首页 > 最新文献

Chemical and Biochemical Engineering Quarterly最新文献

英文 中文
Simulation and Optimization of Coal Gasification in a Moving-bed Reactor to Produce Synthesis Gas Suitable for Methanol Production Unit 煤在移动床反应器中气化生产适合甲醇生产装置的合成气的模拟与优化
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1673
M. Shamsi, H. A. Ebrahim, M. Azarhoosh
This paper presents process simulation and optimization of coal gasification process in a moving-bed reactor using Pittsburgh No. 8 coal as feed. The system of differential equations for the mass and energy balances was solved using 4th-order Runge-Kutta method and optimized by non-dominated sorting genetic algorithm-II (NSGA-II) method. The simulation was used to predict solid and gas temperature profile and gas composition along the reactor. The simulation results were compared successfully with experimental data relevant to Westfield plant in Scotland. In addition, the effect of operating parameters such as coal-to-oxygen molar ratio, steam-to-oxygen molar ratio, inlet gas temperature, reactor pressure, and oxygen mole fraction in inlet air on amount of synthesis gas (syngas) production, hydrogen to carbon monoxide molar ratio (HCMR) in produced syngas, and coal conversion was investigated. Finally, the reactor performance was optimized to produce the highest syngas production with a HCMR of two using NSGA-II method.
本文以匹兹堡8号煤为原料,对移动床反应器内的煤气化过程进行了模拟和优化。采用四阶龙格-库塔法求解质量平衡和能量平衡的微分方程组,并采用非支配排序遗传算法- ii (NSGA-II)方法进行优化。利用模拟方法预测了反应器沿线的固体和气体温度分布以及气体成分。模拟结果与苏格兰韦斯特菲尔德电厂的实验数据进行了比较。此外,还考察了煤氧摩尔比、蒸汽氧摩尔比、进气温度、反应器压力、进气氧摩尔分数等操作参数对合成气产量、合成气中氢与一氧化碳摩尔比和煤转化率的影响。最后,采用NSGA-II法对反应器性能进行了优化,使其在HCMR为2的情况下产生最高的合成气。
{"title":"Simulation and Optimization of Coal Gasification in a Moving-bed Reactor to Produce Synthesis Gas Suitable for Methanol Production Unit","authors":"M. Shamsi, H. A. Ebrahim, M. Azarhoosh","doi":"10.15255/cabeq.2019.1673","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1673","url":null,"abstract":"This paper presents process simulation and optimization of coal gasification process in a moving-bed reactor using Pittsburgh No. 8 coal as feed. The system of differential equations for the mass and energy balances was solved using 4th-order Runge-Kutta method and optimized by non-dominated sorting genetic algorithm-II (NSGA-II) method. The simulation was used to predict solid and gas temperature profile and gas composition along the reactor. The simulation results were compared successfully with experimental data relevant to Westfield plant in Scotland. In addition, the effect of operating parameters such as coal-to-oxygen molar ratio, steam-to-oxygen molar ratio, inlet gas temperature, reactor pressure, and oxygen mole fraction in inlet air on amount of synthesis gas (syngas) production, hydrogen to carbon monoxide molar ratio (HCMR) in produced syngas, and coal conversion was investigated. Finally, the reactor performance was optimized to produce the highest syngas production with a HCMR of two using NSGA-II method.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"427-435"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillatory Flow Bioreactor (OFB) Applied in Enzymatic Hydrolysis at High Solid Loadings 振荡流生物反应器(OFB)在高固载酶解中的应用
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2018.1553
J. Buchmaier, C. Brunner, U. Griesbacher, A. Phan, A. Harvey, G. R. Krishna, B. Nidetzky, B. Muster
J. Buchmaier,a,* C. Brunner,a U. Griesbacher,a A. N. Phan,b A. P. Harvey,b R. Krishna Gudiminchi,c B. Nidetzky,c and B. Mustera aIndustrial Processes and Energy Systems, AEE – Institute for Sustainable Technologies, 8200 Gleisdorf, Feldgasse 19, Austria bNewcastle University, Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU, United Kingdom cAustrian Center of Industrial Biotechnology, 14 Petersgasse, 8010 Graz, Austria
J. Buchmaier,a,* c . Brunner,a . Griesbacher,a . N. Phan,b . P. Harvey,b . Krishna Gudiminchi,c . Nidetzky,c和b . Mustera工业过程和能源系统,AEE -可持续技术研究所,8200 Gleisdorf, Feldgasse 19,奥地利;纽卡斯尔大学,化学工程与先进材料,ne17 ru,英国工业生物技术中心,14 Petersgasse, 8010 Graz,奥地利
