Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
{"title":"What are olfaction and gustation, and do all animals have them?","authors":"Charles D Derby, John Caprio","doi":"10.1093/chemse/bjae009","DOIUrl":"10.1093/chemse/bjae009","url":null,"abstract":"<p><p>Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Gögele, David Emmert, Christian Fuchsberger, Johannes Frasnelli
The sense of smell allows for the assessment of the chemical composition of volatiles in our environment. Different factors are associated with reduced olfactory function, including age, sex, as well as health and lifestyle conditions. However, most studies that aimed at identifying the variables that drive olfactory function in the population suffered from methodological weaknesses in study designs and participant selection, such as the inclusion of convenience sample or only of certain age groups, or recruitment biases. We aimed to overcome these issues by investigating the Cooperative Health Research in South Tyrol (CHRIS) cohort, a population-based cohort, by using a validated odor identification test. Specifically, we hypothesized that a series of medical, demographic and lifestyle variables is associated with odor identification abilities. In addition, our goal was to provide clinicians and researchers with normative values for the Sniffin' Sticks identification set, after exclusion of individuals with impaired nasal patency. We included 6,944 participants without acute nasal obstruction and assessed several biological, social, and medical parameters. A basic model determined that age, sex, years of education, and smoking status together explained roughly 13% of the total variance in the data. We further observed that variables related to medical (positive screening for cognitive impairment and for Parkinson's disease, history of skull fracture, stage 2 hypertension) and lifestyle (alcohol abstinence) conditions had a negative effect on odor identification scores. Finally, we provide clinicians with normative values for both versions of the Sniffin' Sticks odor identification test, i.e. with 16 items and with 12 items.
{"title":"Factors influencing olfactory function in an adult general population sample: the CHRIS study.","authors":"Martin Gögele, David Emmert, Christian Fuchsberger, Johannes Frasnelli","doi":"10.1093/chemse/bjae011","DOIUrl":"10.1093/chemse/bjae011","url":null,"abstract":"<p><p>The sense of smell allows for the assessment of the chemical composition of volatiles in our environment. Different factors are associated with reduced olfactory function, including age, sex, as well as health and lifestyle conditions. However, most studies that aimed at identifying the variables that drive olfactory function in the population suffered from methodological weaknesses in study designs and participant selection, such as the inclusion of convenience sample or only of certain age groups, or recruitment biases. We aimed to overcome these issues by investigating the Cooperative Health Research in South Tyrol (CHRIS) cohort, a population-based cohort, by using a validated odor identification test. Specifically, we hypothesized that a series of medical, demographic and lifestyle variables is associated with odor identification abilities. In addition, our goal was to provide clinicians and researchers with normative values for the Sniffin' Sticks identification set, after exclusion of individuals with impaired nasal patency. We included 6,944 participants without acute nasal obstruction and assessed several biological, social, and medical parameters. A basic model determined that age, sex, years of education, and smoking status together explained roughly 13% of the total variance in the data. We further observed that variables related to medical (positive screening for cognitive impairment and for Parkinson's disease, history of skull fracture, stage 2 hypertension) and lifestyle (alcohol abstinence) conditions had a negative effect on odor identification scores. Finally, we provide clinicians with normative values for both versions of the Sniffin' Sticks odor identification test, i.e. with 16 items and with 12 items.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin J J Walker, Mike Letnic, Martin P Bucknall, Lyn Watson, Neil R Jordan
Chemical information in canid urine has been implicated in territoriality and influences the spacing of individuals. We identified the key volatile organic compound (VOC) components in dingo (Canis lupus dingo) urine and investigated the potential role of scents in territorial spacing. VOC analysis, using headspace gas chromatography-mass spectrometry (GC-MS), demonstrated that the information in fresh urine from adult male dingoes was sufficient to allow statistical classification into age categories. Discriminant function analyses demonstrated that the relative amounts or combinations of key VOCs from pre-prime (3-4 years), prime (5-9 years), and post-prime (≥10 years) males varied between these age categories, and that scents exposed to the environment for 4 (but not 33) days could still be classified to age categories. Further, a field experiment showed that dingoes spent less time in the vicinity of prime male dingo scents than other scents. Collectively, these results indicate that age-related scent differences may be discriminable by dingoes. Previous authors have suggested the potential to use scent as a management tool for wild canids by creating an artificial territorial boundary/barrier. Our results suggest that identifying the specific signals in prime-age male scents could facilitate the development of scent-based tools for non-lethal management.
