-1.22)和1.28(1.16-1.40)。WHR和WC与结直肠癌风险之间的关系也有类似的模式。 此外,在排除最初四年的随访后,CRP不再与CRC风险相关(表1)。癌症恶病质,其特征是肌肉损失伴有或不伴有脂肪损失,在癌症患者中很常见,包括CRC,甚至在诊断之前[4,5]。因此,在队列研究中,在招募后不久诊断出的CRC病例可能在招募时就已经存在,导致这些参与者的BMI被低估,因此在早期随访中BMI与CRC的关联非常弱,甚至呈负相关。在流行病学研究中,由于诊断前体重减轻导致一般性肥胖(如BMI升高所反映)与结直肠癌风险之间的关联减弱,反向因果关系的主要作用已经得到证实,我们的分析也证明了这一点[6,7]。如前所述,炎症是癌症的标志,也被认为是致癌的关键因素,包括CRC。我们似乎可以假设,先前研究中观察到的炎症标志物与结直肠癌风险之间的部分关联同样可能是由于在结直肠癌发生之后而不是之前的炎症过程导致的反向因果关系。我们的多变量分析支持了这一假设,在包括整个随访的模型中,CRP和CRC风险之间的关联始终存在,但在排除最初4年随访的模型中基本消失。我们的研究结果与其他研究一致,表明CRP与CRC风险之间仅在随访的早期有很强的相关性,当排除这些随访的早期(2-5年)时没有相关性[8,9]。这些结果不支持CRP在结直肠癌病因学中的作用。在一些研究中,抗炎剂尤其是阿司匹林的使用已被证明与较低的结直肠癌发病率相关,并且阿司匹林已被推荐用于结直肠癌的化学预防。然而,使用这些药物是否能降低结直肠癌风险仍存在争议,目前证据不足。我们的研究结果可能有助于解释抗炎化学预防结直肠癌的困难和失败,并强调预防结直肠癌的其他方法的重要性,例如促进富含水果和蔬菜的饮食。在本研究中,我们评估了炎症的潜在中介作用,反映在血清CRP水平升高中,在一般和腹部肥胖与CRC风险之间的关联。大样本量、对潜在混杂因素的全面调整、测量的(与自我报告的)人体测量值是本研究最重要的优势,而仅在基线时考虑人体测量值和单一炎症生物标志物,主要是白人人群,这限制了通用性,以及潜在的残留混杂因素是本研究的局限性。尽管存在局限性,但我们的分析强调了在分析肥胖、全身性炎症和结直肠癌风险之间的关联时考虑潜在反向因果关系的重要性。在我们的分析中观察到的模式(不包括最初四年的随访)确实表明,除了crp定义的全身性炎症外,其他因素可能在介导肥胖引起的结直肠癌风险增加中发挥更相关的作用。全身性炎症在结直肠癌风险中的作用比之前假设的要低,这也可以部分解释阿司匹林等抗炎药物的化学预防工作的挑战和缺点。这项研究是由Hermann Brenner和Fatemeh Safizadeh概念化的。Fatemeh Safizadeh进行了数据分析。Fatemeh Safizadeh和Hermann Brenner起草了最初的手稿。对数据的解释是Hermann Brenner、Fatemeh Safizadeh、Marko Mandic和Michael Hoffmeister共同努力的结果。在所有作者的重要贡献下,对手稿进行了全面的修订。手稿的定稿得到了所有作者的同意,可以发表。作者没有需要披露的利益冲突。英国生物银行是由威康信托医疗慈善机构、医学研究委员会、卫生部、苏格兰政府和西北地区开发署建立的。它还得到了英国心脏基金会、英国癌症研究所、英国糖尿病研究所和国
{"title":"To what extent is the association between obesity and colorectal cancer risk mediated by systemic inflammation?","authors":"Fatemeh Safizadeh,&nbsp;Marko Mandic,&nbsp;Michael Hoffmeister,&nbsp;Hermann Brenner","doi":"10.1002/cac2.12659","DOIUrl":"10.1002/cac2.12659","url":null,"abstract":"&lt;p&gt;Both overall and abdominal obesity are well-established risk factors for various cancer types, including colorectal cancer (CRC) [&lt;span&gt;1&lt;/span&gt;]. However, how adiposity impacts CRC development has been insufficiently investigated. Three primary hypotheses have been suggested to elucidate the biological pathways that link adiposity and CRC: alterations in insulin signaling, dysregulation of adipose tissue-derived inflammation, and sex hormone metabolism [&lt;span&gt;2, 3&lt;/span&gt;]. New mechanisms are also emerging, including altered gut microbiome and gut hormones, such as Ghrelin and nonalcoholic fatty liver disease (NAFLD). One of the key mechanisms proposed, and a common feature in most pathways, is inflammation [&lt;span&gt;3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Adiposity is associated with a systemic subclinical inflammation and higher levels of inflammatory biomarkers such as C-reactive protein (CRP), tumor necrosis factor (TNF), interleukin‑1β (IL‑1β), IL‑6, and IL‑18 [&lt;span&gt;2&lt;/span&gt;]. Inflammation can contribute to cancer development through mechanisms, such as the production of free radicals, including reactive oxygen intermediates, by suppressing the immune system, causing abnormal cell signaling, which promotes proliferative and anti-apoptotic pathways, angiogenesis, and cell migration [&lt;span&gt;3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;To quantify how much of the association between adiposity and CRC risk might be explained by inflammation, as reflected in increased serum levels of CRP —a nonspecific marker of systemic inflammation, we used body mass index (BMI) as a measure of general obesity, and waist circumference (WC) and waist-to-hip ratio (WHR) as measures of abdominal obesity, and we paid particular attention to a potential role of reverse causation due to cancer-related changes in body weight and CRP levels.