首页 > 最新文献

Chemical and Biochemical Engineering Quarterly最新文献

英文 中文
Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste 车前草叶鞘废活性炭吸附水中活性染料的研究
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1826
G. Sangavi, Argho Bakshi, M. Ganapathy, N. Ganesan
All parts of the plantain are widely used in India for various purposes. But plantain leaf sheath always ends up as waste material which accumulates as a biowaste. The present study focuses on the preparation of activated carbon using phosphoric acid as activating agent, and its efficacy as an adsorbent for the removal of reactive dyes, Reactive Green 19, and Reactive Red 141. Batch adsorption studies have been conducted and optimum adsorption conditions were determined as a function of contact time, initial dye concentration, adsorbent dosage, and pH. The experimental data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The pseudo-first and second-order, intraparticle diffusion, and Elovich models were used to analyze the kinetic parameters of the adsorption system. Under the optimum conditions (initial dye concentration = 200 mg L–1, adsorbent dose = 1 g, pH = 2, contact time = 220 min for reactive green 19 and 180 min for reactive red 141), maximum percentage removal for reactive green 19 and reactive red 141 were obtained as 65.9 % and 72.7 %, respectively. The results demonstrate that activated carbon produced from chemical activation of the plantain waste has the potential of adsorbing reactive dyes from industrial effluents.
大蕉的所有部分在印度被广泛用于各种目的。但车前草叶鞘往往以废弃物的形式积累为生物废弃物。本文主要研究了以磷酸为活化剂制备活性炭,并对其作为吸附剂去除活性染料活性绿19和活性红141的效果进行了研究。进行了批量吸附研究,确定了最佳吸附条件与接触时间、初始染料浓度、吸附剂用量和ph的关系。采用Langmuir、Freundlich和Temkin等温模型对实验数据进行了分析。采用拟一阶和二阶、颗粒内扩散和Elovich模型分析了吸附体系的动力学参数。在初始染料浓度为200 mg L-1,吸附剂剂量为1 g, pH = 2,接触时间为220 min(活性绿19)和180 min(活性红141)的条件下,活性绿19和活性红141的最大去除率分别为65.9%和72.7%。结果表明,用化学活化法制备的活性炭具有吸附工业废水中活性染料的潜力。
{"title":"Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste","authors":"G. Sangavi, Argho Bakshi, M. Ganapathy, N. Ganesan","doi":"10.15255/cabeq.2020.1826","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1826","url":null,"abstract":"All parts of the plantain are widely used in India for various purposes. But plantain leaf sheath always ends up as waste material which accumulates as a biowaste. The present study focuses on the preparation of activated carbon using phosphoric acid as activating agent, and its efficacy as an adsorbent for the removal of reactive dyes, Reactive Green 19, and Reactive Red 141. Batch adsorption studies have been conducted and optimum adsorption conditions were determined as a function of contact time, initial dye concentration, adsorbent dosage, and pH. The experimental data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The pseudo-first and second-order, intraparticle diffusion, and Elovich models were used to analyze the kinetic parameters of the adsorption system. Under the optimum conditions (initial dye concentration = 200 mg L–1, adsorbent dose = 1 g, pH = 2, contact time = 220 min for reactive green 19 and 180 min for reactive red 141), maximum percentage removal for reactive green 19 and reactive red 141 were obtained as 65.9 % and 72.7 %, respectively. The results demonstrate that activated carbon produced from chemical activation of the plantain waste has the potential of adsorbing reactive dyes from industrial effluents.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Enzymatic Kinetics of Solvent-free Esterification with Bio-imprinted Lipase 生物印迹脂肪酶无溶剂酯化反应动力学研究
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1692
M. Matsumoto, Y. Matsumoto
To avoid the use of compounds that burden the environment, a solvent-free enzymatic reaction was the focus of this study. Investigated were the catalytic activities and kinetics of lipases that were pretreated with carboxylic acids for the solvent-free esterification of propionic acid with isoamyl alcohol. The enhancements of the esterification yields and rates by the bio-imprinting effects of carboxylic acids were observed. We found no inhibition of isoamyl alcohol on the solvent-free enzymatic esterification, and obtained a large imprinting effect under a largely excessive amount of isoamyl alcohol to propionic acid. From the kinetic analysis, the imprinting of lipases mainly enhanced the catalytic reaction rate constant rather than the affinity between lipase and propionic acid compared with untreated lipase. The bio-imprinting treatment of lipase is found to be very effective for the yield and kinetics in solvent-free esterification.
