首页 > 最新文献

Cellular Polymers最新文献

英文 中文
A sound-absorbing and heat-insulating collagen fiber composite material 一种吸音隔热的胶原纤维复合材料
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-09-27 DOI: 10.1177/02624893221130154
Jiaxing Zhang Hui Chen, Z. Shan
Using methacrylic acid (MAA) and methyl methacrylate (MMA) as core monomers and polystyrene as the shell layer, polymer hollow microspheres (PHM) with good stability were prepared by using an alkali osmotic swelling method followed by spray drying. The average size of the PHM was approximately 875 nm. As a filling cross-linking agent, the PHM were added to a skin collagen material to disperse and fix, and a “polymer hollow microsphere composite collagen fiber” (PHCC) material was obtained. The results show that the PHM improve the mechanical strength, thermal stability and water resistance of the skin collagen material. The PHCC material has a low thermal conductivity (0.035 W/(K·m)) and excellent sound insulation performance and retains the soft and delicate touch of leather, which has application value in high-grade decorative materials and functional leather. This provides a new approach for developing flexible sound-absorbing thermal insulation materials.
以甲基丙烯酸(MAA)和甲基丙烯酸甲酯(MMA)为核心单体,聚苯乙烯为壳层,采用碱渗透溶胀法和喷雾干燥法制备了稳定性良好的聚合物中空微球(PHM)。PHM的平均尺寸约为875nm。将PHM作为填充交联剂加入皮肤胶原材料中进行分散固定,得到“聚合物中空微球复合胶原纤维”(PHCC)材料。结果表明,PHM提高了皮肤胶原材料的机械强度、热稳定性和耐水性。PHCC材料具有较低的导热系数(0.035W/(K·m))和优异的隔音性能,并保留了皮革柔软细腻的触感,在高档装饰材料和功能皮革中具有应用价值。这为开发柔性吸声隔热材料提供了一种新的途径。
{"title":"A sound-absorbing and heat-insulating collagen fiber composite material","authors":"Jiaxing Zhang Hui Chen, Z. Shan","doi":"10.1177/02624893221130154","DOIUrl":"https://doi.org/10.1177/02624893221130154","url":null,"abstract":"Using methacrylic acid (MAA) and methyl methacrylate (MMA) as core monomers and polystyrene as the shell layer, polymer hollow microspheres (PHM) with good stability were prepared by using an alkali osmotic swelling method followed by spray drying. The average size of the PHM was approximately 875 nm. As a filling cross-linking agent, the PHM were added to a skin collagen material to disperse and fix, and a “polymer hollow microsphere composite collagen fiber” (PHCC) material was obtained. The results show that the PHM improve the mechanical strength, thermal stability and water resistance of the skin collagen material. The PHCC material has a low thermal conductivity (0.035 W/(K·m)) and excellent sound insulation performance and retains the soft and delicate touch of leather, which has application value in high-grade decorative materials and functional leather. This provides a new approach for developing flexible sound-absorbing thermal insulation materials.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42747691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressive Properties of Poly (Dimethylsiloxane)–Hollow Glass Microballoons Syntactic Foams 聚二甲基硅氧烷-中空玻璃微球复合泡沫的压缩性能
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-08-29 DOI: 10.1177/02624893221123391
Alok K Upadhyay, A. Ullas
Polymer syntactic foams are lightweight polymer composites that are prepared by introducing hollow microspheres in a resin. The main endeavour is to obtain a significant reduction in the weight of the composite along with energy absorption. The present investigation aims to prepare poly (dimethylsiloxane) (PDMS)-hollow glass microballoons (HGM) (40–60% v/v) syntactic foams. Not only did HGM reduce the density of the syntactic foams but also act as a reinforcing phase and increase the compressive properties of PDMS. A ∼25% reduction in density was obtained in syntactic foam when compared to the neat elastomer. Similarly, an improvement of ∼118% in compressive strength was attained at 40% loading of HGM in PDMS. Specific compressive strength and toughness values also registered improvements of the order of ∼191 and ∼240% respectively which highlight the potential of PDMS syntactic foams in varied applications. Graphical Abstract