&lt;/p&gt;&lt;p&gt;Data from 499,926 UK Biobank study participants aged 40-69, collected from 22 UK Biobank assessment centers, were utilized. Detailed information on the study population and design, exposure and outcome assessments, and statistical analysis is provided in the Supplementary Materials and Methods. After excluding participants with previous cancer diagnosis (except non-melanoma skin cancer), missing BMI, WHR, WC, and CRP, 429,073 participants remained and were included in the analysis (Supplementary Figure S1). Of these, 5,544 were diagnosed with CRC during a median follow-up of 11.8 years (interquartile range: 11.0-12.5). Main characteristics of the cohort are shown in Supplementary Table S1. Median age at baseline was 57 years, 53.2% of participants were female, and 94.6% were white. Median BMI, WC, and WHR for the whole cohort population were 26.7 kg/m&lt;sup&gt;2&lt;/sup&gt;, 90.0 cm, and 0.87, respectively. Furthermore, approximately 22% of the population had CRP levels greater than or equal to 3 mg/L at baseline.&lt;/p&gt;&lt;p&gt;Individuals classified as overweight or obese exhibited elevated CRP levels compared to those with a normal BMI. Additionally, participants in higher quartiles for both ","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"456-459"},"PeriodicalIF":20.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12659","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy and safety of first-line sintilimab plus anlotinib versus chemotherapy for metastatic non-small cell lung cancer: a phase II, open-label, randomized controlled trial 一线辛替单抗加anlotinib与化疗治疗转移性非小细胞肺癌的疗效和安全性:一项开放标签随机对照试验
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-10 DOI: 10.1002/cac2.12654
Tianqing Chu, Hua Zhong, Zhuang Yu, Jing Wang, Yanqiu Zhao, Xiaoqian Mu, Xinmin Yu, Xun Shi, Qingming Shi, Maojing Guan, Cuimin Ding, Nan Geng, Jialin Qian, Baohui Han

Background

The prognosis for non-small cell lung cancer (NSCLC) patients treated with standard platinum-based chemotherapy was suboptimal, with safety concerns. Following encouraging results from a preliminary phase I study, this phase II trial investigated the efficacy and safety of first-line sintilimab and anlotinib in metastatic NSCLC.

Methods

In this open-label, randomized controlled trial (NCT04124731), metastatic NSCLC without epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or proto-oncogene tyrosine-protein kinase ROS (ROS1) mutations, and previous treatments for metastatic disease were enrolled. Participants were randomly assigned in a 1:1 ratio to either sintilimab (200 mg every 3 weeks) plus anlotinib (12 mg D1-14 every 3 weeks) or a standard platinum-based chemotherapy regimen. Patients in the chemotherapy group were permitted to switch to sintilimab after disease progression. The primary endpoint was the objective response rate (ORR).

Results

From November 2019 to March 2023, 99 patients were randomized into the sintilimab plus anlotinib group (n = 49) and the chemotherapy group (n = 50). The ORR was significantly higher in the sintilimab plus anlotinib group (44.9%; 95% confidence interval [CI] = 30.7%-59.8%) compared to the chemotherapy group (18.0%; 95% CI = 8.6%-31.4%, P = 0.003). Progression-free survival (PFS) was also notably longer (median: 14.4 vs. 5.6 months; hazard ratio [HR] = 0.39; 95% CI = 0.23-0.67; P < 0.001). The 24-month overall survival rate was 58.4% (95% CI = 40.4%-72.6%) and 43.2% (95% CI = 26.0%-59.2%), respectively. The rate of grade 3 or higher treatment-related adverse events was lower in the sintilimab plus anlotinib group (28.0%) than in the chemotherapy group (49.0%), especially for the hematological toxicities.

Conclusion

First-line sintilimab plus anlotinib showed improved ORR and PFS, alongside a superior safety profile, compared to the standard platinum-based chemotherapy for metastatic NSCLC patients.

背景:非小细胞肺癌(NSCLC)患者接受标准铂基化疗的预后不理想,存在安全性问题。在初步I期研究取得令人鼓舞的结果之后,这项II期试验调查了一线sintilimab和anlotinib治疗转移性NSCLC的有效性和安全性。方法:在这项开放标签、随机对照试验(NCT04124731)中,纳入了无上皮生长因子受体(EGFR)、间变性淋巴瘤激酶(ALK)或原癌基因酪氨酸蛋白激酶ROS (ROS1)突变的转移性NSCLC,以及既往治疗过的转移性疾病。参与者以1:1的比例随机分配到辛替单抗(每3周200毫克)加安洛替尼(每3周12毫克D1-14)或标准铂基化疗方案。化疗组的患者在疾病进展后被允许改用辛替单抗。主要终点为客观缓解率(ORR)。结果:2019年11月至2023年3月,99例患者随机分为辛替单抗联合安洛替尼组(n = 49)和化疗组(n = 50)。辛替单抗联合安洛替尼组的ORR显著更高(44.9%;95%可信区间[CI] = 30.7%-59.8%)与化疗组(18.0%;95% ci = 8.6% ~ 31.4%, p = 0.003)。无进展生存期(PFS)也明显更长(中位数:14.4个月vs. 5.6个月;风险比[HR] = 0.39;95% ci = 0.23-0.67;P < 0.001)。24个月总生存率分别为58.4% (95% CI = 40.4% ~ 72.6%)和43.2% (95% CI = 26.0% ~ 59.2%)。辛替单抗加安洛替尼组3级及以上治疗相关不良事件发生率(28.0%)低于化疗组(49.0%),特别是血液毒性。结论:与转移性NSCLC患者的标准铂基化疗相比,一线sintilimab + anlotinib显示出改善的ORR和PFS,以及优越的安全性。