为了避免使用对环境造成负担的化合物,本研究的重点是无溶剂酶促反应。研究了羧酸预处理脂肪酶对丙酸与异戊醇无溶剂酯化反应的催化活性和动力学。研究了羧酸的生物印迹效应对酯化反应收率和速率的提高。我们发现异戊醇对无溶剂酶促酯化反应没有抑制作用,并且在大量过量异戊醇对丙酸的印迹作用很大。从动力学分析来看,与未处理的脂肪酶相比,印迹主要提高了脂肪酶与丙酸之间的催化反应速率常数,而不是亲和力。脂肪酶的生物印迹处理对无溶剂酯化反应的产率和动力学都有很好的影响。
{"title":"Enzymatic Kinetics of Solvent-free Esterification with Bio-imprinted Lipase","authors":"M. Matsumoto, Y. Matsumoto","doi":"10.15255/cabeq.2019.1692","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1692","url":null,"abstract":"To avoid the use of compounds that burden the environment, a solvent-free enzymatic reaction was the focus of this study. Investigated were the catalytic activities and kinetics of lipases that were pretreated with carboxylic acids for the solvent-free esterification of propionic acid with isoamyl alcohol. The enhancements of the esterification yields and rates by the bio-imprinting effects of carboxylic acids were observed. We found no inhibition of isoamyl alcohol on the solvent-free enzymatic esterification, and obtained a large imprinting effect under a largely excessive amount of isoamyl alcohol to propionic acid. From the kinetic analysis, the imprinting of lipases mainly enhanced the catalytic reaction rate constant rather than the affinity between lipase and propionic acid compared with untreated lipase. The bio-imprinting treatment of lipase is found to be very effective for the yield and kinetics in solvent-free esterification.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lipase-catalyzed Solvent-free Synthesis of Polyglycerol 10 (PG-10) Esters 脂肪酶催化无溶剂合成聚甘油10 (PG-10)酯
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1702
Y. Satyawali, L. Cauwenberghs, W. Dejonghe
Polyglycerol fatty acid esters, which have been widely used as emulsifiers in food, medicine and cosmetics industries, were the subject of solvent-free enzymatic synthesis in this study. There have been previous reports on enzymatic synthesis of various polyglycerol esters; however, this investigation extends the synthesis to PG-10 esters. The effects of substrate molar ratio, addition of emulsifiers to enhance mixing, and addition of molecular sieves or N2 flushing for water removal, was investigated. The solvent-free synthesis using N2 flushing leads to complete conversion of fatty acid, yielding a completely acid free product. The synthesis is validated for polyglycerol laurate and polyglycerol caprylate, both useful products in the cosmetic industry.
聚甘油脂肪酸酯作为乳化剂广泛应用于食品、医药、化妆品等行业,本研究以无溶剂酶法合成聚甘油脂肪酸酯为研究对象。以前有关于酶法合成各种聚甘油酯的报道;然而,本研究将合成扩展到PG-10酯。考察了底物摩尔比、添加乳化剂增强混合、添加分子筛或N2冲洗除水的影响。采用氮气冲洗法进行无溶剂合成,脂肪酸完全转化,得到完全无酸的产物。该合成方法被验证为聚甘油酯月桂酸酯和聚甘油酯辛酸酯,这两种产品在化妆品工业中都很有用。
{"title":"Lipase-catalyzed Solvent-free Synthesis of Polyglycerol 10 (PG-10) Esters","authors":"Y. Satyawali, L. Cauwenberghs, W. Dejonghe","doi":"10.15255/cabeq.2019.1702","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1702","url":null,"abstract":"Polyglycerol fatty acid esters, which have been widely used as emulsifiers in food, medicine and cosmetics industries, were the subject of solvent-free enzymatic synthesis in this study. There have been previous reports on enzymatic synthesis of various polyglycerol esters; however, this investigation extends the synthesis to PG-10 esters. The effects of substrate molar ratio, addition of emulsifiers to enhance mixing, and addition of molecular sieves or N2 flushing for water removal, was investigated. The solvent-free synthesis using N2 flushing leads to complete conversion of fatty acid, yielding a completely acid free product. The synthesis is validated for polyglycerol laurate and polyglycerol caprylate, both useful products in the cosmetic industry.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of Conventional and Novel Pre-treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes 果蔬废弃物制备生物乙醇的传统与新型预处理方法的比较
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1738
T. Keskin-Gundogdu
In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.
