A greener, safer, and more efficient methodology for the synthesis of (Z)-5-benzylidene-2-thioxothiazolidin-4-ones (3 a-u) and (Z)-5-benzylidenethiazolidine-2,4-diones (4 a-i) has been developed. The deep eutectic solvent (DES) ZnCl2/urea used as a greener solvent as well as a catalyst in this study accelerated the condensation of rhodanine and thiazolidine-2,4-dione with different aldehydes to afford the target scaffolds in excellent yields (88-98 %). The reaction methodology adopted offered significant advantages such as mild reaction conditions, functional group tolerance, quick reaction time, column-free isolation, catalytic recyclability, and applicability to gram-scale production. Moreover, density function theory calculations were carried out to investigate the global reactivity and stability profiles of these compounds. Finally, the green metrics analysis supported the greener nature of the present methodology.
{"title":"Rapid and Environmentally-Friendly Synthesis of Thiazolidinone Analogues in Deep Eutectic Solvent Complemented with Computational Studies.","authors":"Gobind Kumar, Pule Seboletswe, Nontobeko Gcabashe, Sanjeev Dhawan, Neha Manhas, Gaurav Bhargava, Rupesh Kumar, Parvesh Singh","doi":"10.1002/open.202400198","DOIUrl":"https://doi.org/10.1002/open.202400198","url":null,"abstract":"<p><p>A greener, safer, and more efficient methodology for the synthesis of (Z)-5-benzylidene-2-thioxothiazolidin-4-ones (3 a-u) and (Z)-5-benzylidenethiazolidine-2,4-diones (4 a-i) has been developed. The deep eutectic solvent (DES) ZnCl<sub>2</sub>/urea used as a greener solvent as well as a catalyst in this study accelerated the condensation of rhodanine and thiazolidine-2,4-dione with different aldehydes to afford the target scaffolds in excellent yields (88-98 %). The reaction methodology adopted offered significant advantages such as mild reaction conditions, functional group tolerance, quick reaction time, column-free isolation, catalytic recyclability, and applicability to gram-scale production. Moreover, density function theory calculations were carried out to investigate the global reactivity and stability profiles of these compounds. Finally, the green metrics analysis supported the greener nature of the present methodology.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400198"},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zihan Liu, Yiheng Liu, Qixuan Jiang, Haijun Xu, Luo Liu
L-aspartate-alpha-decarboxylase (ADC) catalyzes the decarboxylation of L-aspartate to produce β-alanine, which is the decisive step in the biosynthesis of β-alanine. However, the low catalytic stability and efficiency of ADC limit its industrial applications. In this study, a variant of ADC from Bacillus subtilis were used as a starting point for engineering. After constructing a random mutagenesis library by error-prone PCR, followed by high-throughput screening,four substitutions (S7 N, K63 N, A99T, and K113R) were identified. By screening saturation mutagenesis libraries on these positions and computational analysis, two recombined variants N3(S7 N/K63 N/I88 M/A99E/K113R/I126*) and Y1(S7Y/K63 N/I88 M/A99E/K113R/I126*) with improved performance were obtained. Compared to the wild type, the catalytic efficiency and catalytic stability of the best two variants were enhanced up to 95 %(variant N3) and up to 89 %(variant Y1), respectively. In addition, Y1 exhibited 3.37 times improved half-life and 2-fold improved total turnover number. Hydrophilicity analysis and molecular dynamics (MD) simulation revealed that the increased hydrophilicity and steric hindrance of key amino acid residues would affect the catalytic activity and stability. The improved catalytic performance of the variants could be attributed to their enhanced binding capacity to the substrate within the active pocket and the alleviation of mechanism-based inactivation.