{"title":"Efficacy and safety of first-line sintilimab plus anlotinib versus chemotherapy for metastatic non-small cell lung cancer: a phase II, open-label, randomized controlled trial","authors":"Tianqing Chu,&nbsp;Hua Zhong,&nbsp;Zhuang Yu,&nbsp;Jing Wang,&nbsp;Yanqiu Zhao,&nbsp;Xiaoqian Mu,&nbsp;Xinmin Yu,&nbsp;Xun Shi,&nbsp;Qingming Shi,&nbsp;Maojing Guan,&nbsp;Cuimin Ding,&nbsp;Nan Geng,&nbsp;Jialin Qian,&nbsp;Baohui Han","doi":"10.1002/cac2.12654","DOIUrl":"10.1002/cac2.12654","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The prognosis for non-small cell lung cancer (NSCLC) patients treated with standard platinum-based chemotherapy was suboptimal, with safety concerns. Following encouraging results from a preliminary phase I study, this phase II trial investigated the efficacy and safety of first-line sintilimab and anlotinib in metastatic NSCLC.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In this open-label, randomized controlled trial (NCT04124731), metastatic NSCLC without epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), or proto-oncogene tyrosine-protein kinase ROS (ROS1) mutations, and previous treatments for metastatic disease were enrolled. Participants were randomly assigned in a 1:1 ratio to either sintilimab (200 mg every 3 weeks) plus anlotinib (12 mg D1-14 every 3 weeks) or a standard platinum-based chemotherapy regimen. Patients in the chemotherapy group were permitted to switch to sintilimab after disease progression. The primary endpoint was the objective response rate (ORR).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>From November 2019 to March 2023, 99 patients were randomized into the sintilimab plus anlotinib group (<i>n</i> = 49) and the chemotherapy group (<i>n</i> = 50). The ORR was significantly higher in the sintilimab plus anlotinib group (44.9%; 95% confidence interval [CI] = 30.7%-59.8%) compared to the chemotherapy group (18.0%; 95% CI = 8.6%-31.4%, <i>P</i> = 0.003). Progression-free survival (PFS) was also notably longer (median: 14.4 vs. 5.6 months; hazard ratio [HR] = 0.39; 95% CI = 0.23-0.67; <i>P</i> &lt; 0.001). The 24-month overall survival rate was 58.4% (95% CI = 40.4%-72.6%) and 43.2% (95% CI = 26.0%-59.2%), respectively. The rate of grade 3 or higher treatment-related adverse events was lower in the sintilimab plus anlotinib group (28.0%) than in the chemotherapy group (49.0%), especially for the hematological toxicities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>First-line sintilimab plus anlotinib showed improved ORR and PFS, alongside a superior safety profile, compared to the standard platinum-based chemotherapy for metastatic NSCLC patients.</p>\u0000 </section>\u0000 </div>","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"442-455"},"PeriodicalIF":20.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression profiling of primary and metastatic oral squamous cell carcinoma identifies progression-associated transcriptome changes and therapeutic vulnerabilities 原发性和转移性口腔鳞状细胞癌的表达谱确定了进展相关的转录组变化和治疗脆弱性。
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-07 DOI: 10.1002/cac2.12660
Jonas Pyko, Markus Glaß, Julia Rosemann, Matthias Kappler, Jana Macho, Sarah Qasem, Stefan Hüttelmaier, Alexander W. Eckert, Monika Haemmerle, Tony Gutschner