聚合物合成泡沫是通过在树脂中引入空心微球制备的轻质聚合物复合材料。主要的努力是使复合材料的重量和能量吸收显著减少。本研究旨在制备聚二甲基硅氧烷(PDMS)-中空玻璃微球(HGM) (40-60% v/v)复合泡沫。HGM不仅可以降低复合泡沫的密度,还可以作为增强相,提高PDMS的抗压性能。与整齐弹性体相比,合成泡沫的密度降低了25%。同样,在PDMS中HGM加载40%时,抗压强度提高了~ 118%。比抗压强度和韧性值也分别提高了~ 191和~ 240%,这突出了PDMS复合泡沫在各种应用中的潜力。图形抽象
{"title":"Compressive Properties of Poly (Dimethylsiloxane)–Hollow Glass Microballoons Syntactic Foams","authors":"Alok K Upadhyay, A. Ullas","doi":"10.1177/02624893221123391","DOIUrl":"https://doi.org/10.1177/02624893221123391","url":null,"abstract":"Polymer syntactic foams are lightweight polymer composites that are prepared by introducing hollow microspheres in a resin. The main endeavour is to obtain a significant reduction in the weight of the composite along with energy absorption. The present investigation aims to prepare poly (dimethylsiloxane) (PDMS)-hollow glass microballoons (HGM) (40–60% v/v) syntactic foams. Not only did HGM reduce the density of the syntactic foams but also act as a reinforcing phase and increase the compressive properties of PDMS. A ∼25% reduction in density was obtained in syntactic foam when compared to the neat elastomer. Similarly, an improvement of ∼118% in compressive strength was attained at 40% loading of HGM in PDMS. Specific compressive strength and toughness values also registered improvements of the order of ∼191 and ∼240% respectively which highlight the potential of PDMS syntactic foams in varied applications. Graphical Abstract","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43900007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Porous synthetic hydrogel carrying basic fibroblast growth factor with controllable and rapid degradation rate to promote wound healing 多孔合成水凝胶携带碱性成纤维细胞生长因子,降解速度可控、快速,促进伤口愈合
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-08-26 DOI: 10.1177/02624893221120535
Qian Wu, Huijie Gu, Haiyan Cui, Shu Zhou
Porous hydrogel dressings show breathability and possibility to carry and release basic fibroblast growth factor (bFGF) to promote wound healing. However, the difficult replacement may lead to the secondary damage. Thus, there is an urgent need to develop a method platform to control the degradation rate of hydrogel, so as to realize the on-demand replacement. The present study fabricated a porous hydrogel from co-polymized N,N′-bis(acryloyl) cystamine (BAC), allyl polyethylene glycol 500 (APEG500) and acrylic acid (AA) with the presence of polycaprolactone (PCL). BAC contains disulfide bond, which crosslinked the hydrogel. The pore size of the porous hydrogel was 400–600 μm. Higher content of BAC indicated higher crosslinking density, which reduced swelling ratio of hydrogel, while promoted hydrogel storage modulus. At the same time, the presence of PCL reduced swelling ratio of hydrogel, while promoted hydrogel mechanical properties, endowing hydrogel with tough feature. Porous hydrogels that crosslinked by disulfide bonds immersed in glutathione solution were found to degrade spontaneously and quickly due to the response to glutathione. Both crosslinking density and PCL content affected the degradation rate. The porous hydrogel carrying bFGF was applied to wound, promoting angiogenesis, thus accelerating wound healing within 12 d. Due to the spontaneous and rapid degradation of optimized porous hydrogel on wound within 3 days, there was no operation of removing dressing during treatment, avoiding damage during dressing replacement.