{"title":"Molecular Engineering L-Aspartate-Alpha-Decarboxylase to Enhance Catalytic Stability and Performance.","authors":"Zihan Liu, Yiheng Liu, Qixuan Jiang, Haijun Xu, Luo Liu","doi":"10.1002/open.202400236","DOIUrl":"https://doi.org/10.1002/open.202400236","url":null,"abstract":"<p><p>L-aspartate-alpha-decarboxylase (ADC) catalyzes the decarboxylation of L-aspartate to produce β-alanine, which is the decisive step in the biosynthesis of β-alanine. However, the low catalytic stability and efficiency of ADC limit its industrial applications. In this study, a variant of ADC from Bacillus subtilis were used as a starting point for engineering. After constructing a random mutagenesis library by error-prone PCR, followed by high-throughput screening,four substitutions (S7 N, K63 N, A99T, and K113R) were identified. By screening saturation mutagenesis libraries on these positions and computational analysis, two recombined variants N3(S7 N/K63 N/I88 M/A99E/K113R/I126*) and Y1(S7Y/K63 N/I88 M/A99E/K113R/I126*) with improved performance were obtained. Compared to the wild type, the catalytic efficiency and catalytic stability of the best two variants were enhanced up to 95 %(variant N3) and up to 89 %(variant Y1), respectively. In addition, Y1 exhibited 3.37 times improved half-life and 2-fold improved total turnover number. Hydrophilicity analysis and molecular dynamics (MD) simulation revealed that the increased hydrophilicity and steric hindrance of key amino acid residues would affect the catalytic activity and stability. The improved catalytic performance of the variants could be attributed to their enhanced binding capacity to the substrate within the active pocket and the alleviation of mechanism-based inactivation.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400236"},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ishrat Jahan Disha, Rubel Hasan, Shimul Bhuia, Siddique Akber Ansari, Irfan Aamer Ansari, Muhammad Torequl Islam
Anxiety is a natural response to stress, characterized by feelings of worry, fear, or unease. The current research was conducted to investigate the anxiolytic effect of indirubin (IND) in different behavioral paradigms in Swiss albino mice. To observe the animal's behavioural response to assess anxiolytic activity, different tests were performed, such as the open-field (square cross, grooming, and rearing), swing, dark-light, and hole cross tests. The experimental mice were administered IND (5 and 10 mg/kg, p.o.), where diazepam (DZP) and vehicle were used as positive and negative controls, respectively. In addition, a combination treatment (DZP+IND-10) was provided to the animals to determine the modulatory effect of IND on DZP. Molecular docking approach was also conducted to determine the binding energy of IND with the GABAA receptor (α2 and α3 subunits) and pharmacokinetics were also estimated. The findings revealed that IND dose-dependently significantly (p<0.05) reduced the animal's movement exerting calming behavior like DZP. IND also demonstrated the highest docking score (-7.7 kcal/mol) against the α3 subunit, while DZP showed a lower docking value (-6.4 kcal/mol) than IND. The ADMET analysis revealed that IND has proper drug-likeness and pharmacokinetic characteristics. In conclusion, IND exerted anxiolytic effects through GABAergic Pathways.
{"title":"Anxiolytic Efficacy of Indirubin: In Vivo Approach Along with Receptor Binding Profiling and Molecular Interaction with GABAergic Pathways.","authors":"Ishrat Jahan Disha, Rubel Hasan, Shimul Bhuia, Siddique Akber Ansari, Irfan Aamer Ansari, Muhammad Torequl Islam","doi":"10.1002/open.202400290","DOIUrl":"https://doi.org/10.1002/open.202400290","url":null,"abstract":"<p><p>Anxiety is a natural response to stress, characterized by feelings of worry, fear, or unease. The current research was conducted to investigate the anxiolytic effect of indirubin (IND) in different behavioral paradigms in Swiss albino mice. To observe the animal's behavioural response to assess anxiolytic activity, different tests were performed, such as the open-field (square cross, grooming, and rearing), swing, dark-light, and hole cross tests. The experimental mice were administered IND (5 and 10 mg/kg, p.o.), where diazepam (DZP) and vehicle were used as positive and negative controls, respectively. In addition, a combination treatment (DZP+IND-10) was provided to the animals to determine the modulatory effect of IND on DZP. Molecular docking approach was also conducted to determine the binding energy of IND with the GABA<sub>A</sub> receptor (α2 and α3 subunits) and pharmacokinetics were also estimated. The findings revealed that IND dose-dependently significantly (p<0.05) reduced the animal's movement exerting calming behavior like DZP. IND also demonstrated the highest docking score (-7.7 kcal/mol) against the α3 subunit, while DZP showed a lower docking value (-6.4 kcal/mol) than IND. The ADMET analysis revealed that IND has proper drug-likeness and pharmacokinetic characteristics. In conclusion, IND exerted anxiolytic effects through GABAergic Pathways.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400290"},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We synthesized the silver-decorated copper microsphere via the hydrothermal method followed by photoreduction of silver ions. Sub 100 nm Ag nanoparticles anchored on the surface of Cu microspheres enhance the electrochemical performance and the selectivity of the CO2 reduction into CH4. Incorporating Ag nanoparticles onto Cu lowers the charge transfer resistance, enhancing the catalyst's conductivity and active site and increasing the rate of CO2 reduction. The faradaic efficiency of silver nanoparticles decorated copper microsphere for methane was 70.94 %, almost twice that of a copper microsphere (44 %). The electrochemical performance showed higher catalytic properties, stability, and faradaic efficiency of silver-decorated copper microspheres.