{"title":"Male dingo urinary scents code for age class and wild dingoes respond to this information.","authors":"Benjamin J J Walker, Mike Letnic, Martin P Bucknall, Lyn Watson, Neil R Jordan","doi":"10.1093/chemse/bjae004","DOIUrl":"10.1093/chemse/bjae004","url":null,"abstract":"<p><p>Chemical information in canid urine has been implicated in territoriality and influences the spacing of individuals. We identified the key volatile organic compound (VOC) components in dingo (Canis lupus dingo) urine and investigated the potential role of scents in territorial spacing. VOC analysis, using headspace gas chromatography-mass spectrometry (GC-MS), demonstrated that the information in fresh urine from adult male dingoes was sufficient to allow statistical classification into age categories. Discriminant function analyses demonstrated that the relative amounts or combinations of key VOCs from pre-prime (3-4 years), prime (5-9 years), and post-prime (≥10 years) males varied between these age categories, and that scents exposed to the environment for 4 (but not 33) days could still be classified to age categories. Further, a field experiment showed that dingoes spent less time in the vicinity of prime male dingo scents than other scents. Collectively, these results indicate that age-related scent differences may be discriminable by dingoes. Previous authors have suggested the potential to use scent as a management tool for wild canids by creating an artificial territorial boundary/barrier. Our results suggest that identifying the specific signals in prime-age male scents could facilitate the development of scent-based tools for non-lethal management.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastiano Ricci, Min Sung Kim, Christopher T Simons
Oral tactile sensitivity underpins food texture perception, but few studies have investigated mechanoreception in oral tissues. During food consumption, oral tissues are exposed to a wide range of temperatures and chemical entities. The objective of the present study was to assess the influence of thermal sensations on lingual roughness sensitivity. Just-noticeable difference thresholds (JNDs) were determined using the staircase method for surface roughness from stainless steel coupons (Ra; 0.177-0.465 µm). Thresholds were assessed when cooling or heating the metal stimuli (n = 32 subjects). Compared to the JND threshold obtained at an ambient stimulus temperature (21 °C: 0.055 ± 0.010 μm), a cold (8 °C) temperature significantly (P = 0.019) reduced tongue sensitivity (i.e. increased JND) to surface roughness (0.109 ± 0.016 μm, respectively) whereas warm and hot temperatures had no significant effect (35 °C: 0.084 ± 0.012 μm; 45 °C: 0.081 ± 0.011 μm). To assess whether the effect of cooling on roughness thresholds is TRPM8-dependent, we collected roughness thresholds in a second cohort of subjects (n = 27) following the lingual application of the cooling compound Evercool 190 (24.3 µM). Interestingly, when Evercool 190 was used to elicit the cold sensation, lingual roughness JNDs were unaffected compared to the control application of water (EC: 0.112 ± 0.016 μm; water: 0.102 ± 0.017 μm; P = 0.604). That lingual roughness sensitivity is decreased by cold temperature, but not chemicals evoking cold sensations, suggests the mechanism underpinning thermal modulation is not TRPM8 dependent.
