Pub Date : 2023-07-01DOI: 10.15251/cl.2023.207.459
M. Butt, S. Saleem, F. Al-Harbi, S. Atta, M. Ishfaq, F. S. Al Juman, M. Yaseen
The full potential linearized augmented plane wave (FP-LAPW) approach based on the density functional theory (DFT) is employed to know the effect of Co doping on the electronic, optical, and magnetic characteristics of BaTi1-xCoxO3 at x= 8.33%, 16.66%, 25%, and 50%. The computed spin-polarized electronic band structure (BS) and the density of states (DOS) elucidate that the BaTi1-xCoxO3 compound has a ferromagnetic semiconductor behavior at all doping concentrations. The results indicate that the magnetic moment in BaTi1-xCoxO3 is found due to the p-d hybrid orbitals of Co. Moreover, the optical features of the Co-doped BTO compound are evaluated by analyzing the refractive index, reflectivity, absorption coefficient, optical conductivity, and dielectric constant under different concentrations. The outcomes revealed that the BaTi1-xCoxO3 compound is a good candidate for spintronics and optoelectronic applications.
{"title":"Optical and magnetic characteristics of BaTi1-xCoxO3: A first-principles study","authors":"M. Butt, S. Saleem, F. Al-Harbi, S. Atta, M. Ishfaq, F. S. Al Juman, M. Yaseen","doi":"10.15251/cl.2023.207.459","DOIUrl":"https://doi.org/10.15251/cl.2023.207.459","url":null,"abstract":"The full potential linearized augmented plane wave (FP-LAPW) approach based on the density functional theory (DFT) is employed to know the effect of Co doping on the electronic, optical, and magnetic characteristics of BaTi1-xCoxO3 at x= 8.33%, 16.66%, 25%, and 50%. The computed spin-polarized electronic band structure (BS) and the density of states (DOS) elucidate that the BaTi1-xCoxO3 compound has a ferromagnetic semiconductor behavior at all doping concentrations. The results indicate that the magnetic moment in BaTi1-xCoxO3 is found due to the p-d hybrid orbitals of Co. Moreover, the optical features of the Co-doped BTO compound are evaluated by analyzing the refractive index, reflectivity, absorption coefficient, optical conductivity, and dielectric constant under different concentrations. The outcomes revealed that the BaTi1-xCoxO3 compound is a good candidate for spintronics and optoelectronic applications.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42320382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.15251/cl.2023.207.449
J. S. Mohammed, F. K. Nsaif, Y. M. Jawad, K. Jasim, A. H. Al Dulaimi
In this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density of the energy states in variation zones (densities of the energetic extended states N(Eext), localize N(Eloc) and at the Fermi states N(Ef)). The acquired data also demonstrated that the selenium concentration obviously had an impact on the electrical conduction mechanics, energy states, and the level of randomization.
{"title":"Investigating the optical and electrical characteristics of As60Cu40-xSex thin films","authors":"J. S. Mohammed, F. K. Nsaif, Y. M. Jawad, K. Jasim, A. H. Al Dulaimi","doi":"10.15251/cl.2023.207.449","DOIUrl":"https://doi.org/10.15251/cl.2023.207.449","url":null,"abstract":"In this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density of the energy states in variation zones (densities of the energetic extended states N(Eext), localize N(Eloc) and at the Fermi states N(Ef)). The acquired data also demonstrated that the selenium concentration obviously had an impact on the electrical conduction mechanics, energy states, and the level of randomization.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41771650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.15251/cl.2023.207.497
A. M. Jawore, T. Xaba, M. Moloto
Nickel sulfides nanocrystals may be regarded as promising of materials in different research areas such as catalysts, solar cells, and electrode-materials. (Z)-2-(pyrrolidin-2-ylidene) thiourea ligand and (Z)-2-(pyrrolidin-2-ylidene) thiourea based nickel (II) complex have been prepared and utilized as single source molecular precursor for the synthesis of nickel sulfide nanoparticles and thin films. The effect of temperature was studies during the synthetic processes. The synthesized nanomaterials were characterized with various instruments. UV-Vis spectroscopy results of the nanoparticles were red shifting when the reaction temperature was increased whereas the blue shift was observed when the temperature was elevated during the preparation of the NiS thin films with the optical band gap energies ranging from 2.79 eV - 3.56 eV. All the XRD patterns for the NiS thin films confirm the predominance of pure hexagonal phase.