我们通过水热法合成了银装饰的铜微球,然后用银离子进行光氧化。锚定在铜微球表面的 100 nm 以下的银纳米颗粒提高了电化学性能和将 CO2 还原成 CH4 的选择性。将纳米银颗粒掺入铜中可降低电荷转移电阻,增强催化剂的导电性和活性位点,提高二氧化碳的还原速率。银纳米粒子装饰的铜微球对甲烷的还原效率为 70.94%,几乎是铜微球(44%)的两倍。电化学性能表明,银装饰铜微球具有更高的催化性能、稳定性和法拉第效率。
{"title":"Selective Electrochemical Conversion of CO<sub>2</sub> into Methane on Ag-Decorated Copper Microsphere.","authors":"Rabin Dahal, Rohit Srivastava, Bishnu Prasad Bastakoti","doi":"10.1002/open.202400173","DOIUrl":"https://doi.org/10.1002/open.202400173","url":null,"abstract":"<p><p>We synthesized the silver-decorated copper microsphere via the hydrothermal method followed by photoreduction of silver ions. Sub 100 nm Ag nanoparticles anchored on the surface of Cu microspheres enhance the electrochemical performance and the selectivity of the CO<sub>2</sub> reduction into CH<sub>4</sub>. Incorporating Ag nanoparticles onto Cu lowers the charge transfer resistance, enhancing the catalyst's conductivity and active site and increasing the rate of CO<sub>2</sub> reduction. The faradaic efficiency of silver nanoparticles decorated copper microsphere for methane was 70.94 %, almost twice that of a copper microsphere (44 %). The electrochemical performance showed higher catalytic properties, stability, and faradaic efficiency of silver-decorated copper microspheres.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400173"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to optimize ammonium removal from NH4Cl-enriched groundwater at different concentrations using an electrodialysis (ED) process. A customized design (CD) based on response surface methodology (RSM) was employed to develop predictive models and improve the performance of the demineralization system. Ion removal efficiency was evaluated in 32 unique experimental configurations, taking into account variations in three input parameters: voltage (A), initial ammonium concentration (B) and demineralization rate (C). These parameters were selected for their impact on two response variables: electric conductivity (Y1) and final ammonium concentration (Y2). An in-depth analysis of variance (ANOVA) was performed to examine the variables and their interactions. The results indicated that Y1 was significantly influenced by C, while Y2 was influenced by B. In addition, the predictive models demonstrated strong correlations, with a coefficient of determination (R2) greater than 0.88 for both response variables. The RSM approach applied to optimize the parameters studied identified the following optimum values: 14.17 V for A, 1 mg/L for B and 70 % for C, giving Y1 of 215.377 μS/cm and Y2 of 0.279 mg/L.