<p>Oral squamous cell carcinoma (OSCC), a major subgroup of head and neck squamous cell carcinoma (HNSCC), is an aggressive disease that preferentially spreads to cervical lymph nodes. Positive lymph node status is an important predictor of survival in OSCC [<span>1-3</span>]. Hence, a better understanding of the molecular mechanisms underlying oral cancer metastasis and the identification of therapeutic vulnerabilities are needed to prevent and treat metastatic disease.</p><p>We collected 87 primary tumors and 21 lymph node metastasis (LNM) from 72 OSCC patients to conduct comprehensive transcriptome-wide expression and correlation analyses (Figure 1A). First, we performed expression-based clustering with all primary tumors and observed the best subdivision with <i>k</i> = 3 using protein-coding and non-coding genes (Figure 1B). Of note, we observed transcriptional heterogeneity among multiregional tumor samples in about 30% of the cases, leading to the assignment of these patients and their respective tumors to different clusters. Intriguingly, Kaplan-Meier analysis of patients whose tumors were unambiguously assigned to only one cluster revealed that cluster 3 (C3) had the worst outcome, with a median survival of 15.6 months compared to 28.57 and 36.53 months for clusters 1 (C1) and 2 (C2), respectively (Figure 1C). Importantly, prognostic factors known to negatively affect survival, such as high T, N, and G status, were not enriched in C3 tumors (Supplementary Figure S1A-C). However, gene expression analysis identified 244 genes that were significantly changed in C3 compared to C1/2 tumors (Supplementary Figure S1D, Supplementary Table S1). Of note, cell cycle-related gene sets, including Early region 2 binding factor (<i>E2F</i>) and Myelocytomatosis oncogene (<i>MYC</i>) target genes, along with other oncogenic signaling pathways, showed a positive normalized enrichment score (NES), potentially explaining the poor outcomes of C3 tumors (Supplementary Figure S1E).</p><p>Next, we performed a gene expression-based overall survival (OS) analysis and identified two significant genes, namely Zinc Finger Protein 443 (<i>ZNF443</i>) and Serine Hydroxymethyltransferase 2 (<i>SHMT2</i>) (Figure 1D, Supplementary Table S2). Specifically, <i>ZNF443</i> expression was associated with a reduced risk (Hazard ratio [HR] = 0.238), whereas expression of <i>SHMT2</i> (HR = 4.028) suggested a higher risk of mortality. Thus, we further tested their prognostic relevance for OS and recurrence/disease-free survival (RFS/DFS) in our patient cohort (Figure 1E, Supplementary Figure S2A-C) as well as in The Cancer Genome Atlas (TCGA) HNSCC dataset (Supplementary Figure S2D-E) [<span>4</span>]. These analyses indicated that <i>SHMT2</i>, but not <i>ZNF443</i>, might serve as an OSCC-specific biomarker for OS. In line with this, <i>SHMT2</i> expression was higher in HNSCC tissues compared to normal tissues, as well as in T4 versus T1 tumors of the OSCC subtype, and its
口腔鳞状细胞癌(OSCC)是头颈部鳞状细胞癌(HNSCC)的一个主要亚群,是一种侵袭性疾病,优先扩散到颈部淋巴结。淋巴结状态阳性是OSCC患者存活的重要预测指标[1-3]。因此,需要更好地了解口腔癌转移的分子机制和确定治疗脆弱性,以预防和治疗转移性疾病。我们从72例OSCC患者中收集了87例原发肿瘤和21例淋巴结转移(LNM),进行了全面的转录组表达和相关性分析(图1A)。首先,我们对所有原发肿瘤进行了基于表达的聚类,并观察了使用蛋白编码基因和非编码基因在k = 3时的最佳细分(图1B)。值得注意的是,我们在大约30%的病例中观察到多区域肿瘤样本的转录异质性,导致这些患者及其各自的肿瘤被分配到不同的聚类。有趣的是,Kaplan-Meier分析显示,肿瘤明确分配到一个组的患者中,3组(C3)的预后最差,中位生存期为15.6个月,而1组(C1)和2组(C2)的中位生存期分别为28.57个月和36.53个月(图1C)。重要的是,已知对生存有负面影响的预后因素,如高T、N和G状态,在C3肿瘤中并不富集(补充图S1A-C)。然而,基因表达分析发现,与C1/2肿瘤相比,C3中有244个基因发生了显著变化(Supplementary Figure S1D, Supplementary Table S1)。值得注意的是,细胞周期相关的基因集,包括早期2区结合因子(E2F)和髓细胞瘤癌基因(MYC)靶基因,以及其他致癌信号通路,显示了正的标准化富集评分(NES),这可能解释了C3肿瘤的不良预后(补充图S1E)。接下来,我们进行了基于基因表达的总生存期(OS)分析,并确定了两个重要基因,即锌指蛋白443 (ZNF443)和丝氨酸羟甲基转移酶2 (SHMT2)(图1D,补充表S2)。具体来说,表达ZNF443与死亡风险降低相关(风险比[HR] = 0.238),而表达SHMT2(风险比[HR] = 4.028)表明死亡风险较高。因此,我们在我们的患者队列(图1E,补充图S2A-C)以及癌症基因组图谱(TCGA) HNSCC数据集(补充图S2D-E)[4]中进一步测试了它们与OS和复发/无病生存(RFS/DFS)的预后相关性。这些分析表明SHMT2,而不是ZNF443,可能是oscc特异性的OS生物标志物。由此可见,SHMT2在HNSCC组织中的表达高于正常组织,在OSCC亚型的T4肿瘤中表达高于T1肿瘤,且其表达水平随肿瘤分级的升高而升高(补充图S3)。此外,单因素Cox回归分析显示,年龄、t分期、n分期与SHMT2表达显著相关(相对危险度[RR] = 1.548, P = 0.049;95%可信区间[CI] = 1.000-2.396])与OSCC患者的OS有关。多因素分析进一步证实了SHMT2的相关性(RR = 1.616, P = 0.041;95% CI = 1.020-2.559])(补充表S3)。有趣的是,下调SAS、Cal33和XF354细胞中的SHMT2或使用抑制剂[5]阻断其活性可降低增殖和活力,同时诱导凋亡(图1F,补充图S4)。这些数据证实了先前的研究,并强调了SHMT2在OSCC中的治疗潜力[6,7]。接下来,我们的目标是在我们的OSCC队列中表征转移相关的转录组。首先,我们比较了每位患者原发肿瘤和匹配LNM的转录组。该分析鉴定出1710个蛋白编码失调基因和990个长链非编码RNA (lncRNA)基因(错误发现率[FDR]≤0.05;随后的基因集富集分析显示32个基因集,包括Kirsten大鼠肉瘤病毒癌基因同源性(KRAS)信号和上皮-间质转化(EMT)促进基因集等,在转移中显示正富集(补充图S5A-C,补充表S4-S5)。为了缩小推定的转移相关基因列表,我们比较了原发性肿瘤(n = 43)和非(n = 24) LNM的基因表达模式。这种互补的方法发现了482个失调的蛋白质编码基因和190个lncRNA基因(补充图S5D-E,补充表S6-S7)。