{"title":"The impact of temperature and a chemesthetic cooling agent on lingual roughness sensitivity.","authors":"Sebastiano Ricci, Min Sung Kim, Christopher T Simons","doi":"10.1093/chemse/bjae013","DOIUrl":"10.1093/chemse/bjae013","url":null,"abstract":"<p><p>Oral tactile sensitivity underpins food texture perception, but few studies have investigated mechanoreception in oral tissues. During food consumption, oral tissues are exposed to a wide range of temperatures and chemical entities. The objective of the present study was to assess the influence of thermal sensations on lingual roughness sensitivity. Just-noticeable difference thresholds (JNDs) were determined using the staircase method for surface roughness from stainless steel coupons (Ra; 0.177-0.465 µm). Thresholds were assessed when cooling or heating the metal stimuli (n = 32 subjects). Compared to the JND threshold obtained at an ambient stimulus temperature (21 °C: 0.055 ± 0.010 μm), a cold (8 °C) temperature significantly (P = 0.019) reduced tongue sensitivity (i.e. increased JND) to surface roughness (0.109 ± 0.016 μm, respectively) whereas warm and hot temperatures had no significant effect (35 °C: 0.084 ± 0.012 μm; 45 °C: 0.081 ± 0.011 μm). To assess whether the effect of cooling on roughness thresholds is TRPM8-dependent, we collected roughness thresholds in a second cohort of subjects (n = 27) following the lingual application of the cooling compound Evercool 190 (24.3 µM). Interestingly, when Evercool 190 was used to elicit the cold sensation, lingual roughness JNDs were unaffected compared to the control application of water (EC: 0.112 ± 0.016 μm; water: 0.102 ± 0.017 μm; P = 0.604). That lingual roughness sensitivity is decreased by cold temperature, but not chemicals evoking cold sensations, suggests the mechanism underpinning thermal modulation is not TRPM8 dependent.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Oral thermal processing in the gustatory cortex of awake mice.","authors":"","doi":"10.1093/chemse/bjae014","DOIUrl":"https://doi.org/10.1093/chemse/bjae014","url":null,"abstract":"","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.
{"title":"Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination.","authors":"Georg Raiser, C Giovanni Galizia, Paul Szyszka","doi":"10.1093/chemse/bjae030","DOIUrl":"10.1093/chemse/bjae030","url":null,"abstract":"<p><p>In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metallic sensation is often described as unpleasant and can reduce acceptance of foods and beverages and compliance with medication. Masking and suppressing aversive sensations can help to improve acceptance of these products, with many successful strategies identified for bitterness. However, there are few studies investigating effective strategies for suppressing metallic sensation. This study aims to assess the effectiveness of mixture suppression to reduce the metallic sensation elicited from ferrous sulfate and examine whether individual differences in metallic sensation are associated with the effectiveness of suppression strategies. To achieve this, participants (n = 121) reported the intensity of suprathreshold concentrations of ferrous sulfate alone and in binary mixtures with three tastants, specifically, sucrose, citric acid, and sodium chloride. The results revealed that metallic sensation ratings were significantly lower for every binary mixture tested compared to ferrous sulfate presented in isolation. For 0.3 mM ferrous sulfate, sucrose was identified to be the most effective compound in suppressing metallic sensation, followed by citric acid and sodium chloride. For the 1.0 mM ferrous sulfate solutions, all tastants were equally effective at suppressing metallic sensation. In addition, there is a significant interaction between the perceived metallic intensity and the effectiveness of each strategy. These findings suggest that sucrose, citric acid, and sodium chloride have the potential to be effective in suppressing metallic sensation.
{"title":"Sucrose, NaCl, and citric acid suppress the metallic sensation of FeSO4.","authors":"Sasi Tansaraviput, Alissa A Nolden","doi":"10.1093/chemse/bjad052","DOIUrl":"10.1093/chemse/bjad052","url":null,"abstract":"<p><p>Metallic sensation is often described as unpleasant and can reduce acceptance of foods and beverages and compliance with medication. Masking and suppressing aversive sensations can help to improve acceptance of these products, with many successful strategies identified for bitterness. However, there are few studies investigating effective strategies for suppressing metallic sensation. This study aims to assess the effectiveness of mixture suppression to reduce the metallic sensation elicited from ferrous sulfate and examine whether individual differences in metallic sensation are associated with the effectiveness of suppression strategies. To achieve this, participants (n = 121) reported the intensity of suprathreshold concentrations of ferrous sulfate alone and in binary mixtures with three tastants, specifically, sucrose, citric acid, and sodium chloride. The results revealed that metallic sensation ratings were significantly lower for every binary mixture tested compared to ferrous sulfate presented in isolation. For 0.3 mM ferrous sulfate, sucrose was identified to be the most effective compound in suppressing metallic sensation, followed by citric acid and sodium chloride. For the 1.0 mM ferrous sulfate solutions, all tastants were equally effective at suppressing metallic sensation. In addition, there is a significant interaction between the perceived metallic intensity and the effectiveness of each strategy. These findings suggest that sucrose, citric acid, and sodium chloride have the potential to be effective in suppressing metallic sensation.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Verenice Ascencio Gutierrez, Laura E Martin, Aracely Simental-Ramos, Kimberly F James, Kathryn F Medler, Lindsey A Schier, Ann-Marie Torregrossa
The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCβ3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCβ3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCβ3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.