{"title":"Optimization of Electrodialysis for Ammonium Removal From NH<sub>4</sub>Cl-Doped Groundwater Samples Using the Response Surface Method.","authors":"Mohamed Hazra, Fatima Zahra Addar, Mustapha Tahaikt, Azzedine Elmidaoui, Mohamed Taky, Sakina Belhamidi","doi":"10.1002/open.202400163","DOIUrl":"https://doi.org/10.1002/open.202400163","url":null,"abstract":"<p><p>This study aims to optimize ammonium removal from NH<sub>4</sub>Cl-enriched groundwater at different concentrations using an electrodialysis (ED) process. A customized design (CD) based on response surface methodology (RSM) was employed to develop predictive models and improve the performance of the demineralization system. Ion removal efficiency was evaluated in 32 unique experimental configurations, taking into account variations in three input parameters: voltage (A), initial ammonium concentration (B) and demineralization rate (C). These parameters were selected for their impact on two response variables: electric conductivity (Y<sub>1</sub>) and final ammonium concentration (Y<sub>2</sub>). An in-depth analysis of variance (ANOVA) was performed to examine the variables and their interactions. The results indicated that Y<sub>1</sub> was significantly influenced by C, while Y<sub>2</sub> was influenced by B. In addition, the predictive models demonstrated strong correlations, with a coefficient of determination (R<sup>2</sup>) greater than 0.88 for both response variables. The RSM approach applied to optimize the parameters studied identified the following optimum values: 14.17 V for A, 1 mg/L for B and 70 % for C, giving Y<sub>1</sub> of 215.377 μS/cm and Y<sub>2</sub> of 0.279 mg/L.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400163"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mansoor Akhtar, Shifa Ullah Khan, Ghulam Mustafa, Muhammad Ahmad, Tansir Ahamad
In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h+ and ⋅ O2- under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.
{"title":"A Novel BiOBr/CAU-17 Composite with Enhanced Photo-Catalytic Performance for Dye Degradation and Removal of Tetracycline Antibiotic Under Visible Light.","authors":"Mansoor Akhtar, Shifa Ullah Khan, Ghulam Mustafa, Muhammad Ahmad, Tansir Ahamad","doi":"10.1002/open.202400195","DOIUrl":"https://doi.org/10.1002/open.202400195","url":null,"abstract":"<p><p>In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h<sup>+</sup> and ⋅ O<sub>2</sub> <sup>-</sup> under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400195"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bronte Carr, Timothy D Christopher, Tilo Söhnel, Lawrence R Gahan, Cassandra L Fleming, Allan G Blackman
The syntheses of the tripodal tetraamine ligands 2-(pyridin-2-yl)-N,N-bis(quinolin-2-ylmethyl)ethan-1-amine (DQPEA), N-(pyridin-2-ylmethyl)-2-(quinolin-2-yl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (DQEPMA), 2-(pyridin-2-yl)-N,N-bis(2-(quinolin-2-yl)ethyl)ethan-1-amine (DQEPEA), N,N-bis(pyridin-2-ylmethyl)-2-(quinolin-2-yl)ethan-1-amine (QEDPMA), and 2-(pyridin-2-yl)-N-(2-(pyridin-2-yl)ethyl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (QEDPEA) containing mixed quinolyl and pyridyl moieties are reported, with 2-vinylquinoline being used to attach quinolylethyl arms to the aliphatic N atom. X-ray crystal structures of [(Mn(DQPEA))2O2](ClO4)2 ⋅ (CH3CN)2, [Cu(DQPEA)NCCH3](ClO4)2, [Zn(DQPEA)NCCH3](ClO4)2, [Pd(DQEPEA)Cl]Cl ⋅ 11H2O are detailed, with four, five, and six-coordination observed. In addition, the dimeric complex [(DPEA)Co(μ-OH)3Co(DPEA)](ClO4)3 ⋅ 0.5H2O ⋅ MeCN containing the tridentate DPEA ligand formed by N-dealkylation of QEDPEA is reported. Calculations suggest that the very short Co…Co distance of 2.5946(6) Å in this complex is unlikely to be due to a Co-Co bond.