{"title":"Oscillatory Flow Bioreactor (OFB) Applied in Enzymatic Hydrolysis at High Solid Loadings","authors":"J. Buchmaier, C. Brunner, U. Griesbacher, A. Phan, A. Harvey, G. R. Krishna, B. Nidetzky, B. Muster","doi":"10.15255/cabeq.2018.1553","DOIUrl":"https://doi.org/10.15255/cabeq.2018.1553","url":null,"abstract":"J. Buchmaier,a,* C. Brunner,a U. Griesbacher,a A. N. Phan,b A. P. Harvey,b R. Krishna Gudiminchi,c B. Nidetzky,c and B. Mustera aIndustrial Processes and Energy Systems, AEE – Institute for Sustainable Technologies, 8200 Gleisdorf, Feldgasse 19, Austria bNewcastle University, Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU, United Kingdom cAustrian Center of Industrial Biotechnology, 14 Petersgasse, 8010 Graz, Austria","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"459-470"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67064055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Divided Wall Column Modeling and Simulation in an Open-Source Environment 开源环境下的分墙柱建模与仿真
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1824
J. Henrique, R. Sousa, A. Secchi, M. Ravagnani, Abdessamad Barbara, C. Costa
J. P. Henrique,a R. de Sousa Jr.,a,b A. R. Secchi,c M. A. S. S. Ravagnani,d A. Barbara,e and C. B. B. Costad,* aChemical Engineering Graduate Program, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, CEP: 13565-905, Brazil bChemical Engineering Department/UFSCar, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, CEP: 13565-905, Brazil cInstituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-972, Brazil dChemical Engineering Department, Universidade Estadual de Maringá, Av. Colombo, 5790 Bloco D90, CEP 87020-290, Maringá, PR, Brazil eInstitut de Mathématiques de Bourgogne (IMB), Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon cedex, France
的j·p·亨利·r·索萨Jr ., a、b a . r .西奇,c a d s m a s Ravagnani,芭芭拉,b和b和c Costad * aChemical工程研究生计划,联邦大学圣卡洛斯(UFSCar),华盛顿·路易斯(SP - -310)高速公路235公里,是卡洛斯SP -905,邮编:13565,巴西bChemical工程部门/ UFSCar联邦大学圣卡洛斯(UFSCar),华盛顿·路易斯(SP - -310)高速公路235公里,是卡洛斯SP,邮编:13565年到-905年,巴西cInstituto阿尔贝托·鲁兹Coimbra的研究生和工程研究,COPPE,巴西里约热内卢联邦大学的校园,在里约热内卢,r . j .,邮政编码:21941 -972,巴西dChemical工程部门,巴西州立大学哥伦布大道D90 5790多座,我87020年到-290年,巴西,因此,巴西eInstitut勃艮地的数学(IMB)勃艮第大学9大道21078第戎cedex阿兰•Savary法国
{"title":"Divided Wall Column Modeling and Simulation in an Open-Source Environment","authors":"J. Henrique, R. Sousa, A. Secchi, M. Ravagnani, Abdessamad Barbara, C. Costa","doi":"10.15255/cabeq.2020.1824","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1824","url":null,"abstract":"J. P. Henrique,a R. de Sousa Jr.,a,b A. R. Secchi,c M. A. S. S. Ravagnani,d A. Barbara,e and C. B. B. Costad,* aChemical Engineering Graduate Program, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, CEP: 13565-905, Brazil bChemical Engineering Department/UFSCar, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís (SP-310), km 235, São Carlos, SP, CEP: 13565-905, Brazil cInstituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-972, Brazil dChemical Engineering Department, Universidade Estadual de Maringá, Av. Colombo, 5790 Bloco D90, CEP 87020-290, Maringá, PR, Brazil eInstitut de Mathématiques de Bourgogne (IMB), Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon cedex, France","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"149-167"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67064081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Helichrysum italicum on the Corrosion of Copper in Simulated Acid Rain Solution 意大利蜡菊对模拟酸雨溶液中铜腐蚀的影响
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1614
Z. Pilić, Ivana Martinović
The inhibition of copper corrosion by Helichrysum italicum extract (HI) in simulated acid rain was investigated using electrochemical techniques. Results indicate an increase in corrosion inhibition efficiency with the HI extract concentration. The inhibitive process was assumed to occur via adsorption of the extract on the metal surface. The thermodynamic data indicated physical adsorption and followed the Freundlich isotherm. The effect of temperature on the copper corrosion was studied. The value of the activation energy confirmed physisorption of extract molecules on the copper surface. The concentration of Cu ions released into solution, measured by atomic absorption spectrometry, was in accordance with the electrochemical results.