本文研究了利用酵母和细菌发酵从果蔬废弃物中生产生物乙醇的新技术和传统技术。比较了酵母发酵的不同预处理技术(酸、热、酸/热和微波)。酸/热预处理和微波预处理的乙醇最高浓度分别为11.7和11.8 g L-1。另一方面,将FVWs生产生物炭与该工艺废气的合成气发酵相结合。以CO含量为12%的废气为原料,分别采用厌氧混合培养和隆达梭菌制备了5.5 g L-1和2.5 g L-1的乙醇。总体结果强调了通过经济可行和环境友好的方法从汽车生产生物乙醇的潜力。
{"title":"Comparison of Conventional and Novel Pre-treatment Methods for Bioethanol Production from Fruit and Vegetable Wastes","authors":"T. Keskin-Gundogdu","doi":"10.15255/cabeq.2019.1738","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1738","url":null,"abstract":"In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator 基于格子玻尔兹曼建模的无膜液液微分离器设计
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1781
F. Strniša, P. Žnidaršič-Plazl, I. Plazl
The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.
连续处理的好处以及与端到端制造的高效下游单元集成相关的挑战刺激了高效小型化连续操作分离器的发展。无膜微分离器具有特殊定位的内部结构,使流体服从毛细管压力梯度,以前已经证明可以实现有效的气液分离。在这里,我们提出了基于模型的设计液液微分离器的初步研究,两板之间有不同直径的柱。为了优化硅分离器的性能,采用介观晶格-玻尔兹曼模型。在各种条件下的模拟结果表明,通过改变微分离器的几何特性可以改善两种液体的分离。
{"title":"Lattice Boltzmann Modeling-based Design of a Membrane-free Liquid-liquid Microseparator","authors":"F. Strniša, P. Žnidaršič-Plazl, I. Plazl","doi":"10.15255/cabeq.2020.1781","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1781","url":null,"abstract":"The benefits of continuous processing and the challenges related to the integration with efficient downstream units for end-to-end manufacturing have spurred the development of efficient miniaturized continuously-operated separators. Membrane-free microseparators with specifically positioned internal structures subjecting fluids to a capillary pressure gradient have been previously shown to enable efficient gas-liquid separation. Here we present initial studies on the model-based design of a liquid-liquid microseparator with pillars of various diameters between two plates. For the optimization of in silico separator performance, mesoscopic lattice-Boltzmann modeling was used. Simulation results at various conditions revealed the possibility to improve the separation of two liquids by changing the geometrical characteristics of the microseparator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Removal Efficiency of Lipid-regulating Drug Clofibric Acid from the Aquatic Environment by Calcined Anionic Clay ZnAl-CO3 阴离子粘土ZnAl-CO3煅烧去除水中调脂药物clofibracid的效果研究
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1797
E. Mourid, M. Lakraimi, L. Benaziz, M. Cherkaoui
Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.