有趣的是,共有31组基因在lnm阳性(LNMpos)肿瘤中显著富集,但在两种差异基因表达分析中,只有emt促进基因呈现一致的阳性富集(Supplementary Figure S5F)。 为了确定驱动和维持转移的单个基因,我们交叉了两种分析中差异表达基因的列表(补充表S8)。这揭示了一组共有41个上调基因和40个下调基因。基因本体论分析表明,在LNM和LNM阳性肿瘤中,分化相关过程均受损(图1G)。重要的是,使用canSAR知识库的数据库搜索发现了四个持续上调的基因,这些基因可以被批准的临床药物靶向。然而,它们的细胞和分子功能以及它们对OSCC转移的贡献需要通过适当的体外和体内模型来建立。最后,我们扩展了我们的基因水平表达分析,并表征了基因异构体在原发性肿瘤及其匹配转移中的使用。我们发现了数百个在转移中富集或减少的转录事件(补充图S6A)。在单个基因水平上,该分析得出了114个具有显著异构体开关的基因列表(图1H,补充表S9)。在Wnt家族成员5A (WNT5A)和Myosin轻链6 (MYL6)中观察到最显著的异构体开关,而SH3和半胱氨酸富结构域3 (STAC3)以及RAR相关孤儿受体C (RORC)在异构体分数(dIF)值上的综合差异最大(图1H)。我们决定更详细地研究WNT5A的异构体开关。在转移瘤中,典型亚型(WNT5-201)更为丰富,而编码相同WNT5A蛋白的WNT5A-202和编码较短蛋白变体的WNT5-203的部分显著减少(补充图S6B)。我们构建了过表达构建体,用这些变异体转导SAS细胞,并成功检测到所有WNT5A蛋白的预期大小(图1I)。有趣的是,标准WNT5A蛋白的过表达仅轻微增强了SAS细胞的球形生长,但却强烈增加了其侵袭能力(补充图S6C-D)。此外,比较不同的WNT5A亚型,发现在生长方面没有显著差异(图1J)。然而,与表达其他WNT5A蛋白变体的细胞相比,过表达WNT5A-203 (BC构建体)亚型的细胞在Matrigel中表现出明显降低的侵袭潜力(图1K)。这些发现表明,抑制典型的WNT5A亚型可能是一种预防OSCC转移的治疗策略,这与先前的报道一致。总之,我们的研究以独特的方式为OSCC分析和目标识别工作做出了贡献[4,10]。我们精心挑选的样本收集包括lnm阴性和LNMpos原发肿瘤及其匹配的转移瘤。此外,本研究中分离的RNA在核糖体RNA缺失的情况下进行了总RNA测序,为原发性和转移性口腔癌转录组提供了更公正的观点。这种方法能够识别与OSCC转移相关的编码和非编码基因以及同种异构体。然而,需要更多的研究(见补充讨论)来证实所描述的关联,并验证个体候选药物在体外和体内的临床相关性。该研究由Jonas Pyko、Markus Glaß和Tony Gutschner构想,并得到Monika Hämmerle和Stefan h<e:2> ttelmaier的意见。实验由Jonas Pyko, Julia Rosemann, Jana Macho和Sarah Qasem进行。患者肿瘤样本由Matthias Kappler和Alexander W. Eckert收集。病理样本评估由Monika Hämm
{"title":"Expression profiling of primary and metastatic oral squamous cell carcinoma identifies progression-associated transcriptome changes and therapeutic vulnerabilities","authors":"Jonas Pyko,&nbsp;Markus Glaß,&nbsp;Julia Rosemann,&nbsp;Matthias Kappler,&nbsp;Jana Macho,&nbsp;Sarah Qasem,&nbsp;Stefan Hüttelmaier,&nbsp;Alexander W. Eckert,&nbsp;Monika Haemmerle,&nbsp;Tony Gutschner","doi":"10.1002/cac2.12660","DOIUrl":"10.1002/cac2.12660","url":null,"abstract":"&lt;p&gt;Oral squamous cell carcinoma (OSCC), a major subgroup of head and neck squamous cell carcinoma (HNSCC), is an aggressive disease that preferentially spreads to cervical lymph nodes. Positive lymph node status is an important predictor of survival in OSCC [&lt;span&gt;1-3&lt;/span&gt;]. Hence, a better understanding of the molecular mechanisms underlying oral cancer metastasis and the identification of therapeutic vulnerabilities are needed to prevent and treat metastatic disease.&lt;/p&gt;&lt;p&gt;We collected 87 primary tumors and 21 lymph node metastasis (LNM) from 72 OSCC patients to conduct comprehensive transcriptome-wide expression and correlation analyses (Figure 1A). First, we performed expression-based clustering with all primary tumors and observed the best subdivision with &lt;i&gt;k&lt;/i&gt; = 3 using protein-coding and non-coding genes (Figure 1B). Of note, we observed transcriptional heterogeneity among multiregional tumor samples in about 30% of the cases, leading to the assignment of these patients and their respective tumors to different clusters. Intriguingly, Kaplan-Meier analysis of patients whose tumors were unambiguously assigned to only one cluster revealed that cluster 3 (C3) had the worst outcome, with a median survival of 15.6 months compared to 28.57 and 36.53 months for clusters 1 (C1) and 2 (C2), respectively (Figure 1C). Importantly, prognostic factors known to negatively affect survival, such as high T, N, and G status, were not enriched in C3 tumors (Supplementary Figure S1A-C). However, gene expression analysis identified 244 genes that were significantly changed in C3 compared to C1/2 tumors (Supplementary Figure S1D, Supplementary Table S1). Of note, cell cycle-related gene sets, including Early region 2 binding factor (&lt;i&gt;E2F&lt;/i&gt;) and Myelocytomatosis oncogene (&lt;i&gt;MYC&lt;/i&gt;) target genes, along with other oncogenic signaling pathways, showed a positive normalized enrichment score (NES), potentially explaining the poor outcomes of C3 tumors (Supplementary Figure S1E).