Pub Date : 2024-08-20DOI: 10.1186/s11658-024-00630-5
Lei Yang, Jiawen Shi, Mingyang Zhong, Pingping Sun, Xiaojing Zhang, Zhengyi Lian, Hang Yin, Lijun Xu, Guyin He, Haiyan Xu, Han Wu, Ziheng Wang, Kai Miao, Jianfei Huang
Objective: Colorectal cancer (CRC) is a form of malignancy that exhibits a comparatively elevated occurrence and fatality rate. Given the relatively slower progress in diagnostic and therapeutic approaches for CRC, there is a need to investigate more accurate and efficient biomarkers.
Methods: Core regulatory genes were screened using the TCGA database, and the expression of neurexophilin 4 (NXPH4) and its prognostic implications were validated using tissue microarray staining. The assessment of NXPH4 functions involved a range of experiments, including cellular, organoid, and murine models. Furthermore, a regulatory network between m5C, NXPH4, and HIF1A was established through several in vitro experiments.
Results: The overexpression of NXPH4 is associated with unfavorable prognoses in patients with CRC and hepatocellular carcinoma. Additionally, it facilitates the progression of malignant tumors both in laboratory settings and in living organisms of colorectal carcinoma. Our research also reveals that NXPH4 mRNA can avoid degradation through RNautophagy, relying on an m5C-dependent mechanism. Moreover, NXPH4 amplifies the HIF signaling pathway and stabilizes HIF1A by competitively binding to PHD4.
Conclusions: NXPH4, regulated by m5C, promotes malignant tumor progression and regulates the HIF pathway. Consequently, targeting NXPH4 through molecular therapies could potentially serve as an efficacious therapeutic strategy for the management of CRC exhibiting elevated NXPH4 expression.
{"title":"NXPH4 mediated by m<sup>5</sup>C contributes to the malignant characteristics of colorectal cancer via inhibiting HIF1A degradation.","authors":"Lei Yang, Jiawen Shi, Mingyang Zhong, Pingping Sun, Xiaojing Zhang, Zhengyi Lian, Hang Yin, Lijun Xu, Guyin He, Haiyan Xu, Han Wu, Ziheng Wang, Kai Miao, Jianfei Huang","doi":"10.1186/s11658-024-00630-5","DOIUrl":"10.1186/s11658-024-00630-5","url":null,"abstract":"<p><strong>Objective: </strong>Colorectal cancer (CRC) is a form of malignancy that exhibits a comparatively elevated occurrence and fatality rate. Given the relatively slower progress in diagnostic and therapeutic approaches for CRC, there is a need to investigate more accurate and efficient biomarkers.</p><p><strong>Methods: </strong>Core regulatory genes were screened using the TCGA database, and the expression of neurexophilin 4 (NXPH4) and its prognostic implications were validated using tissue microarray staining. The assessment of NXPH4 functions involved a range of experiments, including cellular, organoid, and murine models. Furthermore, a regulatory network between m<sup>5</sup>C, NXPH4, and HIF1A was established through several in vitro experiments.</p><p><strong>Results: </strong>The overexpression of NXPH4 is associated with unfavorable prognoses in patients with CRC and hepatocellular carcinoma. Additionally, it facilitates the progression of malignant tumors both in laboratory settings and in living organisms of colorectal carcinoma. Our research also reveals that NXPH4 mRNA can avoid degradation through RNautophagy, relying on an m<sup>5</sup>C-dependent mechanism. Moreover, NXPH4 amplifies the HIF signaling pathway and stabilizes HIF1A by competitively binding to PHD4.</p><p><strong>Conclusions: </strong>NXPH4, regulated by m<sup>5</sup>C, promotes malignant tumor progression and regulates the HIF pathway. Consequently, targeting NXPH4 through molecular therapies could potentially serve as an efficacious therapeutic strategy for the management of CRC exhibiting elevated NXPH4 expression.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"111"},"PeriodicalIF":9.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1186/s11658-024-00626-1
Shimin Wang, Xiaolin Wang, Changhong Qin, Ce Liang, Wei Li, Ai Ran, Qiang Ma, Xiaojuan Pan, Feifei Yang, Junwu Ren, Bo Huang, Yuying Liu, Yuying Zhang, Haiping Li, Hao Ning, Yan Jiang, Bin Xiao
Background: Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood.
Methods: To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC.
Results: Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo.
Conclusion: PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.
