Many volatile organic compounds (VOCs) are used to produce various commercial products with aromas mimicking natural products. The VOCs responsible for aromas have been identified from many natural products. The current major strategy is to analyze chemical compositions and aroma qualities of individual VOCs using gas chromatography/mass spectrometry (GC/MS) and GC-olfactometry. However, such analyses cannot determine whether candidate VOCs contribute to the characteristic aroma in mixtures of many VOCs. In this study, we developed a GC/MS-based VOC collection/omission system that can modify the VOC compositions of samples easily and rapidly. The system is composed of GC/MS with a switching unit that can change gas flow routes between MS and a VOC collection device. We first applied this system to prepare gas samples for omission tests, and the aroma qualities of VOC mixtures with and without some VOCs were evaluated by panelists. If aroma qualities were different between the 2 samples, the omitted VOCs were likely key odorants. By collecting VOCs in a gas bag attached to the collection device and transferring some VOCs to MS, specific VOCs could be omitted easily from the VOC mixture. The system could prepare omission samples without chemical identification, preparation of each VOC, and laborious techniques for mixing VOCs, thus overcoming the limitations of previous methods of sample preparation. Finally, the system was used to prepare artificial aromas by replacing VOC compositions between different samples for screening of key odorants. In conclusion, the system developed here can improve aroma research by identifying key odorants from natural products.
Terrestrial mammals identify conspecifics by body odor. Dogs can also identify humans by body odor, and in some instances, humans can identify other humans by body odor as well. Despite the potential for a powerful biometric tool, smell has not been systematically used for this purpose. A question arising in the application of smell to biometrics is which bodily odor source should we measure. Breath is an obvious candidate, but the associated humidity can challenge many sensing devices. The armpit is also a candidate source, but it is often doused in cosmetics. Here, we test the hypothesis that the ear may provide an effective source for odor-based biometrics. The inside of the ear has relatively constant humidity, cosmetics are not typically applied inside the ear, and critically, ears contain cerumen, a potent source of volatiles. We used an electronic nose to identify 12 individuals within and across days, using samples from the armpit, lower back, and ear. In an identification setting where chance was 8.33% (1 of 12), we found that we could identify a person by the smell of their ear within a day at up to ~87% accuracy (~10 of 12, binomial P < 10-5), and across days at up to ~22% accuracy (~3 of 12, binomial P < 0.012). We conclude that humans can indeed be identified from the smell of their ear, but the results did not imply a consistent advantage over other bodily odor sources.
Mammalian taste buds are highly regenerative and can restore themselves after normal wear and tear of the lingual epithelium or following physical and chemical insults, including burns, chemotherapy, and nerve injury. This is due to the continual proliferation, differentiation, and maturation of taste progenitor cells, which then must reconnect with peripheral gustatory neurons to relay taste signals to the brain. The turnover and re-establishment of peripheral taste synapses are vital to maintain this complex sensory system. Over the past several decades, the signal transduction and neurotransmitter release mechanisms within taste cells have been well delineated. However, the complex dynamics between synaptic partners in the tongue (taste cell and gustatory neuron) are only partially understood. In this review, we highlight recent findings that have improved our understanding of the mechanisms governing connectivity and signaling within the taste bud and the still-unresolved questions regarding the complex interactions between taste cells and gustatory neurons.
Taste receptor cells are morphologically classified as types II and III. Type II cells form a unique type of synapses referred to as channel synapses where calcium homeostasis modulator 1 (CALHM1) together with CALHM3 forms voltage-gated channels that release the neurotransmitter, adenosine triphosphate (ATP). To validate the proposed structural model of channel synapses, the ultrastructural localization of CALHM1 in type II cells of both fungiform and circumvallate taste buds was examined. A monoclonal antibody against CALHM1 was developed and its localization was evaluated via immunofluorescence and immunoelectron microscopy using the immunogold-silver labeling technique. CALHM1 was detected as puncta using immunofluorescence and along the presynaptic membrane of channel synapses facing atypical mitochondria, which provide ATP, by immunoelectron microscopy. In addition, it was detected along the plasma membrane lined by subsurface cisternae at sites apposed to afferent nerve fibers. Our results support the validity of a previously proposed structural model for channel synapses and provide insights into the function of subsurface cisternae whose function in taste receptor cells is unknown. We also examined the localization of CALHM1 in hybrid synapses of type III cells, which are conventional chemical synapses accompanied by mitochondria similar to atypical mitochondria of channel synapses. CALHM1 was not detected in the six hybrid synapses examined using immunoelectron microscopy. We further performed double immunolabeling for CALHM1 and Bassoon, which is detected as puncta corresponding to conventional vesicular synapses in type III cells. Our observations suggest that at least some, and probably most, hybrid synapses are not accompanied by CALHM1.