外周味觉系统比以前想象的要复杂得多。新型味觉信号蛋白 TRPM4 和 PLCβ3 似乎在正常味觉反应中作为 II 型味觉细胞信号传导的一部分或作为广泛反应味觉细胞的一部分发挥作用,这种味觉细胞可对某些或所有类别的味素做出反应。这项研究开始厘清第二类味觉细胞(TRPM5、TRPM4、IP3R3)或广泛反应性味觉细胞(PLCβ3、TRPM4)中的细胞内成分在短暂进入味觉测试中驱动对各种糖和其他甜味剂的行为反应中的作用。我们发现,与 WT 相比,TRPM4、TRPM5、TRPM4/5 和 IP3R3 基因敲除(KO)小鼠对所有刺激的反应都很迟钝或消失。不过,IP3R3 KO 小鼠在广泛接触葡萄糖和果糖后,对这两种糖的舔舐次数确实多于对这两种糖的舔舐次数。PLCβ3 KO 小鼠除了对葡萄糖表现出正常的浓度依赖性反应外,对所有刺激基本没有反应。研究结果表明,与 II 型味觉细胞和广泛反应型味觉细胞相关的关键细胞内信号蛋白对于除葡萄糖以外的各种甜味和碳水化合物刺激的味觉驱动反应是相互需要的。这证实并扩展了之前的一项发现,即 II 型和 BR 细胞都是舔舐蔗糖的味觉驱动所必需的。葡萄糖似乎参与了独特的细胞内味觉信号转导机制,这一机制仍有待全面阐明。
{"title":"TRPM4 and PLCβ3 contribute to normal behavioral responses to an array of sweeteners and carbohydrates but PLCβ3 is not needed for taste-driven licking for glucose.","authors":"Verenice Ascencio Gutierrez, Laura E Martin, Aracely Simental-Ramos, Kimberly F James, Kathryn F Medler, Lindsey A Schier, Ann-Marie Torregrossa","doi":"10.1093/chemse/bjae001","DOIUrl":"10.1093/chemse/bjae001","url":null,"abstract":"<p><p>The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCβ3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCβ3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCβ3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-reported measures emerge as potential indicators for early detection of dementia and mortality. We investigated the predictive value of different self-reported measures, including subjective cognitive decline (SCD), subjective olfactory impairment (SOI), subjective taste impairment (STI), and self-reported poor health (SPH), in order to determine the risk of progressing to Alzheimer's disease (AD) dementia, Parkinson's disease (PD) dementia, or any-other-cause dementia. A total of 6,028 cognitively unimpaired individuals from the 8th wave of the English Longitudinal Study of Ageing (ELSA) were included as the baseline sample and 5,297 individuals from the 9th wave were included as 2-year follow-up sample. Self-rated measures were assessed using questions from the ELSA structured interview. Three logistic regression models were fitted to predict different the dementia outcomes. SCD based on memory complaints (OR = 11.145; P < 0.001), and older age (OR = 1.108, P < 0.001) significantly predicted the progression to AD dementia at follow-up. SOI (OR = 7.440; P < 0.001) and older age (OR = 1.065, P = 0.035) significantly predicted the progression to PD dementia at follow-up. Furthermore, SCD based on memory complaints (OR = 4.448; P < 0.001) jointly with complaints in other (non-memory) mental abilities (OR = 6.662; P < 0.001), and older age (OR = 1.147, P < 0.001) significantly predicted the progression to dementia of any other cause. Different types of complaints are specifically associated with different dementia outcomes. Our study demonstrates that self-reported measures are a useful and accessible tool when screening for individuals at risk of dementia in the general population.