&lt;/p&gt;&lt;p&gt;Next, we performed a gene expression-based overall survival (OS) analysis and identified two significant genes, namely Zinc Finger Protein 443 (&lt;i&gt;ZNF443&lt;/i&gt;) and Serine Hydroxymethyltransferase 2 (&lt;i&gt;SHMT2&lt;/i&gt;) (Figure 1D, Supplementary Table S2). Specifically, &lt;i&gt;ZNF443&lt;/i&gt; expression was associated with a reduced risk (Hazard ratio [HR] = 0.238), whereas expression of &lt;i&gt;SHMT2&lt;/i&gt; (HR = 4.028) suggested a higher risk of mortality. Thus, we further tested their prognostic relevance for OS and recurrence/disease-free survival (RFS/DFS) in our patient cohort (Figure 1E, Supplementary Figure S2A-C) as well as in The Cancer Genome Atlas (TCGA) HNSCC dataset (Supplementary Figure S2D-E) [&lt;span&gt;4&lt;/span&gt;]. These analyses indicated that &lt;i&gt;SHMT2&lt;/i&gt;, but not &lt;i&gt;ZNF443&lt;/i&gt;, might serve as an OSCC-specific biomarker for OS. In line with this, &lt;i&gt;SHMT2&lt;/i&gt; expression was higher in HNSCC tissues compared to normal tissues, as well as in T4 versus T1 tumors of the OSCC subtype, and its ","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"433-437"},"PeriodicalIF":20.1,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HER2 and HER3 expression during neoadjuvant treatment of HER2-negative early breast cancer: potential for biomarker-driven sequencing of T-DXd and HER3-DXd HER2阴性早期乳腺癌新辅助治疗期间HER2和HER3的表达:生物标志物驱动的T-DXd和HER3- dxd测序的潜力
IF 20.1 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-06 DOI: 10.1002/cac2.12657
Christian Fridolin Singer, Stephan Wenzel Jahn, Dominik Hlauschek, Ulrike Maria Heber, Charlotte Mang-Manger, Daniel Egle, Marija Balic, Angelika Pichler, Georg Pfeiler, Stephanie Kacerovsky-Strobl, Christoph Suppan, Magdalena Ritter, Edgar Petru, Richard Greil, Zsuzsanna Bago-Horvath, Christine Deutschmann, Günther Georg Steger, Michael Seifert, Florian Fitzal, Rupert Bartsch, Anu Santhanagopal, Jana Machacek-Link, Dalila Sellami, Magdalena Schwarz, Christian Fesl, Lidija Sölkner, Stephen Esker, Martin Filipits, Michael Gnant, the Austrian Breast and Colorectal Cancer Study Group
<p>With the development of novel antibody-drug conjugates (ADC) such as T-DXd (trastuzumab deruxtecan) and HER3-DXd (patritumab deruxtecan), global tumor cell targeting has become possible beyond the human epidermal growth factor receptor (HER) 2-positive setting [<span>1, 2</span>]. Both drugs offer promising options for individualized treatment targeting HER2 and HER3 expression, potentially even in tumors which are currently considered “HER2-negative”. Relatively little is known about the efficacy of HER3-DXd in tumors with low HER3 expression, except for data from one recent study investigating its efficacy across different HER3 expression levels [<span>3</span>].</p><p>The DESTINY-Breast04 trial (NCT03734029) demonstrated that T-DXd-treated patients with HER2-low expressing metastatic breast cancer had significantly longer progression-free and overall survival than those who were treated with the physician's choice of chemotherapy [<span>4</span>]. It is therefore important to understand whether neoadjuvant systemic therapy is able to induce or up-regulate HER2 and/or HER3 protein expression – raising the hope that neoadjuvant chemotherapy (NACT) and neoadjuvant endocrine therapy (NET) could be used to “prime” tumor cells for subsequent HER-targeting by adjuvant systemic therapy in case of non- pathologic complete remission (pCR). Therefore, we investigated the dynamics of HER2 and HER3 expression in HER2 non-amplified breast cancer by retrospectively analyzing the immunohistochemical HER2 and HER3 protein expression in pre- and post-treatment tumor samples, treated with neoadjuvant systemic chemo- and endocrine therapy, from the prospectively randomized ABCSG 34 trial.</p><p>The trial design, inclusion criteria, and main clinical results of this trial were reported previously [<span>5</span>]. Briefly, in ABCSG 34, 400 pre- and post-menopausal women with HER2-negative early breast cancer received either standard-of-care (SoC) NACT (<i>n</i> = 311) or NET (<i>n</i> = 98), with or without the Mucin-1 (MUC1) directed vaccine tecemotide (Supplementary Methods). Immunohistochemical data on HER2 and HER3 expression were available from paired pre- and post-treatment samples of 183 of these patients (Supplementary Figure S1), which did not significantly differ from the overall study population regarding clinical-pathological parameters (Supplementary Table S1).