{"title":"PTBP1 knockdown impairs autophagy flux and inhibits gastric cancer progression through TXNIP-mediated oxidative stress.","authors":"Shimin Wang, Xiaolin Wang, Changhong Qin, Ce Liang, Wei Li, Ai Ran, Qiang Ma, Xiaojuan Pan, Feifei Yang, Junwu Ren, Bo Huang, Yuying Liu, Yuying Zhang, Haiping Li, Hao Ning, Yan Jiang, Bin Xiao","doi":"10.1186/s11658-024-00626-1","DOIUrl":"10.1186/s11658-024-00626-1","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood.</p><p><strong>Methods: </strong>To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC.</p><p><strong>Results: </strong>Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo.</p><p><strong>Conclusion: </strong>PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"110"},"PeriodicalIF":9.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1186/s11658-024-00628-z
Xiaofeng Cheng, Heng Yang, Yujun Chen, Zhenhao Zeng, Yifu Liu, Xiaochen Zhou, Cheng Zhang, An Xie, Gongxian Wang
Background: Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported.
Methods: Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3.
Results: CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide.
Conclusions: METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.
{"title":"METTL3-mediated m<sup>6</sup>A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy.","authors":"Xiaofeng Cheng, Heng Yang, Yujun Chen, Zhenhao Zeng, Yifu Liu, Xiaochen Zhou, Cheng Zhang, An Xie, Gongxian Wang","doi":"10.1186/s11658-024-00628-z","DOIUrl":"10.1186/s11658-024-00628-z","url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported.</p><p><strong>Methods: </strong>Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3.</p><p><strong>Results: </strong>CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide.</p><p><strong>Conclusions: </strong>METTL3-mediated m<sup>6</sup>A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"109"},"PeriodicalIF":9.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1186/s11658-024-00624-3
Bajin Wei, Fan Yang, Luyang Yu, Cong Qiu
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
{"title":"Crosstalk between SUMOylation and other post-translational modifications in breast cancer.","authors":"Bajin Wei, Fan Yang, Luyang Yu, Cong Qiu","doi":"10.1186/s11658-024-00624-3","DOIUrl":"10.1186/s11658-024-00624-3","url":null,"abstract":"<p><p>Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"107"},"PeriodicalIF":9.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1186/s11658-024-00625-2
Jiaying Peng, Danchan Liang, Zhonghao Zhang
Palmitoylation is a type of lipid modification that plays an important role in various aspects of neuronal function. Over the past few decades, several studies have shown that the palmitoylation of synaptic proteins is involved in neurotransmission and synaptic functions. Palmitoyl acyltransferases (PATs), which belong to the DHHC family, are major players in the regulation of palmitoylation. Dysregulated palmitoylation of synaptic proteins and mutated/dysregulated DHHC proteins are associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). In this review, we summarize the recent discoveries on the subcellular distribution of DHHC proteins and analyze their expression patterns in different brain cells. In particular, this review discusses how palmitoylation of synaptic proteins regulates synaptic vesicle exocytotic fusion and the localization, clustering, and transport of several postsynaptic receptors, as well as the role of palmitoylation of other proteins in regulating synaptic proteins. Additionally, some of the specific known associations of these factors with neurodegenerative disorders are explored, with a few suggestions for the development of therapeutic strategies. Finally, this review provides possible directions for future research to reveal detailed and specific mechanisms underlying the roles of synaptic protein palmitoylation.
{"title":"Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases.","authors":"Jiaying Peng, Danchan Liang, Zhonghao Zhang","doi":"10.1186/s11658-024-00625-2","DOIUrl":"10.1186/s11658-024-00625-2","url":null,"abstract":"<p><p>Palmitoylation is a type of lipid modification that plays an important role in various aspects of neuronal function. Over the past few decades, several studies have shown that the palmitoylation of synaptic proteins is involved in neurotransmission and synaptic functions. Palmitoyl acyltransferases (PATs), which belong to the DHHC family, are major players in the regulation of palmitoylation. Dysregulated palmitoylation of synaptic proteins and mutated/dysregulated DHHC proteins are associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). In this review, we summarize the recent discoveries on the subcellular distribution of DHHC proteins and analyze their expression patterns in different brain cells. In particular, this review discusses how palmitoylation of synaptic proteins regulates synaptic vesicle exocytotic fusion and the localization, clustering, and transport of several postsynaptic receptors, as well as the role of palmitoylation of other proteins in regulating synaptic proteins. Additionally, some of the specific known associations of these factors with neurodegenerative disorders are explored, with a few suggestions for the development of therapeutic strategies. Finally, this review provides possible directions for future research to reveal detailed and specific mechanisms underlying the roles of synaptic protein palmitoylation.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"108"},"PeriodicalIF":9.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear.
Methods: Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism.
Results: The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD.
Conclusion: It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.