纤维酸(CA)被广泛用作血液中脂质水平的调节剂;它被认为是在水生环境中具有高持久性的残留药物之一。废水处理后,只能去除少量CA。本研究的目的是研究使用煅烧的阴离子粘土ZnAl-CO3来减少污染废水中的CA,选择ZnAl-CO3是因为它具有较高的吸附能力、可回收性和污泥的不可再生性。最大滞留量Qm超过2220 mg g-1, DH°值提示存在物理过程。去除率达到90%,残留量远低于容许阈值。吸附物分子之间的氢键和静电相互作用实现了保留。回收试验表明,与其他吸附剂相比,该材料是可回收的、有前途的、非常有效的。这种滞留有助于持久的脂质调节剂的衰减。
{"title":"Removal Efficiency of Lipid-regulating Drug Clofibric Acid from the Aquatic Environment by Calcined Anionic Clay ZnAl-CO3","authors":"E. Mourid, M. Lakraimi, L. Benaziz, M. Cherkaoui","doi":"10.15255/cabeq.2020.1797","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1797","url":null,"abstract":"Clofibric acid (CA) is widely used as regulator of lipid levels in blood; it is considered one of the residual drugs that have a high persistence in the aquatic environment. After wastewater treatment, only a small amount of CA can be removed. The aim of this work was to investigate the reduction of CA in contaminated wastewater using calcined anionic clay ZnAl-CO3, which was chosen for its higher adsorption capacity, recyclability, and non-regeneration of sludge. The maximum retention amount, Qm, exceeded 2220 mg g–1, and the value of DH° suggested a physical process. The removal rate achieved 90 %, and the remaining quantity was widely below the tolerance thresholds. Retention was achieved by hydrogen bonds and electrostatic interactions between the adsorbate molecules. Recycling tests clearly suggested that this material is recyclable, promising, and very effective compared to other adsorbents. This retention contributes to the attenuation of persistent lipid regulator.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Simple Method for Finding Optimal Paths of Hot and Cold Streams inside Shell and Tube Heat Exchangers to Reduce Pumping Cost in Heat Exchanger Network Problems 在换热器网络问题中寻找管壳式换热器内冷热流最优路径以降低泵送成本的简单方法
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1809
V. Sadri, H. Soltani, S. Rahimzadeh
In this paper, a simple method is presented for the synthesis and retrofit of heat exchanger networks (HENs) by considering pressure drop as well as finding proper path of streams inside heat exchangers (HEs) to reduce the pumping cost of network. Generally, HEN problems lead to MINLP models which have convergence difficulties due to the existence of both continuous and integer variables. In this study, instead of solving these variables simultaneously, a combination of Genetic Algorithm (GA) with Quasi Linear Programming (QLP) and Integer Linear Programming (ILP) was used for solving the problem. GA was used to find optimal HENs structure and streams paths, whereas continuous variables were solved by QLP. For the retrofit of HENs, a modified ILP model was used. Results show that the proposed method has the ability to reduce the cost of annual pumping due to considering optimal paths for streams in the HEs compared to the literature.
本文提出了一种简单的综合改造方法,即考虑压降,并在换热器内寻找合适的流路,以降低管网抽水成本。一般来说,HEN问题导致MINLP模型由于连续变量和整数变量的存在而存在收敛困难。本研究采用遗传算法(GA)与拟线性规划(QLP)和整数线性规划(ILP)相结合的方法求解这些变量,而不是同时求解。采用遗传算法寻找最优的hen结构和流路径,采用QLP求解连续变量。采用改进的ILP模型对母鸡进行改造。结果表明,与文献相比,由于该方法考虑了HEs中溪流的最佳路径,因此能够降低年抽水成本。
{"title":"A Simple Method for Finding Optimal Paths of Hot and Cold Streams inside Shell and Tube Heat Exchangers to Reduce Pumping Cost in Heat Exchanger Network Problems","authors":"V. Sadri, H. Soltani, S. Rahimzadeh","doi":"10.15255/cabeq.2020.1809","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1809","url":null,"abstract":"In this paper, a simple method is presented for the synthesis and retrofit of heat exchanger networks (HENs) by considering pressure drop as well as finding proper path of streams inside heat exchangers (HEs) to reduce the pumping cost of network. Generally, HEN problems lead to MINLP models which have convergence difficulties due to the existence of both continuous and integer variables. In this study, instead of solving these variables simultaneously, a combination of Genetic Algorithm (GA) with Quasi Linear Programming (QLP) and Integer Linear Programming (ILP) was used for solving the problem. GA was used to find optimal HENs structure and streams paths, whereas continuous variables were solved by QLP. For the retrofit of HENs, a modified ILP model was used. Results show that the proposed method has the ability to reduce the cost of annual pumping due to considering optimal paths for streams in the HEs compared to the literature.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Isolation, Kinetics, and Performance of a Novel Phenol Degrading Strain 一种新型苯酚降解菌株的分离、动力学和性能研究