多孔水凝胶敷料显示出透气性和携带和释放碱性成纤维细胞生长因子(bFGF)以促进伤口愈合的可能性。然而,更换困难可能会导致二次损坏。因此,迫切需要开发一种控制水凝胶降解速率的方法平台,以实现按需更换。本研究以N,N′-双(丙烯酰基)胱胺(BAC)、烯丙基聚乙二醇500(APEG500)和丙烯酸(AA)为原料,在聚己内酯(PCL)的存在下制备了多孔水凝胶。BAC含有使水凝胶交联的二硫键。多孔水凝胶的孔径为400–600μm。BAC含量越高,交联密度越高,降低了水凝胶的溶胀率,同时提高了水凝胶的储能模量。同时,PCL的存在降低了水凝胶的溶胀率,同时提高了水凝胶的力学性能,赋予水凝胶坚韧的特性。通过浸入谷胱甘肽溶液中的二硫键交联的多孔水凝胶被发现由于对谷胱甘肽的反应而自发快速降解。交联密度和PCL含量均影响降解速率。将携带bFGF的多孔水凝胶应用于伤口,促进血管生成,从而在12天内加速伤口愈合。由于优化的多孔水凝胶在3天内在伤口上自发快速降解,因此在治疗过程中没有移除敷料的操作,避免了敷料更换过程中的损伤。
{"title":"Porous synthetic hydrogel carrying basic fibroblast growth factor with controllable and rapid degradation rate to promote wound healing","authors":"Qian Wu, Huijie Gu, Haiyan Cui, Shu Zhou","doi":"10.1177/02624893221120535","DOIUrl":"https://doi.org/10.1177/02624893221120535","url":null,"abstract":"Porous hydrogel dressings show breathability and possibility to carry and release basic fibroblast growth factor (bFGF) to promote wound healing. However, the difficult replacement may lead to the secondary damage. Thus, there is an urgent need to develop a method platform to control the degradation rate of hydrogel, so as to realize the on-demand replacement. The present study fabricated a porous hydrogel from co-polymized N,N′-bis(acryloyl) cystamine (BAC), allyl polyethylene glycol 500 (APEG500) and acrylic acid (AA) with the presence of polycaprolactone (PCL). BAC contains disulfide bond, which crosslinked the hydrogel. The pore size of the porous hydrogel was 400–600 μm. Higher content of BAC indicated higher crosslinking density, which reduced swelling ratio of hydrogel, while promoted hydrogel storage modulus. At the same time, the presence of PCL reduced swelling ratio of hydrogel, while promoted hydrogel mechanical properties, endowing hydrogel with tough feature. Porous hydrogels that crosslinked by disulfide bonds immersed in glutathione solution were found to degrade spontaneously and quickly due to the response to glutathione. Both crosslinking density and PCL content affected the degradation rate. The porous hydrogel carrying bFGF was applied to wound, promoting angiogenesis, thus accelerating wound healing within 12 d. Due to the spontaneous and rapid degradation of optimized porous hydrogel on wound within 3 days, there was no operation of removing dressing during treatment, avoiding damage during dressing replacement.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49356022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigid polyurethane foam composites based on iron tailing: Thermal stability, flame retardancy and fire toxicity 基于铁尾矿的硬质聚氨酯泡沫复合材料:热稳定性、阻燃性和火毒性
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-05-26 DOI: 10.1177/02624893221105317
Yadong Yang, Hai-jian Shen, Yuzhou Luo, Renhui Zhang, Junjie Sun, Xiuyu Liu, Zhifang Zong, Gang Tang
In order to explore the potential utilization value of iron tailings, the typical solid waste-iron tailings was introduced into rigid polyurethane foam (RPUF) as a flame retardant filler in this paper. The flame retardant performance, combustion performance, gas-phase products and char residue’s related properties of RPUF/ITS composites were systematically investigated by limiting oxygen index, thermogravimetric (TG), cone calorimetry (CCT) and thermogravimetric-infrared spectrometry (TG-FTIR). The results showed that ITS improved the overall thermal stability of the composites, and the T-5%, T-50%, Tmax1, Tmax2 and char residue rates were all higher than those of the pure samples. The CCT indicated that ITS had a certain effect on smoke suppression and heat release reduction. The peak heat release rate of RPUF-6 was reduced by 22.75% compared with that of the pure sample, and the total smoke release of RPUF-2 was reduced by 25.36%. Smoke factor (SF), fire growth rate index and fire performance index indicated that ITS reduced the fire risk of RPUF/ITS composites. TG-FTIR showed that ITS inhibited the decomposition of RPUF/ITS composites, and the release intensity of hydrocarbons, CO2, isocyanate compound, CO, aromatic compounds and esters decreased significantly. TG, MCC, scanning electron microscope and Raman implied that ITS promoted the formation of a dense char layer in RPUF and improved the heat resistance of the char layer.