{"title":"N<sup>6</sup>-methyladenosine-modified SRPK1 promotes aerobic glycolysis of lung adenocarcinoma via PKM splicing.","authors":"Anqi Wang, Yuanyuan Zeng, Weijie Zhang, Jian Zhao, Lirong Gao, Jianjun Li, Jianjie Zhu, Zeyi Liu, Jian-An Huang","doi":"10.1186/s11658-024-00622-5","DOIUrl":"10.1186/s11658-024-00622-5","url":null,"abstract":"<p><strong>Background: </strong>The RNA N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m<sup>6</sup>A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear.</p><p><strong>Methods: </strong>Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m<sup>6</sup>A epitranscriptomic microarray was utilized to the assess m<sup>6</sup>A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m<sup>6</sup>A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m<sup>6</sup>A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism.</p><p><strong>Results: </strong>The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m<sup>6</sup>A levels of SRPK1. Mechanistically, SRPK1's m<sup>6</sup>A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD.</p><p><strong>Conclusion: </strong>It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m<sup>6</sup>A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"106"},"PeriodicalIF":9.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s11658-024-00619-0
Domokos Máthé, Gergely Szalay, Levente Cseri, Zoltán Kis, Bernadett Pályi, Gábor Földes, Noémi Kovács, Anna Fülöp, Áron Szepesi, Polett Hajdrik, Attila Csomos, Ákos Zsembery, Kristóf Kádár, Gergely Katona, Zoltán Mucsi, Balázs József Rózsa, Ervin Kovács
Background: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions.
Methods: Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells.
Results: The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load.
Conclusions: We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.
{"title":"Monitoring correlates of SARS-CoV-2 infection in cell culture using a two-photon-active calcium-sensitive dye.","authors":"Domokos Máthé, Gergely Szalay, Levente Cseri, Zoltán Kis, Bernadett Pályi, Gábor Földes, Noémi Kovács, Anna Fülöp, Áron Szepesi, Polett Hajdrik, Attila Csomos, Ákos Zsembery, Kristóf Kádár, Gergely Katona, Zoltán Mucsi, Balázs József Rózsa, Ervin Kovács","doi":"10.1186/s11658-024-00619-0","DOIUrl":"10.1186/s11658-024-00619-0","url":null,"abstract":"<p><strong>Background: </strong>The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions.</p><p><strong>Methods: </strong>Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells.</p><p><strong>Results: </strong>The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load.</p><p><strong>Conclusions: </strong>We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"105"},"PeriodicalIF":9.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE) are associated with deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons. One complexity of this process lies in the ability of TDP-43 to form liquid-phase membraneless organelles in cells. Previous work has shown that the recombinant, purified, prion-like domain (PrLD) forms liquid droplets in vitro, but the behaviour of the complementary fragment is uncertain.
Methods: We have purified such a construct without the PrLD (PrLD-less TDP-43) and have induced its phase separation using a solution-jump method and an array of biophysical techniques to study the morphology, state of matter and structure of the TDP-43 assemblies.
Results: The fluorescent TMR-labelled protein construct, imaged using confocal fluorescence, formed rapidly (< 1 min) round, homogeneous and 0.5-1.0 µm wide assemblies which then coalesced into larger, yet round, species. When labelled with AlexaFluor488, they initially exhibited fluorescence recovery after photobleaching (FRAP), showing a liquid behaviour distinct from full-length TDP-43 and similar to PrLD. The protein molecules did not undergo major structural changes, as determined with circular dichroism and intrinsic fluorescence spectroscopies. This process had a pH and salt dependence distinct from those of full-length TDP-43 and its PrLD, which can be rationalized on the grounds of electrostatic forces.
Conclusions: Similarly to PrLD, PrLD-less TDP-43 forms liquid droplets in vitro through liquid-liquid phase separation (LLPS), unlike the full-length protein that rather undergoes liquid-solid phase separation (LSPS). These results offer a rationale of the complex electrostatic forces governing phase separation of full-length TDP-43 and its fragments. On the one hand, PrLD-less TDP-43 has a low pI and oppositively charged domains, and LLPS is inhibited by salts, which attenuate inter-domain electrostatic attractions. On the other hand, PrLD is positively charged due to a high isoionic point (pI) and LLPS is therefore promoted by salts and pH increases as they both reduce electrostatic repulsions. By contrast, full-length TDP-43 undergoes LSPS most favourably at its pI, with positive and negative salt dependences at lower and higher pH, respectively, depending on whether repulsive or attractive forces dominate, respectively.