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1685
Wen Zhang, X. Xia
Efficient phenol-degrading bacteria is still the key to the biological treatment of phenol-containing wastewater. In this research, a novel phenol-degrading strain N8 was isolated. According to the 16S rDNA identification, it was concluded that the N8 strain was Bacillus sp. IARI-J-20. The wastewater treatment experiments showed that the phenol degrading rate of N8 reached 92.8 % at 24 h with the inoculation amount of 15 %, temperature of 30 °C, pH of 7.2, yeast extract addition of 0.08 %, and initial phenol concentration of 225 mg L–1. Haldane’s model was fit for the growth kinetics of the phenol-degrading strain N8 over a wide range of initial phenol concentrations (50–1200 mg L–1), with kinetic values μmax = 0.33 h−1, Ks = 79.16 mg L–1, and Ki = 122 mg L–1. The yield coefficient reached maximal value when the phenol concentration was 400 mg L–1. When the initial phenol concentration was more than 400 mg L–1, the inhibition effect of phenol became predominant.
高效的酚降解菌仍然是生物处理含酚废水的关键。本研究分离到了一株新的酚降解菌N8。经16S rDNA鉴定,N8菌株为芽孢杆菌sp. IARI-J-20。废水处理实验表明,在接种量为15%、温度为30℃、pH为7.2、酵母浸膏添加量为0.08%、苯酚初始浓度为225 mg L-1的条件下,24 h N8的苯酚降解率可达92.8%。Haldane模型适用于苯酚降解菌株N8在苯酚初始浓度50 ~ 1200 mg L-1范围内的生长动力学,其动力学值μmax = 0.33 h−1,Ks = 79.16 mg L-1, Ki = 122 mg L-1。苯酚浓度为400 mg L-1时,产率系数达到最大值。当苯酚初始浓度大于400 mg L-1时,苯酚的抑制作用起主导作用。
{"title":"Isolation, Kinetics, and Performance of a Novel Phenol Degrading Strain","authors":"Wen Zhang, X. Xia","doi":"10.15255/cabeq.2019.1685","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1685","url":null,"abstract":"Efficient phenol-degrading bacteria is still the key to the biological treatment of phenol-containing wastewater. In this research, a novel phenol-degrading strain N8 was isolated. According to the 16S rDNA identification, it was concluded that the N8 strain was Bacillus sp. IARI-J-20. The wastewater treatment experiments showed that the phenol degrading rate of N8 reached 92.8 % at 24 h with the inoculation amount of 15 %, temperature of 30 °C, pH of 7.2, yeast extract addition of 0.08 %, and initial phenol concentration of 225 mg L–1. Haldane’s model was fit for the growth kinetics of the phenol-degrading strain N8 over a wide range of initial phenol concentrations (50–1200 mg L–1), with kinetic values μmax = 0.33 h−1, Ks = 79.16 mg L–1, and Ki = 122 mg L–1. The yield coefficient reached maximal value when the phenol concentration was 400 mg L–1. When the initial phenol concentration was more than 400 mg L–1, the inhibition effect of phenol became predominant.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Efficient Biosurfactant by Pseudomonas stutzeri Z12 Isolated from an Extreme Environment for Remediation of Soil Contaminated with Hydrocarbons 极端环境中stutzeri假单胞菌Z12高效生物表面活性剂修复土壤烃类污染
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2019.1718
S. Pourfadakari, S. Jorfi, Shokooh Ghafari
S. Pourfadakari,a,c S. Jorfi,b,c,* and S. Ghafarid aStudent Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran bEnvironmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran cDepartment of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran dInfectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
S. Pourfadakari,a,c . S. Jorfi,b,c,*和S. Ghafarid学生研究委员会,Ahvaz Jundishapur医科大学环境技术研究中心,Ahvaz Jundishapur医科大学环境卫生工程系,Ahvaz,伊朗,Birjand医科大学传染病研究中心,伊朗,Birjand