Sweeteners are used in the food industry to provide sweetness similar to sugar and to decrease the caloric intake and risks associated with obesity. However, some sweeteners are characterized by bitter, metallic and other off-tastes. Sensory and cellular studies have demonstrated synergies between sweetener blends, which are responsible for enhancing sweetness. This study aimed to identify new sweetener blends that are able to enhance sweetness intensity without causing bitter off-taste using in vitro functional expression of taste receptors. The dose-response of the sweet taste receptor (TAS1R2/TAS1R3) was determined for sucrose and 9 sweeteners and was consistent with their sweetness potency. Stimulation of TAS1R2/TAS1R3 by 6 binary sweetener blends confirmed 3 known synergies determined by sensory analysis, including sucralose/acesulfame-K, rebaudioside A/erythritol and rebaudioside A/thaumatin, and revealed 2 new synergies, known as, neotame/D-allulose and mogroside V/thaumatin. No synergy was observed for the rebaudioside M/mogroside V blend, probably due to their common binding sites on the sweet taste receptor. The ability of the 9 selected sweeteners to activate the 25 human bitter taste receptors (TAS2Rs) was tested. The cellular-based assay demonstrated that sucralose, acesulfame-K, rebaudioside A, mogroside V and D-allulose activated at least 2 TAS2Rs. Sucralose, acesulfame-K and rebaudioside A exhibited lower EC50 values for TAS1R2/TAS1R3 than for TAS2Rs, which may explain their absence of bitter off-taste at low concentrations, unlike mogroside V and D-allulose. Our data provide a receptor-based understanding of the complex synergies among sweetener blends and an effective approach for testing new sweeteners while avoiding the activation of TAS2Rs.
In this study, the transfer of odorants, namely vanilla, and garlic, into the amniotic fluid (AF) during the second trimester was investigated by examination of collected AF samples through healthy adults. Eleven AF samples were collected from pregnant women (aged 32.9 ± 4.9 yr, 16-25 wk of gestation) undergoing diagnostic amniocentesis after eating garlic oil or vanilla powder in high-fat yogurt. The control group did not receive food before amniocentesis. Two vanilla, 3 garlic, and 6 control samples were collected through amniocentesis 60-120 min after ingestion. Samples were collected at -80 °C and carefully defrosted over 12 h at the same time point. Sixteen healthy volunteers (8 males, aged 26.5 ± 5.0 yr) were asked to judge AF samples with potential garlic or vanilla odors from controls in a 2-alternative forced choice (2AFC) paradigm. Judges were able to identify vanilla in the AF samples with an estimated probability of 50%, resulting in a significant P-value of < 0.001. In contrast, the identification of garlic was unsuccessful with a P-value of 0.86, and only 2 judges were able to identify both vanilla and garlic. According to the results of this study, the vanilla odor probably passes into the amniotic fluid.
Clinical assessment of an individual's sense of smell has gained prominence, but its resource-intensive nature necessitates the exploration of self-administered methods. In this study, a cohort of 68 patients with olfactory loss and 55 controls were assessed using a recently introduced olfactory test. This test involves sorting 2 odorants (eugenol and phenylethyl alcohol) in 5 dilutions according to odor intensity, with an average application time of 3.5 min. The sorting task score, calculated as the mean of Kendall's Tau between the assigned and true dilution orders and normalized to [0,1], identified a cutoff for anosmia at a score ≤ 0.7. This cutoff, which marks the 90th percentile of scores obtained with randomly ordered dilutions, had a balanced accuracy of 89% (78% to 97%) for detecting anosmia, comparable to traditional odor threshold assessments. Retest evaluations suggested a score difference of ±0.15 as a cutoff for clinically significant changes in olfactory function. In conclusion, the olfactory sorting test represents a simple, self-administered approach to the detection of anosmia or preserved olfactory function. With balanced accuracy similar to existing brief olfactory tests, this method offers a practical and user-friendly alternative for screening anosmia, addressing the need for resource-efficient assessments in clinical settings.