</p><p>In tumors that had been subjected to SoC NACT, HER2 expression was detected at baseline in 57/134 (42.5%) tumors, with low expression (1+) in 39.6%, and equivocal expression (2+) in 3.0% of cases. HER2 expression in the post-treatment surgical samples was detected in 68/134 (50.7%) tumors, with a HER2 score of 1+ in 43.3%, and a HER2 score of 2+ in 7.5% of tumor samples (<i>p</i> = 0.050 for marginal homogeneity). This corresponds to an increase of HER2 from baseline to surgery in 34/134 (25.4%; 95% CI, 18.8% to 33.4%) tumors, and a decrease in response to SoC NACT in 19/134 (14.2%; 95
随着新型抗体-药物偶联物(ADC)如T-DXd(曲妥珠单抗德鲁西替康)和HER3-DXd(帕妥珠单抗德鲁西替康)的发展,人类表皮生长因子受体(HER) 2阳性环境之外的肿瘤细胞靶向已经成为可能[1,2]。这两种药物都为针对HER2和HER3表达的个体化治疗提供了有希望的选择,甚至可能在目前被认为是“HER2阴性”的肿瘤中。对于HER3- dxd在低HER3表达肿瘤中的疗效知之甚少,除了最近一项研究的数据调查了其在不同HER3表达水平[3]中的疗效。destiny - breast - 04试验(NCT03734029)表明,接受t - dxd治疗的her2低表达转移性乳腺癌患者的无进展生存期和总生存期明显高于接受医生选择的化疗方案的患者。因此,了解新辅助全身治疗是否能够诱导或上调HER2和/或HER3蛋白表达是很重要的,这为在非病理性完全缓解(pCR)的情况下,新辅助化疗(NACT)和新辅助内分泌治疗(NET)可以用来“初始化”肿瘤细胞,以便后续通过辅助全身治疗靶向her带来了希望。因此,我们通过回顾性分析ABCSG 34前瞻性随机试验中接受新辅助全身化疗和内分泌治疗的治疗前后肿瘤样本中HER2和HER3蛋白的免疫组织化学表达,研究了HER2和HER3在HER2非扩增型乳腺癌中的表达动态。该试验的试验设计、纳入标准和主要临床结果已在之前的文献中报道[10]。简而言之,在ABCSG 34,400名患有her2阴性早期乳腺癌的绝经前和绝经后妇女接受了标准护理(SoC) NACT (n = 311)或NET (n = 98),有或没有Mucin-1 (MUC1)定向疫苗tecemotide(补充方法)。其中183例患者治疗前后配对样本的HER2和HER3表达的免疫组织化学数据(补充图S1),与总体研究人群在临床病理参数方面没有显著差异(补充表S1)。在接受过SoC NACT的肿瘤中,57/134(42.5%)的肿瘤在基线时检测到HER2表达,39.6%的肿瘤低表达(1+),3.0%的肿瘤模棱两可表达(2+)。治疗后手术样本中有68/134(50.7%)的肿瘤检测到HER2表达,其中HER2评分为1+的占43.3%,HER2评分为2+的占7.5% (p = 0.050,边缘均匀性)。这相当于34/134例患者的HER2从基线到手术的增加(25.4%;95% CI, 18.8% - 33.4%)肿瘤,19/134患者对SoC NACT的反应下降(14.2%;95% CI, 9.3% ~ 21.1%)肿瘤(补充表S2)。在58例net治疗的肿瘤中,21/58例(36.2%)样本中观察到基线HER2表达,均为弱表达(1+)。治疗后样品中有42/58(72.4%)的HER2表达,35/58(60.3%)的HER2蛋白低表达,7/58(12.1%)的HER2蛋白表达模棱两可。这对应于基线和治疗后HER2表达水平的显著差异(p &lt;0.001)。从基线到手术期间HER2表达上调的患者有30/58例(51.7%;95% CI, 39.2% ~ 64.1%)病例,仅3/58 (5.2%;95% CI, 1.8 ~ 14.1%)例(补充表S3)。总的来说,当比较处理前和处理后样品中的HER3表达时,我们发现蛋白质表达存在显著差异(p &lt;边际均匀性为0.001),HER3表达增加29/185 (15.7%;95% CI, 11.1% ~ 21.6%), 62/185患者HER3表达降低(33.5%;95% CI, 27.1 ~ 40.6%)样本。在125/127例(98.4%)nact治疗的肿瘤中检测到基线HER3表达。11/127例表达弱(1+)(8.7%),52/127例表达中(2+)(40.9%),62/127例表达高(3+)(48.8%)(代表性例子见补充图S2)。治疗后手术样本中,HER3在118/127(92.9%)例肿瘤中表达,其中弱表达(1+)18/127(14.2%),中等表达(2+)42/127(33.1%),高表达(3+)58/127(45.7%),差异有统计学意义(p = 0.019)。这对应于23/127的HER3蛋白从基线到手术的表达增加(18.1%;95% CI, 12.4%至25.7%),39/127患者对SoC NACT的反应下降(30.7%;95% CI, 23.4 - 39.2%)肿瘤(补充表S4)。在58例net治疗的肿瘤中,58例(100%)患者均观察到基线HER3表达,其中4/58弱表达(1+)(6.9%),12/58中度表达(2+)(20.7%),42/58高表达(3+)(72)。 4%)例。芳香酶抑制剂治疗6个月后,57/58例(98.3%)手术样本中检测到HER3表达,其中7/58例(12.1%)低表达(1+),25/58例(43.1%)中表达(2+),25/58例(43.1%)高表达(3+)。这对应于HER3表达的高度显著改变(p &lt;边际均匀性0.001),6/58的HER3表达从基线到手术时上调(10.3%;95% CI, 4.8%至20.8%),23/58例NET反应下降(39.7%;95% CI, 28.1 ~ 52.5%,补充表S5)。我们发现治疗前HER2和HER3蛋白表达之间存在弱相关性(r = 0.26, p &lt;0.001;Spearman相关系数)、雌激素受体(ER)表达(r = 0.21, p = 0.004)、孕激素受体(PR)表达(r = 0.17, p = 0.020)。治疗前HER2与Ki67、cT(临床肿瘤)分期、cN(临床淋巴结)分期之间无统计学意义的相关性。治疗前HER3表达水平与ER表达有中度相关性(r = 0.51, p &lt;0.001),与PR表达呈弱相关(r = 0.27, p &lt;0.001),且与Ki67呈负相关(r = -0.25, p &lt;0.001)。然而,治疗前HER3表达与cT和cN分期均无显著相关性(补充图S3)。了解全身治疗过程中HER2和HER3表达的患病率、幅度和动力学对于优化her靶向策略至关重要。在我们的研究中,我们在几乎所有基线乳腺癌样本中观察到HER3的表达。经NACT或NET处理后,HER3蛋白表达仍保持较高水平。这些结果表明,HER3蛋白表达是一个潜在的治疗靶点,并可能在新辅助SoC全身治疗中上调。然而,目前,HER2对新辅助治疗反应的表达动力学与临床更相关,因为正在进行的DESTINY-Breast05 (NCT04622319)试验正在研究新辅助治疗后HER2过表达肿瘤的T-DXd。通过新辅助全身治疗上调HER2可以为基于t - dxd的辅助治疗策略提供更多的肿瘤潜在靶点。我们的结果同时表明,这是可能的,特别是如果使用。NET。下一步,需要研究HER在抗her2或抗her3治疗下的表达动力学。这只能在前瞻性新辅助临床试验中适当解决,包括新辅助T-DXd和HER3-DXd治疗。从这些试验中获得的临床见解可能最终使我们能够在生物环境中提供最佳的治疗序列,到目前为止,这些生物环境一直被认为是her治疗难治