为探索铁尾矿的潜在利用价值,将典型固体废铁尾矿作为阻燃填料引入硬质聚氨酯泡沫塑料(RPUF)。采用极限氧指数、热重法(TG)、锥量热法(CCT)和热重红外光谱法(TG- ftir)对RPUF/ITS复合材料的阻燃性能、燃烧性能、气相产物及炭渣相关性能进行了系统研究。结果表明,ITS提高了复合材料的整体热稳定性,其T-5%、T-50%、Tmax1、Tmax2和炭渣率均高于纯样品。CCT结果表明ITS具有一定的抑烟降热效果。与纯样品相比,RPUF-6的峰值放热率降低了22.75%,RPUF-2的总放烟率降低了25.36%。烟雾因子(SF)、火灾增长率指数和防火性能指数表明ITS降低了RPUF/ITS复合材料的火灾风险。TG-FTIR结果表明,ITS抑制了RPUF/ITS复合材料的分解,其碳氢化合物、CO2、异氰酸酯类化合物、CO、芳香族化合物和酯类化合物的释放强度显著降低。TG、MCC、扫描电镜和拉曼分析表明ITS促进了RPUF中致密炭层的形成,提高了炭层的耐热性。
{"title":"Rigid polyurethane foam composites based on iron tailing: Thermal stability, flame retardancy and fire toxicity","authors":"Yadong Yang, Hai-jian Shen, Yuzhou Luo, Renhui Zhang, Junjie Sun, Xiuyu Liu, Zhifang Zong, Gang Tang","doi":"10.1177/02624893221105317","DOIUrl":"https://doi.org/10.1177/02624893221105317","url":null,"abstract":"In order to explore the potential utilization value of iron tailings, the typical solid waste-iron tailings was introduced into rigid polyurethane foam (RPUF) as a flame retardant filler in this paper. The flame retardant performance, combustion performance, gas-phase products and char residue’s related properties of RPUF/ITS composites were systematically investigated by limiting oxygen index, thermogravimetric (TG), cone calorimetry (CCT) and thermogravimetric-infrared spectrometry (TG-FTIR). The results showed that ITS improved the overall thermal stability of the composites, and the T-5%, T-50%, Tmax1, Tmax2 and char residue rates were all higher than those of the pure samples. The CCT indicated that ITS had a certain effect on smoke suppression and heat release reduction. The peak heat release rate of RPUF-6 was reduced by 22.75% compared with that of the pure sample, and the total smoke release of RPUF-2 was reduced by 25.36%. Smoke factor (SF), fire growth rate index and fire performance index indicated that ITS reduced the fire risk of RPUF/ITS composites. TG-FTIR showed that ITS inhibited the decomposition of RPUF/ITS composites, and the release intensity of hydrocarbons, CO2, isocyanate compound, CO, aromatic compounds and esters decreased significantly. TG, MCC, scanning electron microscope and Raman implied that ITS promoted the formation of a dense char layer in RPUF and improved the heat resistance of the char layer.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42672779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Phenolic syntactic foams: Low-density composites for structural and thermostructural applications 酚醛合成泡沫:用于结构和热结构应用的低密度复合材料
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-05-16 DOI: 10.1177/02624893221101147
B. John, CP Reghunadhan Nair
Syntactic foams, low density composites consisting of hollow microballoons or microspheres dispersed in a matrix, find application in various fields. The properties of these light weight composites can be easily tuned by suitably selecting the matrix and the hollow microsphere filler and their composition. Among the various matrices employed in syntactic foams, phenolic resins have enticed the researchers owing to their salient features viz. high thermal stability, high char yield, structural integrity etc. This review gives an overview of phenolic syntactic foams with a focus on various phenolic resin based syntactic foams and modified syntactic foams. Finally, applications of phenolic syntactic foams are also covered.