背景:泛素阳性包涵体的额颞叶变性(FTLD-TDP)、肌萎缩侧索硬化症(ALS)和边缘型老年性 TDP-43 脑病(LATE)与神经元中 TAR DNA 结合蛋白 43(TDP-43)的胞浆包涵体沉积有关。这一过程的复杂性在于 TDP-43 能够在细胞内形成液相无膜细胞器。以前的工作表明,重组、纯化的朊病毒样结构域(PrLD)在体外形成液滴,但互补片段的行为还不确定:方法:我们纯化了这种不含PrLD的构建体(无PrLD TDP-43),并使用溶液跃迁法和一系列生物物理技术诱导其相分离,以研究TDP-43组装体的形态、物质状态和结构:结果:使用共聚焦荧光成像的荧光 TMR 标记的蛋白质构建体迅速形成(结论:与 PrLD 相似,PrLD 标记的 TMR 蛋白质构建体也迅速形成):与PrLD类似,无PrLD的TDP-43在体外通过液-液相分离(LLPS)形成液滴,而不像全长蛋白质那样通过液-固相分离(LSPS)形成液滴。这些结果为全长 TDP-43 及其片段的复杂静电力相分离提供了理论依据。一方面,无 PrLD 的 TDP-43 具有低 pI 和带相反电荷的结构域,而且 LLPS 会受到盐的抑制,盐会减弱结构域间的静电吸引。另一方面,由于等离子点(pI)较高,PrLD 带有正电荷,因此盐分和 pH 值的增加会促进 LLPS,因为它们都会减少静电排斥。相比之下,全长 TDP-43 在其 pI 值时最有利于进行 LSPS,而在较低和较高 pH 值时则分别与正盐和负盐有关,这取决于是排斥力还是吸引力占主导地位。
{"title":"Biophysical characterization of the phase separation of TDP-43 devoid of the C-terminal domain.","authors":"Tommaso Staderini, Alessandra Bigi, Clément Lagrève, Isabella Marzi, Francesco Bemporad, Fabrizio Chiti","doi":"10.1186/s11658-024-00615-4","DOIUrl":"10.1186/s11658-024-00615-4","url":null,"abstract":"<p><strong>Background: </strong>Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE) are associated with deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons. One complexity of this process lies in the ability of TDP-43 to form liquid-phase membraneless organelles in cells. Previous work has shown that the recombinant, purified, prion-like domain (PrLD) forms liquid droplets in vitro, but the behaviour of the complementary fragment is uncertain.</p><p><strong>Methods: </strong>We have purified such a construct without the PrLD (PrLD-less TDP-43) and have induced its phase separation using a solution-jump method and an array of biophysical techniques to study the morphology, state of matter and structure of the TDP-43 assemblies.</p><p><strong>Results: </strong>The fluorescent TMR-labelled protein construct, imaged using confocal fluorescence, formed rapidly (< 1 min) round, homogeneous and 0.5-1.0 µm wide assemblies which then coalesced into larger, yet round, species. When labelled with AlexaFluor488, they initially exhibited fluorescence recovery after photobleaching (FRAP), showing a liquid behaviour distinct from full-length TDP-43 and similar to PrLD. The protein molecules did not undergo major structural changes, as determined with circular dichroism and intrinsic fluorescence spectroscopies. This process had a pH and salt dependence distinct from those of full-length TDP-43 and its PrLD, which can be rationalized on the grounds of electrostatic forces.</p><p><strong>Conclusions: </strong>Similarly to PrLD, PrLD-less TDP-43 forms liquid droplets in vitro through liquid-liquid phase separation (LLPS), unlike the full-length protein that rather undergoes liquid-solid phase separation (LSPS). These results offer a rationale of the complex electrostatic forces governing phase separation of full-length TDP-43 and its fragments. On the one hand, PrLD-less TDP-43 has a low pI and oppositively charged domains, and LLPS is inhibited by salts, which attenuate inter-domain electrostatic attractions. On the other hand, PrLD is positively charged due to a high isoionic point (pI) and LLPS is therefore promoted by salts and pH increases as they both reduce electrostatic repulsions. By contrast, full-length TDP-43 undergoes LSPS most favourably at its pI, with positive and negative salt dependences at lower and higher pH, respectively, depending on whether repulsive or attractive forces dominate, respectively.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"104"},"PeriodicalIF":9.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1186/s11658-024-00616-3
Wei Jin, Zhenqun Xu, Yan Song, Fangjie Chen
Background: Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved.
Methods: The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays.
Results: The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression.
Conclusions: FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.
{"title":"Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis.","authors":"Wei Jin, Zhenqun Xu, Yan Song, Fangjie Chen","doi":"10.1186/s11658-024-00616-3","DOIUrl":"10.1186/s11658-024-00616-3","url":null,"abstract":"<p><strong>Background: </strong>Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved.</p><p><strong>Methods: </strong>The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays.</p><p><strong>Results: </strong>The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression.</p><p><strong>Conclusions: </strong>FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"103"},"PeriodicalIF":9.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}