{"title":"Structural Variety in Transition Metal Complexes of Tripodal Ligands Containing Mixed Quinolyl and Pyridyl Donors.","authors":"Bronte Carr, Timothy D Christopher, Tilo Söhnel, Lawrence R Gahan, Cassandra L Fleming, Allan G Blackman","doi":"10.1002/open.202400304","DOIUrl":"https://doi.org/10.1002/open.202400304","url":null,"abstract":"<p><p>The syntheses of the tripodal tetraamine ligands 2-(pyridin-2-yl)-N,N-bis(quinolin-2-ylmethyl)ethan-1-amine (DQPEA), N-(pyridin-2-ylmethyl)-2-(quinolin-2-yl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (DQEPMA), 2-(pyridin-2-yl)-N,N-bis(2-(quinolin-2-yl)ethyl)ethan-1-amine (DQEPEA), N,N-bis(pyridin-2-ylmethyl)-2-(quinolin-2-yl)ethan-1-amine (QEDPMA), and 2-(pyridin-2-yl)-N-(2-(pyridin-2-yl)ethyl)-N-(2-(quinolin-2-yl)ethyl)ethan-1-amine (QEDPEA) containing mixed quinolyl and pyridyl moieties are reported, with 2-vinylquinoline being used to attach quinolylethyl arms to the aliphatic N atom. X-ray crystal structures of [(Mn(DQPEA))<sub>2</sub>O<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub> ⋅ (CH<sub>3</sub>CN)<sub>2</sub>, [Cu(DQPEA)NCCH<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub>, [Zn(DQPEA)NCCH<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub>, [Pd(DQEPEA)Cl]Cl ⋅ 11H<sub>2</sub>O are detailed, with four, five, and six-coordination observed. In addition, the dimeric complex [(DPEA)Co(μ-OH)<sub>3</sub>Co(DPEA)](ClO<sub>4</sub>)<sub>3</sub> ⋅ 0.5H<sub>2</sub>O ⋅ MeCN containing the tridentate DPEA ligand formed by N-dealkylation of QEDPEA is reported. Calculations suggest that the very short Co…Co distance of 2.5946(6) Å in this complex is unlikely to be due to a Co-Co bond.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400304"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The surface area of a molecule, an inherent geometric property of its structure, plays important roles in its solvation and functioning. Here we present an accurate and robust program, sesA, for the analytic computation of solvent-excluded surface (SES) areas. The accuracy and robustness are achieved through the analytic computations of all the solvent-accessible surface (SAS) regions for a surface atom and probe-probe intersections. The detailed comparisons of the areas for a large set of protein structures by sesA and msms, a de-facto standard for analytic SAS and SES computations, confirm sesA's accuracy to a good extent and in the same time reveal significant differences between them. The unprecedented accuracy and robustness of sesA make it possible to analyze in great detail the surface areas of any molecules in general and biomolecules in particular.