合成泡沫是由分散在基质中的空心微球或微球组成的低密度复合材料,在各个领域都有应用。通过适当选择基质和中空微球填料及其组成,可以很容易地调节这些轻质复合材料的性能。在复合泡沫中使用的各种基质中,酚醛树脂以其热稳定性高、炭产率高、结构完整性等显著特点吸引了研究人员。本文综述了酚醛复合泡沫的概况,重点介绍了各种酚醛树脂基复合泡沫和改性复合泡沫。最后,还介绍了酚醛复合泡沫的应用。
{"title":"Phenolic syntactic foams: Low-density composites for structural and thermostructural applications","authors":"B. John, CP Reghunadhan Nair","doi":"10.1177/02624893221101147","DOIUrl":"https://doi.org/10.1177/02624893221101147","url":null,"abstract":"Syntactic foams, low density composites consisting of hollow microballoons or microspheres dispersed in a matrix, find application in various fields. The properties of these light weight composites can be easily tuned by suitably selecting the matrix and the hollow microsphere filler and their composition. Among the various matrices employed in syntactic foams, phenolic resins have enticed the researchers owing to their salient features viz. high thermal stability, high char yield, structural integrity etc. This review gives an overview of phenolic syntactic foams with a focus on various phenolic resin based syntactic foams and modified syntactic foams. Finally, applications of phenolic syntactic foams are also covered.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45153040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and properties of foams from a blend of vegetable oil based polyhydroxyurethane and epoxy resin 植物油基聚羟基聚氨酯与环氧树脂共混泡沫的合成及性能研究
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-05-13 DOI: 10.1177/02624893221101170
Z. Ahmad, P. Mahanwar
This article aims to highlight the synthesis of foams from a blend of hydroxyurethane of castor oil and epoxy resin. An epoxidized castor oil of 4% oxirane oxygen was first converted to cyclic carbonate of castor oil at 120°C, 1 atm CO2 pressure and then it was reacted with three different aliphatic diamines to yield amine terminated Polyhydroxyurethane (PHU). Foams were prepared in a metal mould from the blend of PHU, epoxy resin, epoxy hardener and polymethylhydrogensiloxane blowing agent which releases hydrogen gas upon reaction with amine. FTIR and 1H NMR of cyclic carbonate of castor oil and PHU of castor oil were done to confirm their chemical structures. Optical microscopy and scanning electron microscopy of foams was done to assess their cellular morphology along with DSC and TGA to evaluate their thermal properties. Both flexible and rigid type of foams were synthesised in this study. Resilience of flexible foams was inspected using a ball rebound test and compression-recovery test while thermal insulation property was checked by measuring thermal conductivity, thermal diffusivity and R-values of rigid foams from heat transfer study using a heat transfer apparatus.
本文旨在重点介绍由蓖麻油的羟基氨基甲酸酯和环氧树脂的混合物合成泡沫。首先在120°C、1个大气压的CO2压力下,将4%环氧乙烷氧的环氧化蓖麻油转化为蓖麻油的环状碳酸酯,然后将其与三种不同的脂肪族二胺反应,得到胺封端的聚羟基氨基甲酸酯(PHU)。在金属模具中由PHU、环氧树脂、环氧硬化剂和聚甲基氢硅氧烷发泡剂的混合物制备泡沫,该发泡剂在与胺反应时释放氢气。对蓖麻油的环状碳酸酯和蓖麻油的PHU进行了红外光谱和核磁共振氢谱分析,确定了它们的化学结构。对泡沫进行了光学显微镜和扫描电子显微镜检查以评估其细胞形态,并对DSC和TGA进行了评估以评估其热性能。本研究合成了柔性和刚性两种类型的泡沫。使用球回弹试验和压缩恢复试验检查柔性泡沫的弹性,同时通过使用传热设备测量传热研究中刚性泡沫的热导率、热扩散率和R值来检查隔热性能。
{"title":"Synthesis and properties of foams from a blend of vegetable oil based polyhydroxyurethane and epoxy resin","authors":"Z. Ahmad, P. Mahanwar","doi":"10.1177/02624893221101170","DOIUrl":"https://doi.org/10.1177/02624893221101170","url":null,"abstract":"This article aims to highlight the synthesis of foams from a blend of hydroxyurethane of castor oil and epoxy resin. An epoxidized castor oil of 4% oxirane oxygen was first converted to cyclic carbonate of castor oil at 120°C, 1 atm CO2 pressure and then it was reacted with three different aliphatic diamines to yield amine terminated Polyhydroxyurethane (PHU). Foams were prepared in a metal mould from the blend of PHU, epoxy resin, epoxy hardener and polymethylhydrogensiloxane blowing agent which releases hydrogen gas upon reaction with amine. FTIR and 1H NMR of cyclic carbonate of castor oil and PHU of castor oil were done to confirm their chemical structures. Optical microscopy and scanning electron microscopy of foams was done to assess their cellular morphology along with DSC and TGA to evaluate their thermal properties. Both flexible and rigid type of foams were synthesised in this study. Resilience of flexible foams was inspected using a ball rebound test and compression-recovery test while thermal insulation property was checked by measuring thermal conductivity, thermal diffusivity and R-values of rigid foams from heat transfer study using a heat transfer apparatus.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45797347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of strain rate and load orientation on cyclic response of anisotropic polyurethane foam 应变速率和载荷方向对各向异性聚氨酯泡沫循环响应的影响