{"title":"(Z)-2-(pyrrolidin-2-ylidene) thiourea based nickel (II) complex as a single source precursor for the synthesis of NiS nanoparticles and thin films","authors":"A. M. Jawore, T. Xaba, M. Moloto","doi":"10.15251/cl.2023.207.497","DOIUrl":"https://doi.org/10.15251/cl.2023.207.497","url":null,"abstract":"Nickel sulfides nanocrystals may be regarded as promising of materials in different research areas such as catalysts, solar cells, and electrode-materials. (Z)-2-(pyrrolidin-2-ylidene) thiourea ligand and (Z)-2-(pyrrolidin-2-ylidene) thiourea based nickel (II) complex have been prepared and utilized as single source molecular precursor for the synthesis of nickel sulfide nanoparticles and thin films. The effect of temperature was studies during the synthetic processes. The synthesized nanomaterials were characterized with various instruments. UV-Vis spectroscopy results of the nanoparticles were red shifting when the reaction temperature was increased whereas the blue shift was observed when the temperature was elevated during the preparation of the NiS thin films with the optical band gap energies ranging from 2.79 eV - 3.56 eV. All the XRD patterns for the NiS thin films confirm the predominance of pure hexagonal phase.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47209910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.15251/cl.2023.207.469
E. Lu, M. Q. Wu, L. Dai, X. Xu
This study used a simple one-step hydrothermal method to synthesize the MoS2/GR composites with a new morphology composed of graphene nanotubes and ultra-thin molybdenum disulfide with the help of sodium chloride. The composites were characterized by XRD, XPS, SEM, TEM, and a series of characterization methods. Meanwhile, the tribological properties of the composites were studied. The results show that the addition of 1% MoS2/GR composite nanotubes has excellent tribological properties. In addition, the structure and excellent tribological properties of MoS2-C- nanocomposite lubrication materials will be conducive to designing new nanomaterials with 2D/3D structures, enhancing the anti-friction and anti-wear properties, and expanding their practical applications in industrial and agricultural fields.
{"title":"Synthesis and tribological properties of the novel tubular MoS2/GR nanocomposite","authors":"E. Lu, M. Q. Wu, L. Dai, X. Xu","doi":"10.15251/cl.2023.207.469","DOIUrl":"https://doi.org/10.15251/cl.2023.207.469","url":null,"abstract":"This study used a simple one-step hydrothermal method to synthesize the MoS2/GR composites with a new morphology composed of graphene nanotubes and ultra-thin molybdenum disulfide with the help of sodium chloride. The composites were characterized by XRD, XPS, SEM, TEM, and a series of characterization methods. Meanwhile, the tribological properties of the composites were studied. The results show that the addition of 1% MoS2/GR composite nanotubes has excellent tribological properties. In addition, the structure and excellent tribological properties of MoS2-C- nanocomposite lubrication materials will be conducive to designing new nanomaterials with 2D/3D structures, enhancing the anti-friction and anti-wear properties, and expanding their practical applications in industrial and agricultural fields.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45811028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.15251/cl.2023.204.301
J. -. Zhou, S. Cao, X. Li, C. Shen, M. Cong
The development of sulfide solid electrolyte is limited by the interface instability with lithium metal and low ionic conductivity. In this work, the effects of doping SiS2, SnS, ZnS and MnS on the ionic conductivity and interfacial stability of sulfide electrolytes are systematically investigated. The conductivity of Li7P2.9Sn0.1S10.7Br0.3 solid electrolyte was as high as 1.67 mS cm-1 . Furthermore, it is found that the critical current density was proportional to the resistivity of the doping element. The critical current density of the electrolyte was significantly increased by electronically insulating Si doping, reaching 0.858 mA cm-2 .