分子的表面积是分子结构固有的几何特性,在分子的溶解和功能发挥中起着重要作用。在此,我们介绍一种精确而稳健的程序--sesA,用于分析计算溶剂排除表面(SES)面积。通过分析计算表面原子和探针-探针交叉点的所有溶剂可及表面(SAS)区域,实现了程序的准确性和稳健性。sesA 和 msms(分析 SAS 和 SES 计算的事实标准)对大量蛋白质结构的面积进行了详细比较,结果在很大程度上证实了 sesA 的准确性,同时也揭示了两者之间的显著差异。sesA 史无前例的准确性和稳健性使其能够对任何分子,尤其是生物大分子的表面积进行详细分析。
{"title":"sesA: A Program for the Analytic Computation of Solvent-Excluded Surface Areas.","authors":"Lincong Wang","doi":"10.1002/open.202400172","DOIUrl":"https://doi.org/10.1002/open.202400172","url":null,"abstract":"<p><p>The surface area of a molecule, an inherent geometric property of its structure, plays important roles in its solvation and functioning. Here we present an accurate and robust program, sesA, for the analytic computation of solvent-excluded surface (SES) areas. The accuracy and robustness are achieved through the analytic computations of all the solvent-accessible surface (SAS) regions for a surface atom and probe-probe intersections. The detailed comparisons of the areas for a large set of protein structures by sesA and msms, a de-facto standard for analytic SAS and SES computations, confirm sesA's accuracy to a good extent and in the same time reveal significant differences between them. The unprecedented accuracy and robustness of sesA make it possible to analyze in great detail the surface areas of any molecules in general and biomolecules in particular.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400172"},"PeriodicalIF":2.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
{"title":"Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging.","authors":"Yoghalakshmi Nagarajan, Natarajan Chandrasekaran, Venkatachalam Deepa Parvathi","doi":"10.1002/open.202400232","DOIUrl":"https://doi.org/10.1002/open.202400232","url":null,"abstract":"<p><p>Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400232"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prianka Mondal, Md Raihan Islam, Mst Shamima Khanom, Farid Ahmed
We studied the RbV3Sb5 kagome compound's structural, mechanical, thermal, and optoelectronic properties. Mulliken and Hirshfeld population analysis found ionic and covalent connections in RbV3Sb5. The Born stability criterion shows that pure RbV3Sb5 is mechanically stable. The precise measurement of 3.96 indicates that our sample has higher machinability at 20 GPa. Low anticipated hardness of RbV3Sb5 suggests it can be used as a soft solid lubricant. Hardness ratings rise with pressure, however there are exceptions. Pressure causes large nonmonotonic changes in RbV3Sb5's anisotropic characteristics. A comparable 20 GPa Zener anisotropic value, RbV3Sb5 has the highest. The structure's projected Debye temperature at 0 GPa is 284.39 K, indicating softness. Dispersion curves with negative frequencies suggest ground state structural dynamical instability. The structure has no negative-energy phonon branches under 10 GPa stress. From band structure and density of state analysis, the structure behaves metallically under hydrostatic pressure. Also, the structure has maximal ultra-violet conductivity and absorption. The absorption coefficient, conductivity, and loss function plots show uniform patterns at all pressures. As pressure rises, these graphs' peaks blue shift.
{"title":"The Impact of Hydrostatic Pressure on the Structural, Mechanical, Thermal, and Optoelectronic Characteristics of the RbV<sub>3</sub>Sb<sub>5</sub> Kagome Compound: Ab initio Approach.","authors":"Prianka Mondal, Md Raihan Islam, Mst Shamima Khanom, Farid Ahmed","doi":"10.1002/open.202400291","DOIUrl":"https://doi.org/10.1002/open.202400291","url":null,"abstract":"<p><p>We studied the RbV<sub>3</sub>Sb<sub>5</sub> kagome compound's structural, mechanical, thermal, and optoelectronic properties. Mulliken and Hirshfeld population analysis found ionic and covalent connections in RbV<sub>3</sub>Sb<sub>5</sub>. The Born stability criterion shows that pure RbV<sub>3</sub>Sb<sub>5</sub> is mechanically stable. The precise measurement of 3.96 indicates that our sample has higher machinability at 20 GPa. Low anticipated hardness of RbV<sub>3</sub>Sb<sub>5</sub> suggests it can be used as a soft solid lubricant. Hardness ratings rise with pressure, however there are exceptions. Pressure causes large nonmonotonic changes in RbV<sub>3</sub>Sb<sub>5</sub>'s anisotropic characteristics. A comparable 20 GPa Zener anisotropic value, RbV<sub>3</sub>Sb<sub>5</sub> has the highest. The structure's projected Debye temperature at 0 GPa is 284.39 K, indicating softness. Dispersion curves with negative frequencies suggest ground state structural dynamical instability. The structure has no negative-energy phonon branches under 10 GPa stress. From band structure and density of state analysis, the structure behaves metallically under hydrostatic pressure. Also, the structure has maximal ultra-violet conductivity and absorption. The absorption coefficient, conductivity, and loss function plots show uniform patterns at all pressures. As pressure rises, these graphs' peaks blue shift.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400291"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}