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-04-13 DOI: 10.1177/02624893221084895
Dorra Ben Abdeljelil, S. Chatti, Raja O Ahmed Ben Ali
Anisotropic cellular materials, such as polymeric foams, play an important role in structures subjected to cyclic loadings. The present paper provides an experimental investigation of the mechanical behavior of an anisotropic polyurethane foam subjected to cyclic compressive loadings under two perpendicular orientations: the rising and perpendicular directions. The foam samples are loaded under three different strain rates and various deformations. The experimental results are presented in terms of elasticity modulus, maximal compressive stress, effective energy absorption capacity, and residual strain. It is proved that the investigated polyurethane foam presents a macroscopic mechanical anisotropy caused by microscopic cell elongation in the foaming direction. Moreover, it is demonstrated that the mechanical behavior of the foam is fully influenced by both deformation rates and imposed strains. The experimental stress–strain curves are modelized using an empirical model considering an adjustable modulus of elasticity. The analytical results show a good agreement with the experiments.
各向异性细胞材料,如聚合物泡沫,在受循环载荷的结构中起着重要的作用。本文研究了各向异性聚氨酯泡沫材料在垂直方向和垂直方向下循环压缩载荷作用下的力学行为。泡沫试样在三种不同的应变速率和不同的变形下加载。实验结果包括弹性模量、最大压应力、有效能量吸收能力和残余应变。结果表明,所研究的聚氨酯泡沫在发泡方向上表现出微观细胞伸长引起的宏观力学各向异性。此外,研究表明,泡沫的力学行为完全受变形速率和施加应变的影响。实验应力-应变曲线采用考虑弹性模量可调的经验模型进行建模。分析结果与实验结果吻合较好。
{"title":"Effect of strain rate and load orientation on cyclic response of anisotropic polyurethane foam","authors":"Dorra Ben Abdeljelil, S. Chatti, Raja O Ahmed Ben Ali","doi":"10.1177/02624893221084895","DOIUrl":"https://doi.org/10.1177/02624893221084895","url":null,"abstract":"Anisotropic cellular materials, such as polymeric foams, play an important role in structures subjected to cyclic loadings. The present paper provides an experimental investigation of the mechanical behavior of an anisotropic polyurethane foam subjected to cyclic compressive loadings under two perpendicular orientations: the rising and perpendicular directions. The foam samples are loaded under three different strain rates and various deformations. The experimental results are presented in terms of elasticity modulus, maximal compressive stress, effective energy absorption capacity, and residual strain. It is proved that the investigated polyurethane foam presents a macroscopic mechanical anisotropy caused by microscopic cell elongation in the foaming direction. Moreover, it is demonstrated that the mechanical behavior of the foam is fully influenced by both deformation rates and imposed strains. The experimental stress–strain curves are modelized using an empirical model considering an adjustable modulus of elasticity. The analytical results show a good agreement with the experiments.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44081561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Micro foaming performance of scCO2-aid glutaraldehyde/hexametaphosphate/thermoplastic starch foams modified by alkali treatment and montmorillonite nano-platelets 碱处理和蒙脱土纳米片改性scco2助戊二醛/六偏磷酸酯/热塑性淀粉泡沫的微发泡性能
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-03-07 DOI: 10.1177/02624893211073539
Keng-ben Wang, Ya‐qiong Huang, Xiaoming Cheng, J. Yeh
The micro foaming performance, moisture resistance and dynamic viscosity of scCO2-aid glutaraldehyde/hexametaphosphate/thermoplastic tapioca starch (GA/SHMP/TOS) foams were considerably improved by proper NaOH treatment. The expansion ratio, resilience rate, dynamic viscosity values of these NaOH modified foams improved to a maximum, as the time for NaOH treatment approached a proper value. The dynamic viscosity, expansion ratio and resilience rate of the scCO2-aid GA/SHMP/TOS foams modified using 110 atm scCO2-pressure, the proper alkali treatment time, SHMP loading and varying montmorillonite (MMT) loadings improved further, as their MMT loadings approached a proper value of 2.5 part per hundred parts of tapioca starch (PHTOS). Relatively large dynamic viscosity (7.1x104 Pa·s), extremely large expansion ratio (∼75), cell density (1.1x109 cells/cm3) and/or resilience rate (∼80%) were acquired for the scCO2-aid GA/SHMP/TOS/MMT foam modified using the proper alkali treatment time and MMT loading. Thermal analyses results showed that crystallization onset temperatures and crystallization rates of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and varying MMT loadings improved to a highest value by adding 2.5 PHTOS of MMT nano-platelets. Possible reasons accounting for the considerably improved micro foaming performance of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and MMT loading are proposed in this study.