{"title":"An Efficient Biosurfactant by Pseudomonas stutzeri Z12 Isolated from an Extreme Environment for Remediation of Soil Contaminated with Hydrocarbons","authors":"S. Pourfadakari, S. Jorfi, Shokooh Ghafari","doi":"10.15255/cabeq.2019.1718","DOIUrl":"https://doi.org/10.15255/cabeq.2019.1718","url":null,"abstract":"S. Pourfadakari,a,c S. Jorfi,b,c,* and S. Ghafarid aStudent Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran bEnvironmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran cDepartment of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran dInfectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15255/cabeq.2019.1718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67063862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Paspalum notatum Grass-waste-based Adsorbent for Rhodamine B Removal from Polluted Water 雀稗草基吸附剂去除污水中罗丹明B的研究
IF 1.5 4区 生物学 Q3 Chemistry Pub Date : 2020-01-01 DOI: 10.15255/cabeq.2020.1830
A. Zahir, H. Aslam, Umair Aslam, A. Abdullah, Rizwan Ali, M. M. Bello
The potential of Paspalum notatum grass waste to adsorb Rhodamine B dye from aqueous phase is reported in this research. The grass waste was activated and characterized through various techniques to analyze the chemical (FTIR), morphological (SEMEDX), and thermal (TGA) changes incorporated through the activation process. The pollutant removal efficiency of the raw and modified adsorbents was studied by varying different process parameters in a batch process. The maximum capacity of adsorption which was observed for grass waste and activated grass waste was 54 mg g–1 and 72.4 mg g–1 respectively. Among the various kinetic models, the pseudo-second order model gives the best regression results. However, the intraparticle diffusion-adsorption model showed that the diffusion within pores controlled the adsorption rate. Thermodynamic analysis of this process revealed that Rhodamine B adsorption was endothermic and spontaneous in nature. The results of this study show that grass waste has the potential to be used as an adsorbent for the treatment of colored water.
报道了雀稗草废对罗丹明B染料的吸附潜力。利用各种技术对草废弃物进行了活化和表征,分析了活化过程中包含的化学(FTIR)、形态(SEMEDX)和热(TGA)变化。通过改变不同的工艺参数,研究了原料吸附剂和改性吸附剂对污染物的去除效果。对草皮废弃物和活性草皮废弃物的最大吸附量分别为54 mg g-1和72.4 mg g-1。在各种动力学模型中,拟二阶模型的回归效果最好。然而,颗粒内扩散-吸附模型表明,孔隙内的扩散控制了吸附速率。热力学分析表明,罗丹明B吸附过程是吸热自发的。本研究结果表明,草废弃物具有作为有色水处理吸附剂的潜力。
{"title":"Paspalum notatum Grass-waste-based Adsorbent for Rhodamine B Removal from Polluted Water","authors":"A. Zahir, H. Aslam, Umair Aslam, A. Abdullah, Rizwan Ali, M. M. Bello","doi":"10.15255/cabeq.2020.1830","DOIUrl":"https://doi.org/10.15255/cabeq.2020.1830","url":null,"abstract":"The potential of Paspalum notatum grass waste to adsorb Rhodamine B dye from aqueous phase is reported in this research. The grass waste was activated and characterized through various techniques to analyze the chemical (FTIR), morphological (SEMEDX), and thermal (TGA) changes incorporated through the activation process. The pollutant removal efficiency of the raw and modified adsorbents was studied by varying different process parameters in a batch process. The maximum capacity of adsorption which was observed for grass waste and activated grass waste was 54 mg g–1 and 72.4 mg g–1 respectively. Among the various kinetic models, the pseudo-second order model gives the best regression results. However, the intraparticle diffusion-adsorption model showed that the diffusion within pores controlled the adsorption rate. Thermodynamic analysis of this process revealed that Rhodamine B adsorption was endothermic and spontaneous in nature. The results of this study show that grass waste has the potential to be used as an adsorbent for the treatment of colored water.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15255/cabeq.2020.1830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67064294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
期刊
Chemical and Biochemical Engineering Quarterly
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1