{"title":"HER2 and HER3 expression during neoadjuvant treatment of HER2-negative early breast cancer: potential for biomarker-driven sequencing of T-DXd and HER3-DXd","authors":"Christian Fridolin Singer,&nbsp;Stephan Wenzel Jahn,&nbsp;Dominik Hlauschek,&nbsp;Ulrike Maria Heber,&nbsp;Charlotte Mang-Manger,&nbsp;Daniel Egle,&nbsp;Marija Balic,&nbsp;Angelika Pichler,&nbsp;Georg Pfeiler,&nbsp;Stephanie Kacerovsky-Strobl,&nbsp;Christoph Suppan,&nbsp;Magdalena Ritter,&nbsp;Edgar Petru,&nbsp;Richard Greil,&nbsp;Zsuzsanna Bago-Horvath,&nbsp;Christine Deutschmann,&nbsp;Günther Georg Steger,&nbsp;Michael Seifert,&nbsp;Florian Fitzal,&nbsp;Rupert Bartsch,&nbsp;Anu Santhanagopal,&nbsp;Jana Machacek-Link,&nbsp;Dalila Sellami,&nbsp;Magdalena Schwarz,&nbsp;Christian Fesl,&nbsp;Lidija Sölkner,&nbsp;Stephen Esker,&nbsp;Martin Filipits,&nbsp;Michael Gnant,&nbsp;the Austrian Breast and Colorectal Cancer Study Group","doi":"10.1002/cac2.12657","DOIUrl":"10.1002/cac2.12657","url":null,"abstract":"&lt;p&gt;With the development of novel antibody-drug conjugates (ADC) such as T-DXd (trastuzumab deruxtecan) and HER3-DXd (patritumab deruxtecan), global tumor cell targeting has become possible beyond the human epidermal growth factor receptor (HER) 2-positive setting [&lt;span&gt;1, 2&lt;/span&gt;]. Both drugs offer promising options for individualized treatment targeting HER2 and HER3 expression, potentially even in tumors which are currently considered “HER2-negative”. Relatively little is known about the efficacy of HER3-DXd in tumors with low HER3 expression, except for data from one recent study investigating its efficacy across different HER3 expression levels [&lt;span&gt;3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;The DESTINY-Breast04 trial (NCT03734029) demonstrated that T-DXd-treated patients with HER2-low expressing metastatic breast cancer had significantly longer progression-free and overall survival than those who were treated with the physician's choice of chemotherapy [&lt;span&gt;4&lt;/span&gt;]. It is therefore important to understand whether neoadjuvant systemic therapy is able to induce or up-regulate HER2 and/or HER3 protein expression – raising the hope that neoadjuvant chemotherapy (NACT) and neoadjuvant endocrine therapy (NET) could be used to “prime” tumor cells for subsequent HER-targeting by adjuvant systemic therapy in case of non- pathologic complete remission (pCR). Therefore, we investigated the dynamics of HER2 and HER3 expression in HER2 non-amplified breast cancer by retrospectively analyzing the immunohistochemical HER2 and HER3 protein expression in pre- and post-treatment tumor samples, treated with neoadjuvant systemic chemo- and endocrine therapy, from the prospectively randomized ABCSG 34 trial.&lt;/p&gt;&lt;p&gt;The trial design, inclusion criteria, and main clinical results of this trial were reported previously [&lt;span&gt;5&lt;/span&gt;]. Briefly, in ABCSG 34, 400 pre- and post-menopausal women with HER2-negative early breast cancer received either standard-of-care (SoC) NACT (&lt;i&gt;n&lt;/i&gt; = 311) or NET (&lt;i&gt;n&lt;/i&gt; = 98), with or without the Mucin-1 (MUC1) directed vaccine tecemotide (Supplementary Methods). Immunohistochemical data on HER2 and HER3 expression were available from paired pre- and post-treatment samples of 183 of these patients (Supplementary Figure S1), which did not significantly differ from the overall study population regarding clinical-pathological parameters (Supplementary Table S1).&lt;/p&gt;&lt;p&gt;In tumors that had been subjected to SoC NACT, HER2 expression was detected at baseline in 57/134 (42.5%) tumors, with low expression (1+) in 39.6%, and equivocal expression (2+) in 3.0% of cases. HER2 expression in the post-treatment surgical samples was detected in 68/134 (50.7%) tumors, with a HER2 score of 1+ in 43.3%, and a HER2 score of 2+ in 7.5% of tumor samples (&lt;i&gt;p&lt;/i&gt; = 0.050 for marginal homogeneity). This corresponds to an increase of HER2 from baseline to surgery in 34/134 (25.4%; 95% CI, 18.8% to 33.4%) tumors, and a decrease in response to SoC NACT in 19/134 (14.2%; 95","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":"45 4","pages":"428-432"},"PeriodicalIF":20.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1