Bianca Cesaro, Alessia Iaiza, Fabio Piscopo, Marco Tarullo, Eleonora Cesari, Dante Rotili, Antonello Mai, Alberto Diana, Michela Londero, Luca Del Giacco, Riccardo Masetti, Alba Di Leone, Chiara Naro, Silvia Masciarelli, Giulia Fontemaggi, Claudio Sette, Francesco Fazi, Alessandro Fatica
Dear Editor,
N6-methyladenosine (m6A) is a critical mRNA modification catalyzed by the enzyme methyltransferase-like 3 (METTL3), with implications in RNA metabolism. METTL3 upregulation is associated with cancer progression, metastasis, and drug resistance, making it a potential therapeutic target [1]. The small-molecule METTL3 inhibitor, STM2457, has shown promise in treating acute myeloid leukemia (AML) and has demonstrated good tolerance in mice [2, 3]. However, the specific cancer types where METTL3 inhibitors are most effective remain unknown.
In breast cancer, METTL3 knockdown markedly suppresses proliferation, invasiveness, and metastasis [4]. Therefore, METTL3 inhibition is proposed as a therapeutic approach for breast cancer. Triple-negative breast cancer (TNBC), the most aggressive subtype, lacks targeted therapies, and its primary treatments involve conventional chemotherapy and DNA-damaging agents [5]. Homologous recombination deficiency, such as mutations in the breast cancer gene 1 (BRCA1) and BRCA2, serves as a predictive biomarker for identifying patients who would benefit from genotoxic chemotherapy and poly(ADP-ribose) polymerase (PARP) inhibitors. Notably, METTL3 is recruited to DNA-damaged sites and is crucial for subsequent DNA repair [6, 7]. Consequently, METTL3 knockdown reduces DNA repair activity and sensitizes cancer cells to genotoxic drugs [7, 8]. However, while TNBC exhibits elevated METTL3 levels, and its nuclear catalytic activity associates with invasiveness and metastasis [9], it remains uncertain whether METTL3 inhibition enhances chemotherapy response in TNBC.
Here, we aimed to explore the potential of METTL3 catalytic inhibition by STM2457 as a valuable treatment option for TNBC. Furthermore, we assessed the impact of STM2457 on the sensitivity of TNBC cells and a TNBC patient-derived organoid line to clinical DNA-damaging therapies, like platinum-based chemotherapy and the PARP inhibitor olaparib (Supplementary file of methods).
STM2457 significantly reduced the proliferation and viability of TNBC cells, including both BRCA1/2 wild-type (MDA-MB-231 and MDA-MB-468) and BRCA1-mutated (MDA-MB-436, HCC1395, and HCC1937) cell lines. STM2457 exhibited negligible effects on the proliferation of non-tumoral breast epithelial cells (MCF-10A), with significant reduction observed only at the highest concentration tested (100 μmol/L) (Figure 1A, Supplementary Figure S1A-B). The treatment with 10 μmol/L STM2457 for 48 h decreased the global m6A levels in mRNA by approximately 50% in both MDA-MB-231 and MCF-10A cells (Supplementary Figure S1C). Colony formation assays further confirmed the anti-proliferative impact of STM2457 on TNBC cell lines (Figure 1B, Supplementary Figure S2). Moreover, wound healing assays indicated that
{"title":"Enhancing sensitivity of triple-negative breast cancer to DNA-damaging therapy through chemical inhibition of the m6A methyltransferase METTL3","authors":"Bianca Cesaro, Alessia Iaiza, Fabio Piscopo, Marco Tarullo, Eleonora Cesari, Dante Rotili, Antonello Mai, Alberto Diana, Michela Londero, Luca Del Giacco, Riccardo Masetti, Alba Di Leone, Chiara Naro, Silvia Masciarelli, Giulia Fontemaggi, Claudio Sette, Francesco Fazi, Alessandro Fatica","doi":"10.1002/cac2.12509","DOIUrl":"10.1002/cac2.12509","url":null,"abstract":"<p>Dear Editor,</p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is a critical mRNA modification catalyzed by the enzyme methyltransferase-like 3 (METTL3), with implications in RNA metabolism. METTL3 upregulation is associated with cancer progression, metastasis, and drug resistance, making it a potential therapeutic target [<span>1</span>]. The small-molecule METTL3 inhibitor, STM2457, has shown promise in treating acute myeloid leukemia (AML) and has demonstrated good tolerance in mice [<span>2, 3</span>]. However, the specific cancer types where METTL3 inhibitors are most effective remain unknown.</p><p>In breast cancer, <i>METTL3</i> knockdown markedly suppresses proliferation, invasiveness, and metastasis [<span>4</span>]. Therefore, METTL3 inhibition is proposed as a therapeutic approach for breast cancer. Triple-negative breast cancer (TNBC), the most aggressive subtype, lacks targeted therapies, and its primary treatments involve conventional chemotherapy and DNA-damaging agents [<span>5</span>]. Homologous recombination deficiency, such as mutations in the breast cancer gene 1 (<i>BRCA1</i>) and <i>BRCA2</i>, serves as a predictive biomarker for identifying patients who would benefit from genotoxic chemotherapy and poly(ADP-ribose) polymerase (<i>PARP</i>) inhibitors. Notably, METTL3 is recruited to DNA-damaged sites and is crucial for subsequent DNA repair [<span>6, 7</span>]. Consequently, <i>METTL3</i> knockdown reduces DNA repair activity and sensitizes cancer cells to genotoxic drugs [<span>7, 8</span>]. However, while TNBC exhibits elevated METTL3 levels, and its nuclear catalytic activity associates with invasiveness and metastasis [<span>9</span>], it remains uncertain whether METTL3 inhibition enhances chemotherapy response in TNBC.</p><p>Here, we aimed to explore the potential of METTL3 catalytic inhibition by STM2457 as a valuable treatment option for TNBC. Furthermore, we assessed the impact of STM2457 on the sensitivity of TNBC cells and a TNBC patient-derived organoid line to clinical DNA-damaging therapies, like platinum-based chemotherapy and the PARP inhibitor olaparib (Supplementary file of methods).</p><p>STM2457 significantly reduced the proliferation and viability of TNBC cells, including both <i>BRCA1/2</i> wild-type (MDA-MB-231 and MDA-MB-468) and <i>BRCA1</i>-mutated (MDA-MB-436, HCC1395, and HCC1937) cell lines. STM2457 exhibited negligible effects on the proliferation of non-tumoral breast epithelial cells (MCF-10A), with significant reduction observed only at the highest concentration tested (100 μmol/L) (Figure 1A, Supplementary Figure S1A-B). The treatment with 10 μmol/L STM2457 for 48 h decreased the global m<sup>6</sup>A levels in mRNA by approximately 50% in both MDA-MB-231 and MCF-10A cells (Supplementary Figure S1C). Colony formation assays further confirmed the anti-proliferative impact of STM2457 on TNBC cell lines (Figure 1B, Supplementary Figure S2). Moreover, wound healing assays indicated that ","PeriodicalId":9495,"journal":{"name":"Cancer Communications","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cac2.12509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138741751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Li, Hanhao Zheng, Yuming Luo, Yan Lin, Mingjie An, Yao Kong, Yue Zhao, Yina Yin, Le Ai, Jian Huang, Changhao Chen
The cover image is based on the Original Article An HGF-dependent positive feedback loop between bladder cancer cells and fibroblasts mediates lymphangiogenesis and lymphatic metastasis by Yuting Li et al., https://doi.org/10.1002/cac2.12470.