采用电化学技术研究了意大利蜡菊提取物(HI)对模拟酸雨中铜的缓蚀作用。结果表明,随着HI萃取物浓度的增加,缓蚀效果有所提高。假设抑制过程是通过萃取物在金属表面的吸附发生的。热力学数据显示为物理吸附,遵循Freundlich等温线。研究了温度对铜腐蚀的影响。活化能的值证实了萃取物分子在铜表面的物理吸附。原子吸收光谱法测定的Cu离子释放到溶液中的浓度与电化学结果一致。
{"title":"Effect of Helichrysum italicum on the Corrosion of Copper in Simulated Acid Rain Solution","authors":"Z. Pilić, Ivana Martinović","doi":"10.15255/cabeq.2019.1614","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1614","url":null,"abstract":"The inhibition of copper corrosion by Helichrysum italicum extract (HI) in simulated acid rain was investigated using electrochemical techniques. Results indicate an increase in corrosion inhibition efficiency with the HI extract concentration. The inhibitive process was assumed to occur via adsorption of the extract on the metal surface. The thermodynamic data indicated physical adsorption and followed the Freundlich isotherm. The effect of temperature on the copper corrosion was studied. The value of the activation energy confirmed physisorption of extract molecules on the copper surface. The concentration of Cu ions released into solution, measured by atomic absorption spectrometry, was in accordance with the electrochemical results.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"449-457"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste 车前草叶鞘废活性炭吸附水中活性染料的研究
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1826
G. Sangavi, Argho Bakshi, M. Ganapathy, N. Ganesan
All parts of the plantain are widely used in India for various purposes. But plantain leaf sheath always ends up as waste material which accumulates as a biowaste. The present study focuses on the preparation of activated carbon using phosphoric acid as activating agent, and its efficacy as an adsorbent for the removal of reactive dyes, Reactive Green 19, and Reactive Red 141. Batch adsorption studies have been conducted and optimum adsorption conditions were determined as a function of contact time, initial dye concentration, adsorbent dosage, and pH. The experimental data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The pseudo-first and second-order, intraparticle diffusion, and Elovich models were used to analyze the kinetic parameters of the adsorption system. Under the optimum conditions (initial dye concentration = 200 mg L–1, adsorbent dose = 1 g, pH = 2, contact time = 220 min for reactive green 19 and 180 min for reactive red 141), maximum percentage removal for reactive green 19 and reactive red 141 were obtained as 65.9 % and 72.7 %, respectively. The results demonstrate that activated carbon produced from chemical activation of the plantain waste has the potential of adsorbing reactive dyes from industrial effluents.
大蕉的所有部分在印度被广泛用于各种目的。但车前草叶鞘往往以废弃物的形式积累为生物废弃物。本文主要研究了以磷酸为活化剂制备活性炭,并对其作为吸附剂去除活性染料活性绿19和活性红141的效果进行了研究。进行了批量吸附研究,确定了最佳吸附条件与接触时间、初始染料浓度、吸附剂用量和ph的关系。采用Langmuir、Freundlich和Temkin等温模型对实验数据进行了分析。采用拟一阶和二阶、颗粒内扩散和Elovich模型分析了吸附体系的动力学参数。在初始染料浓度为200 mg L-1,吸附剂剂量为1 g, pH = 2,接触时间为220 min(活性绿19)和180 min(活性红141)的条件下,活性绿19和活性红141的最大去除率分别为65.9%和72.7%。结果表明,用化学活化法制备的活性炭具有吸附工业废水中活性染料的潜力。
{"title":"Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste","authors":"G. Sangavi, Argho Bakshi, M. Ganapathy, N. Ganesan","doi":"10.15255/cabeq.2020.1826","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1826","url":null,"abstract":"All parts of the plantain are widely used in India for various purposes. But plantain leaf sheath always ends up as waste material which accumulates as a biowaste. The present study focuses on the preparation of activated carbon using phosphoric acid as activating agent, and its efficacy as an adsorbent for the removal of reactive dyes, Reactive Green 19, and Reactive Red 141. Batch adsorption studies have been conducted and optimum adsorption conditions were determined as a function of contact time, initial dye concentration, adsorbent dosage, and pH. The experimental data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The pseudo-first and second-order, intraparticle diffusion, and Elovich models were used to analyze the kinetic parameters of the adsorption system. Under the optimum conditions (initial dye concentration = 200 mg L–1, adsorbent dose = 1 g, pH = 2, contact time = 220 min for reactive green 19 and 180 min for reactive red 141), maximum percentage removal for reactive green 19 and reactive red 141 were obtained as 65.9 % and 72.7 %, respectively. The results demonstrate that activated carbon produced from chemical activation of the plantain waste has the potential of adsorbing reactive dyes from industrial effluents.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"169-180"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Enzymatic Kinetics of Solvent-free Esterification with Bio-imprinted Lipase 生物印迹脂肪酶无溶剂酯化反应动力学研究