通过适当的NaOH处理,scCO2辅助戊二醛/六偏磷酸盐/热塑性木薯淀粉(GA/SHMP/TOS)泡沫的微发泡性能、耐水性和动态粘度得到了显著改善。随着NaOH处理时间的接近,这些NaOH改性泡沫的膨胀比、回弹率和动态粘度值都达到了最大值。使用110大气压scCO2压力、适当的碱处理时间、SHMP负载量和不同的蒙脱石(MMT)负载量改性的scCO2助剂GA/SHMP/TOS泡沫的动态粘度、膨胀比和回弹率进一步提高,因为它们的MMT负载量接近每百份木薯淀粉(PHTOS)2.5份的适当值。使用适当的碱处理时间和MMT负载量改性的scCO2助剂GA/SHMP/TOS/MMT泡沫获得了相对较大的动态粘度(7.1x104 Pa·s)、极高的膨胀比(~75)、胞密度(1.1x109个胞/cm3)和/或回弹率(~80%)。热分析结果表明,通过添加2.5PHTOS的MMT纳米片,使用适当的碱处理时间和不同的MMT负载量改性的scCO2助剂GA/SHMP/TOS/MMT泡沫的结晶起始温度和结晶速率提高到最高值。本研究提出了采用适当的碱处理时间和MMT负载量改性的scCO2助剂GA/SHMP/TOS/MMT泡沫微发泡性能显著提高的可能原因。
{"title":"Micro foaming performance of scCO2-aid glutaraldehyde/hexametaphosphate/thermoplastic starch foams modified by alkali treatment and montmorillonite nano-platelets","authors":"Keng-ben Wang, Ya‐qiong Huang, Xiaoming Cheng, J. Yeh","doi":"10.1177/02624893211073539","DOIUrl":"https://doi.org/10.1177/02624893211073539","url":null,"abstract":"The micro foaming performance, moisture resistance and dynamic viscosity of scCO2-aid glutaraldehyde/hexametaphosphate/thermoplastic tapioca starch (GA/SHMP/TOS) foams were considerably improved by proper NaOH treatment. The expansion ratio, resilience rate, dynamic viscosity values of these NaOH modified foams improved to a maximum, as the time for NaOH treatment approached a proper value. The dynamic viscosity, expansion ratio and resilience rate of the scCO2-aid GA/SHMP/TOS foams modified using 110 atm scCO2-pressure, the proper alkali treatment time, SHMP loading and varying montmorillonite (MMT) loadings improved further, as their MMT loadings approached a proper value of 2.5 part per hundred parts of tapioca starch (PHTOS). Relatively large dynamic viscosity (7.1x104 Pa·s), extremely large expansion ratio (∼75), cell density (1.1x109 cells/cm3) and/or resilience rate (∼80%) were acquired for the scCO2-aid GA/SHMP/TOS/MMT foam modified using the proper alkali treatment time and MMT loading. Thermal analyses results showed that crystallization onset temperatures and crystallization rates of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and varying MMT loadings improved to a highest value by adding 2.5 PHTOS of MMT nano-platelets. Possible reasons accounting for the considerably improved micro foaming performance of scCO2-aid GA/SHMP/TOS/MMT foams modified using the proper alkali treatment time and MMT loading are proposed in this study.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46611982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire retardancy, thermal, and physico-mechanical properties of semi-rigid water-blown polyurethane foam from palm oil-based polyol 棕榈油基多元醇制备的半刚性水吹聚氨酯泡沫的阻燃性、热性能和物理机械性能
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2022-02-23 DOI: 10.1177/02624893211061633
M. H. Dzulkifli, M. Yahya, R. A. Majid
This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.