{"title":"Effect of metal cations on the conductivity and interfacial stability of Li7P3S10.7Br0.3 sulfide solid-state electrolytes","authors":"J. -. Zhou, S. Cao, X. Li, C. Shen, M. Cong","doi":"10.15251/cl.2023.204.301","DOIUrl":"https://doi.org/10.15251/cl.2023.204.301","url":null,"abstract":"The development of sulfide solid electrolyte is limited by the interface instability with lithium metal and low ionic conductivity. In this work, the effects of doping SiS2, SnS, ZnS and MnS on the ionic conductivity and interfacial stability of sulfide electrolytes are systematically investigated. The conductivity of Li7P2.9Sn0.1S10.7Br0.3 solid electrolyte was as high as 1.67 mS cm-1 . Furthermore, it is found that the critical current density was proportional to the resistivity of the doping element. The critical current density of the electrolyte was significantly increased by electronically insulating Si doping, reaching 0.858 mA cm-2 .","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42623314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.15251/cl.2023.205.333
H. Mohamed, Shazia Ali, M. R. Ahmed, W. S. Mohamed
This study focuses on thin-film structures made of ITO, CdS, ZnS, CZTSSe, and Mo (i.e., ITO/CdS:ZnS/CZTSSe/Mo) for solar cell applications. The effect of ZnS content on the performance of this cell has been theoretically investigated. The optical losses caused by reflection at various interfaces and absorption in ITO and CdS:ZnS layers have been calculated using the current structure's experimental data. The losses due to charge carrier recombination at the front and back surfaces of the CZTSSe absorber have been calculated using the absorber layer and depletion region parameters. It was discovered that increasing the ZnS content causes more photons to enter the absorber layer, causing the short-circuit current density to increase. Under consideration of optical and recombination losses, a maximum efficiency of about 13.75%, a fill factor of 81.6%, and an open-circuit voltage of 808 mV were obtained for ZnS-content = 0.5.
{"title":"Analytical model for studying the role of ZnS-doped CdS on the performance of CZTSSe solar cells","authors":"H. Mohamed, Shazia Ali, M. R. Ahmed, W. S. Mohamed","doi":"10.15251/cl.2023.205.333","DOIUrl":"https://doi.org/10.15251/cl.2023.205.333","url":null,"abstract":"This study focuses on thin-film structures made of ITO, CdS, ZnS, CZTSSe, and Mo (i.e., ITO/CdS:ZnS/CZTSSe/Mo) for solar cell applications. The effect of ZnS content on the performance of this cell has been theoretically investigated. The optical losses caused by reflection at various interfaces and absorption in ITO and CdS:ZnS layers have been calculated using the current structure's experimental data. The losses due to charge carrier recombination at the front and back surfaces of the CZTSSe absorber have been calculated using the absorber layer and depletion region parameters. It was discovered that increasing the ZnS content causes more photons to enter the absorber layer, causing the short-circuit current density to increase. Under consideration of optical and recombination losses, a maximum efficiency of about 13.75%, a fill factor of 81.6%, and an open-circuit voltage of 808 mV were obtained for ZnS-content = 0.5.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42067213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.15251/cl.2023.204.251
R. Ranjan, C. M. S. Negi, K. P. Tiwary
Photocatalytic degradation of methyl red dye using Mn(5%) doped CdS nanoparticles was studied.Mn doped CdS nanoparticles was synthesized by microwave assisted solvo thermal method where the chemicals used wereCadmium Acetate [(CH3COO)2Cd, H2O], Manganese Chloride [MnCl2.2H2O] and Sodium Sulfide [Na2S.xH2O]. X-Ray diffraction(XRD) analysis was carried out in order to analyze the structural dimensions of the synthesized nanoparticles and the average crystallite size has been calculated at the full width half maximum (FWHM) of the diffraction peaks using Debye-Scherer equation and it was found to be around2.3nm. FTIR spectra analysis was done in order to analyze different functional and vibrational groups present in the as synthesized sample of Mn doped CdSnanoparticles.The morphology of sample wasstudied by scanning electron microscope. The aqueous solution of methyl red[C15H15N3O2] has been prepared and was mixed with the as synthesized Mn doped CdSnanoparticles and was exposed for photocatalytic degradation using 100 W bulb. UV-visible spectra of the light irradiated methyl red solutions were studied at different interval of time and no red shift was observed with increase of exposure time. The intensity of the absorption peak was also found to be reduced with the increasing time interval. The photo degradation of methyl red dye was observed up to 90% at the exposure time of 90 minutes.