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1692
M. Matsumoto, Y. Matsumoto
To avoid the use of compounds that burden the environment, a solvent-free enzymatic reaction was the focus of this study. Investigated were the catalytic activities and kinetics of lipases that were pretreated with carboxylic acids for the solvent-free esterification of propionic acid with isoamyl alcohol. The enhancements of the esterification yields and rates by the bio-imprinting effects of carboxylic acids were observed. We found no inhibition of isoamyl alcohol on the solvent-free enzymatic esterification, and obtained a large imprinting effect under a largely excessive amount of isoamyl alcohol to propionic acid. From the kinetic analysis, the imprinting of lipases mainly enhanced the catalytic reaction rate constant rather than the affinity between lipase and propionic acid compared with untreated lipase. The bio-imprinting treatment of lipase is found to be very effective for the yield and kinetics in solvent-free esterification.
为了避免使用对环境造成负担的化合物,本研究的重点是无溶剂酶促反应。研究了羧酸预处理脂肪酶对丙酸与异戊醇无溶剂酯化反应的催化活性和动力学。研究了羧酸的生物印迹效应对酯化反应收率和速率的提高。我们发现异戊醇对无溶剂酶促酯化反应没有抑制作用,并且在大量过量异戊醇对丙酸的印迹作用很大。从动力学分析来看,与未处理的脂肪酶相比,印迹主要提高了脂肪酶与丙酸之间的催化反应速率常数,而不是亲和力。脂肪酶的生物印迹处理对无溶剂酯化反应的产率和动力学都有很好的影响。
{"title":"Enzymatic Kinetics of Solvent-free Esterification with Bio-imprinted Lipase","authors":"M. Matsumoto, Y. Matsumoto","doi":"10.15255/cabeq.2019.1692","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1692","url":null,"abstract":"To avoid the use of compounds that burden the environment, a solvent-free enzymatic reaction was the focus of this study. Investigated were the catalytic activities and kinetics of lipases that were pretreated with carboxylic acids for the solvent-free esterification of propionic acid with isoamyl alcohol. The enhancements of the esterification yields and rates by the bio-imprinting effects of carboxylic acids were observed. We found no inhibition of isoamyl alcohol on the solvent-free enzymatic esterification, and obtained a large imprinting effect under a largely excessive amount of isoamyl alcohol to propionic acid. From the kinetic analysis, the imprinting of lipases mainly enhanced the catalytic reaction rate constant rather than the affinity between lipase and propionic acid compared with untreated lipase. The bio-imprinting treatment of lipase is found to be very effective for the yield and kinetics in solvent-free esterification.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"495-499"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lipase-catalyzed Solvent-free Synthesis of Polyglycerol 10 (PG-10) Esters 脂肪酶催化无溶剂合成聚甘油10 (PG-10)酯
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1702
Y. Satyawali, L. Cauwenberghs, W. Dejonghe
Polyglycerol fatty acid esters, which have been widely used as emulsifiers in food, medicine and cosmetics industries, were the subject of solvent-free enzymatic synthesis in this study. There have been previous reports on enzymatic synthesis of various polyglycerol esters; however, this investigation extends the synthesis to PG-10 esters. The effects of substrate molar ratio, addition of emulsifiers to enhance mixing, and addition of molecular sieves or N2 flushing for water removal, was investigated. The solvent-free synthesis using N2 flushing leads to complete conversion of fatty acid, yielding a completely acid free product. The synthesis is validated for polyglycerol laurate and polyglycerol caprylate, both useful products in the cosmetic industry.