本文介绍了评估硬质棕榈油基聚氨酯(PU)泡沫的实验工作。研究人员对生物复合泡沫进行了表征,以确定其发泡动力学和形态,以及阻燃性、热学和力学响应,随后将其与石化泡沫进行了比较。根据极限氧指数(LOI)和UL-94垂直燃烧试验,棕榈油基泡沫的阻燃性能较差。虽然产生的炭渣较少,但棕榈油基PU泡沫表现出更高的起始降解温度,表明热稳定性得到改善。扫描电子显微镜(SEM)显示,生物基泡沫的细胞尺寸更小,开孔结构的比例更高,这影响了其密度和压缩性能。综上所述,棕榈油基聚氨酯泡沫是一种可行的替代品,可用于低负荷和热环境应用。
{"title":"Fire retardancy, thermal, and physico-mechanical properties of semi-rigid water-blown polyurethane foam from palm oil-based polyol","authors":"M. H. Dzulkifli, M. Yahya, R. A. Majid","doi":"10.1177/02624893211061633","DOIUrl":"https://doi.org/10.1177/02624893211061633","url":null,"abstract":"This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45353715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Development and investigation of the applicability of computed tomography data-based modelling technique for polymeric high-density foams 基于计算机断层扫描数据的聚合物高密度泡沫建模技术的发展和适用性研究
IF 1.6 4区 医学 Q3 Materials Science Pub Date : 2021-12-23 DOI: 10.1177/02624893211061631
Anna Hössinger-Kalteis, M. Reiter, M. Jerabek, Z. Major
As foams have become very important in several areas and since characterizing their properties is a crucial task, a finite element simulation model for high-density closed cell foams based on computed tomography (CT) measurements is developed. The model includes realistic microstructural features like cell size distribution due to the utilization of CT data. Moreover, a ‘skin-core-skin’ microstructure resulting from the manufacturing process (injection moulding) of the foams is also considered in the model. The mechanical behaviour of the foam’s core layer under tension and compression load is characterized based on the microstructural model to develop constitutive material models of the foam. These constitutive models enable further mechanical characterization of the foam with less computational effort. Compression and bending test simulations of injection moulded foams with three different densities are validated with corresponding experimental results. Thus, conclusions can be drawn regarding the reliability, applicability and possible further extensions of the high-density foam model.
由于泡沫在几个领域变得非常重要,并且表征其性能是一项至关重要的任务,因此开发了一个基于计算机断层扫描(CT)测量的高密度闭孔泡沫的有限元模拟模型。由于利用了CT数据,该模型包括真实的微观结构特征,如细胞大小分布。此外,模型中还考虑了泡沫制造过程(注塑)产生的“皮芯皮”微观结构。基于微观结构模型表征了泡沫芯层在拉伸和压缩载荷下的力学行为,以开发泡沫的本构材料模型。这些本构模型能够以较少的计算工作量对泡沫进行进一步的机械表征。用相应的实验结果验证了三种不同密度注塑泡沫的压缩和弯曲试验模拟。因此,可以得出关于高密度泡沫模型的可靠性、适用性和可能的进一步扩展的结论。
{"title":"Development and investigation of the applicability of computed tomography data-based modelling technique for polymeric high-density foams","authors":"Anna Hössinger-Kalteis, M. Reiter, M. Jerabek, Z. Major","doi":"10.1177/02624893211061631","DOIUrl":"https://doi.org/10.1177/02624893211061631","url":null,"abstract":"As foams have become very important in several areas and since characterizing their properties is a crucial task, a finite element simulation model for high-density closed cell foams based on computed tomography (CT) measurements is developed. The model includes realistic microstructural features like cell size distribution due to the utilization of CT data. Moreover, a ‘skin-core-skin’ microstructure resulting from the manufacturing process (injection moulding) of the foams is also considered in the model. The mechanical behaviour of the foam’s core layer under tension and compression load is characterized based on the microstructural model to develop constitutive material models of the foam. These constitutive models enable further mechanical characterization of the foam with less computational effort. Compression and bending test simulations of injection moulded foams with three different densities are validated with corresponding experimental results. Thus, conclusions can be drawn regarding the reliability, applicability and possible further extensions of the high-density foam model.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41430920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1