{"title":"Synthesis of Mn2+ modified CdS nanoparticles and its application as catalyst in photodegradation of methyl red dye","authors":"R. Ranjan, C. M. S. Negi, K. P. Tiwary","doi":"10.15251/cl.2023.204.251","DOIUrl":"https://doi.org/10.15251/cl.2023.204.251","url":null,"abstract":"Photocatalytic degradation of methyl red dye using Mn(5%) doped CdS nanoparticles was studied.Mn doped CdS nanoparticles was synthesized by microwave assisted solvo thermal method where the chemicals used wereCadmium Acetate [(CH3COO)2Cd, H2O], Manganese Chloride [MnCl2.2H2O] and Sodium Sulfide [Na2S.xH2O]. X-Ray diffraction(XRD) analysis was carried out in order to analyze the structural dimensions of the synthesized nanoparticles and the average crystallite size has been calculated at the full width half maximum (FWHM) of the diffraction peaks using Debye-Scherer equation and it was found to be around2.3nm. FTIR spectra analysis was done in order to analyze different functional and vibrational groups present in the as synthesized sample of Mn doped CdSnanoparticles.The morphology of sample wasstudied by scanning electron microscope. The aqueous solution of methyl red[C15H15N3O2] has been prepared and was mixed with the as synthesized Mn doped CdSnanoparticles and was exposed for photocatalytic degradation using 100 W bulb. UV-visible spectra of the light irradiated methyl red solutions were studied at different interval of time and no red shift was observed with increase of exposure time. The intensity of the absorption peak was also found to be reduced with the increasing time interval. The photo degradation of methyl red dye was observed up to 90% at the exposure time of 90 minutes.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136272722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.15251/cl.2023.205.315
S. John, M. Francis, A. P. Reena Mary, V. Geetha
Thin films of SnS were deposited chemically, and they are annealed at four different temperatures: 100 °C, 150 °C, 200 °C, and 250 °C. X-ray diffraction, Raman analysis, UV-visible spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy were used to investigate the impact of annealing temperature on the structural, optical, morphological, and chemical properties of thin films. As the annealing temperature rose, it was seen from the XRD patterns that the crystallinity of SnS films improved. At 250 °C, the film was almost evaporated, and the XRD pattern showed no peaks at all. The lattice strain and crystallite size were computed from the WilliamsonHall plots. The crystallite size increased and the lattice strain decreased with the increase in the annealing temperature. According to optical investigations, the samples' optical bandgap shrank as the annealing temperature rose. Morphological studies showed the formation of well-adhered films, and as the annealing temperature increased, the film became denser and more continuous with larger grains. The atomic weight percentage of sulphur decreased as the annealing temperature increased, according to the EDS analysis. Photovoltaic structures with the configuration ITO/SnS/CdS/Ag were fabricated. From the I-V characteristics, it was observed that the cell structure formed with SnS annealed at 200 °C showed better cell performance.