{"title":"Subjective cognitive and olfactory impairments predict different prospective dementia outcomes.","authors":"Nira Cedres, Jonas K Olofsson","doi":"10.1093/chemse/bjae033","DOIUrl":"10.1093/chemse/bjae033","url":null,"abstract":"<p><p>Self-reported measures emerge as potential indicators for early detection of dementia and mortality. We investigated the predictive value of different self-reported measures, including subjective cognitive decline (SCD), subjective olfactory impairment (SOI), subjective taste impairment (STI), and self-reported poor health (SPH), in order to determine the risk of progressing to Alzheimer's disease (AD) dementia, Parkinson's disease (PD) dementia, or any-other-cause dementia. A total of 6,028 cognitively unimpaired individuals from the 8th wave of the English Longitudinal Study of Ageing (ELSA) were included as the baseline sample and 5,297 individuals from the 9th wave were included as 2-year follow-up sample. Self-rated measures were assessed using questions from the ELSA structured interview. Three logistic regression models were fitted to predict different the dementia outcomes. SCD based on memory complaints (OR = 11.145; P < 0.001), and older age (OR = 1.108, P < 0.001) significantly predicted the progression to AD dementia at follow-up. SOI (OR = 7.440; P < 0.001) and older age (OR = 1.065, P = 0.035) significantly predicted the progression to PD dementia at follow-up. Furthermore, SCD based on memory complaints (OR = 4.448; P < 0.001) jointly with complaints in other (non-memory) mental abilities (OR = 6.662; P < 0.001), and older age (OR = 1.147, P < 0.001) significantly predicted the progression to dementia of any other cause. Different types of complaints are specifically associated with different dementia outcomes. Our study demonstrates that self-reported measures are a useful and accessible tool when screening for individuals at risk of dementia in the general population.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experience plays a pivotal role in determining our food preferences. Consuming food generates odor-taste associations that shape our perceptual judgements of chemosensory stimuli, such as their intensity, familiarity, and pleasantness. The process of making consummatory choices relies on a network of brain regions to integrate and process chemosensory information. The mediodorsal thalamus is a higher-order thalamic nucleus involved in many experience-dependent chemosensory behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Recent research has shown that neurons in the mediodorsal thalamus represent the sensory and affective properties of experienced odors, tastes, and odor-taste mixtures. However, its role in guiding consummatory choices remains unclear. To investigate the influence of the mediodorsal thalamus in the consummatory choice for experienced odors, tastes, and odor-taste mixtures, we pharmacologically inactivated the mediodorsal thalamus during 2-bottle brief-access tasks. We found that inactivation altered the preference for specific odor-taste mixtures, significantly reduced consumption of the preferred taste and increased within-trial sampling of both chemosensory stimulus options. Our results show that the mediodorsal thalamus plays a crucial role in consummatory decisions related to chemosensory preference and attention.
{"title":"The role of the mediodorsal thalamus in chemosensory preference and consummatory behavior in rats.","authors":"Kelly E Gartner, Chad L Samuelsen","doi":"10.1093/chemse/bjae027","DOIUrl":"10.1093/chemse/bjae027","url":null,"abstract":"<p><p>Experience plays a pivotal role in determining our food preferences. Consuming food generates odor-taste associations that shape our perceptual judgements of chemosensory stimuli, such as their intensity, familiarity, and pleasantness. The process of making consummatory choices relies on a network of brain regions to integrate and process chemosensory information. The mediodorsal thalamus is a higher-order thalamic nucleus involved in many experience-dependent chemosensory behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Recent research has shown that neurons in the mediodorsal thalamus represent the sensory and affective properties of experienced odors, tastes, and odor-taste mixtures. However, its role in guiding consummatory choices remains unclear. To investigate the influence of the mediodorsal thalamus in the consummatory choice for experienced odors, tastes, and odor-taste mixtures, we pharmacologically inactivated the mediodorsal thalamus during 2-bottle brief-access tasks. We found that inactivation altered the preference for specific odor-taste mixtures, significantly reduced consumption of the preferred taste and increased within-trial sampling of both chemosensory stimulus options. Our results show that the mediodorsal thalamus plays a crucial role in consummatory decisions related to chemosensory preference and attention.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}