聚甘油脂肪酸酯作为乳化剂广泛应用于食品、医药、化妆品等行业,本研究以无溶剂酶法合成聚甘油脂肪酸酯为研究对象。以前有关于酶法合成各种聚甘油酯的报道;然而,本研究将合成扩展到PG-10酯。考察了底物摩尔比、添加乳化剂增强混合、添加分子筛或N2冲洗除水的影响。采用氮气冲洗法进行无溶剂合成,脂肪酸完全转化,得到完全无酸的产物。该合成方法被验证为聚甘油酯月桂酸酯和聚甘油酯辛酸酯,这两种产品在化妆品工业中都很有用。
{"title":"Lipase-catalyzed Solvent-free Synthesis of Polyglycerol 10 (PG-10) Esters","authors":"Y. Satyawali, L. Cauwenberghs, W. Dejonghe","doi":"10.15255/cabeq.2019.1702","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1702","url":null,"abstract":"Polyglycerol fatty acid esters, which have been widely used as emulsifiers in food, medicine and cosmetics industries, were the subject of solvent-free enzymatic synthesis in this study. There have been previous reports on enzymatic synthesis of various polyglycerol esters; however, this investigation extends the synthesis to PG-10 esters. The effects of substrate molar ratio, addition of emulsifiers to enhance mixing, and addition of molecular sieves or N2 flushing for water removal, was investigated. The solvent-free synthesis using N2 flushing leads to complete conversion of fatty acid, yielding a completely acid free product. The synthesis is validated for polyglycerol laurate and polyglycerol caprylate, both useful products in the cosmetic industry.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"501-509"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of Conventional and Novel Pre-treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes 果蔬废弃物制备生物乙醇的传统与新型预处理方法的比较
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1738
T. Keskin-Gundogdu
In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.
本文研究了利用酵母和细菌发酵从果蔬废弃物中生产生物乙醇的新技术和传统技术。比较了酵母发酵的不同预处理技术(酸、热、酸/热和微波)。酸/热预处理和微波预处理的乙醇最高浓度分别为11.7和11.8 g L-1。另一方面,将FVWs生产生物炭与该工艺废气的合成气发酵相结合。以CO含量为12%的废气为原料,分别采用厌氧混合培养和隆达梭菌制备了5.5 g L-1和2.5 g L-1的乙醇。总体结果强调了通过经济可行和环境友好的方法从汽车生产生物乙醇的潜力。
{"title":"Comparison of Conventional and Novel Pre-treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes","authors":"T. Keskin-Gundogdu","doi":"10.15255/cabeq.2019.1738","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1738","url":null,"abstract":"In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"33 1","pages":"471-483"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator 基于格子玻尔兹曼建模的无膜液液微分离器设计
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1781
F. Strniša, P. Žnidaršič-Plazl, I. Plazl
The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.
连续处理的好处以及与端到端制造的高效下游单元集成相关的挑战刺激了高效小型化连续操作分离器的发展。无膜微分离器具有特殊定位的内部结构,使流体服从毛细管压力梯度,以前已经证明可以实现有效的气液分离。在这里,我们提出了基于模型的设计液液微分离器的初步研究,两板之间有不同直径的柱。为了优化硅分离器的性能,采用介观晶格-玻尔兹曼模型。在各种条件下的模拟结果表明,通过改变微分离器的几何特性可以改善两种液体的分离。
{"title":"Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator","authors":"F. Strniša, P. Žnidaršič-Plazl, I. Plazl","doi":"10.15255/cabeq.2020.1781","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1781","url":null,"abstract":"The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"73-78"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Removal Efficiency of Lipid-regulating Drug Clofibric Acid from the Aquatic Environment by Calcined Anionic Clay ZnAl-CO3 阴离子粘土ZnAl-CO3煅烧去除水中调脂药物clofibracid的效果研究
IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1797
E. Mourid, M. Lakraimi, L. Benaziz, M. Cherkaoui
Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.
纤维酸(CA)被广泛用作血液中脂质水平的调节剂;它被认为是在水生环境中具有高持久性的残留药物之一。废水处理后,只能去除少量CA。本研究的目的是研究使用煅烧的阴离子粘土ZnAl-CO3来减少污染废水中的CA,选择ZnAl-CO3是因为它具有较高的吸附能力、可回收性和污泥的不可再生性。最大滞留量Qm超过2220 mg g-1, DH°值提示存在物理过程。去除率达到90%,残留量远低于容许阈值。吸附物分子之间的氢键和静电相互作用实现了保留。回收试验表明,与其他吸附剂相比,该材料是可回收的、有前途的、非常有效的。这种滞留有助于持久的脂质调节剂的衰减。
{"title":"Removal Efficiency of Lipid-regulating Drug Clofibric Acid from the Aquatic Environment by Calcined Anionic Clay ZnAl-CO3","authors":"E. Mourid, M. Lakraimi, L. Benaziz, M. Cherkaoui","doi":"10.15255/cabeq.2020.1797","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1797","url":null,"abstract":"Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"79-92"},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Chemical and Biochemical Engineering Quarterly
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1