{"title":"Influence of annealing on the properties of chemically prepared SnS thin films","authors":"S. John, M. Francis, A. P. Reena Mary, V. Geetha","doi":"10.15251/cl.2023.205.315","DOIUrl":"https://doi.org/10.15251/cl.2023.205.315","url":null,"abstract":"Thin films of SnS were deposited chemically, and they are annealed at four different temperatures: 100 °C, 150 °C, 200 °C, and 250 °C. X-ray diffraction, Raman analysis, UV-visible spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy were used to investigate the impact of annealing temperature on the structural, optical, morphological, and chemical properties of thin films. As the annealing temperature rose, it was seen from the XRD patterns that the crystallinity of SnS films improved. At 250 °C, the film was almost evaporated, and the XRD pattern showed no peaks at all. The lattice strain and crystallite size were computed from the WilliamsonHall plots. The crystallite size increased and the lattice strain decreased with the increase in the annealing temperature. According to optical investigations, the samples' optical bandgap shrank as the annealing temperature rose. Morphological studies showed the formation of well-adhered films, and as the annealing temperature increased, the film became denser and more continuous with larger grains. The atomic weight percentage of sulphur decreased as the annealing temperature increased, according to the EDS analysis. Photovoltaic structures with the configuration ITO/SnS/CdS/Ag were fabricated. From the I-V characteristics, it was observed that the cell structure formed with SnS annealed at 200 °C showed better cell performance.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49251597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.15251/cl.2023.205.325
N. Yaduvanshi, R. Pandey, V. Khemchandani
In this work the effect of gamma irradiation (50 kGy and 100 kGy) on properties of InxSb20-x Ag10Se70 (x= 0,10,20) films has been discussed. X ray diffraction, Transmission Electron Microscopy, Optical properties and Electrical properties have been successfully studied. X Ray diffraction and TEM images reveal the amorphous nature of thin films. A change in the optical energy gap is observed after irradiation.The optical band gap increases accompanied with increase in tailing parameter.The value of N decreases with irradiation dose.It is found that crytallinity is higher for ternary system as compare to quarternary system. From electrical measurements it has been that conduction is in the localised state and the DC activation energy decrease upon gamma irradiations.
{"title":"Gamma irradiation effects on Ag based ternary and quaternary chalcogenide films","authors":"N. Yaduvanshi, R. Pandey, V. Khemchandani","doi":"10.15251/cl.2023.205.325","DOIUrl":"https://doi.org/10.15251/cl.2023.205.325","url":null,"abstract":"In this work the effect of gamma irradiation (50 kGy and 100 kGy) on properties of InxSb20-x Ag10Se70 (x= 0,10,20) films has been discussed. X ray diffraction, Transmission Electron Microscopy, Optical properties and Electrical properties have been successfully studied. X Ray diffraction and TEM images reveal the amorphous nature of thin films. A change in the optical energy gap is observed after irradiation.The optical band gap increases accompanied with increase in tailing parameter.The value of N decreases with irradiation dose.It is found that crytallinity is higher for ternary system as compare to quarternary system. From electrical measurements it has been that conduction is in the localised state and the DC activation energy decrease upon gamma irradiations.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48577368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.15251/cl.2023.203.227
H. Moughli, B. Azeddine, Z. Tiouti, M. Rajczyk
In this paper, we present simulations of the concentration of electron-hole pairs generated from each point in solid targets under Ni-63 source bombardment of a CdS/PbS-based betavoltaic cell. This model is an accurate representation of the electronic interaction has been reported. We can obtain the distribution of the electron-hole pairs generated in the CdS/PbS junction as a function of the depth by Monte Carlo simulation, this distribution allowed us to find the concentrations of excess minority carriers as a function of the thickness, which can be function and injection into the continuity equations to determine the diffusion current and then the selected petavoltage properties. The model was tested for the Ni-63 CdS/PbS structure, with energy of 17 keV.
{"title":"Study and modeling of a CdS /PbS betavoltaic cell by Monte Carlo simulation","authors":"H. Moughli, B. Azeddine, Z. Tiouti, M. Rajczyk","doi":"10.15251/cl.2023.203.227","DOIUrl":"https://doi.org/10.15251/cl.2023.203.227","url":null,"abstract":"In this paper, we present simulations of the concentration of electron-hole pairs generated from each point in solid targets under Ni-63 source bombardment of a CdS/PbS-based betavoltaic cell. This model is an accurate representation of the electronic interaction has been reported. We can obtain the distribution of the electron-hole pairs generated in the CdS/PbS junction as a function of the depth by Monte Carlo simulation, this distribution allowed us to find the concentrations of excess minority carriers as a function of the thickness, which can be function and injection into the continuity equations to determine the diffusion current and then the selected petavoltage properties. The model was tested for the Ni-63 CdS/PbS structure, with energy of 17 keV.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41633840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}